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Abstract

We devised and elaborated a surface-based three-dimensional-quantitative structure�/activity relationship (3D-QSAR) method,

which had been proposed in the previous study. This approach can be applied to more general case where both the electrostatic and

lipophilic potentials on molecular surface simultaneously change. The 3D coordinates of all sampling points on molecular surface

are projected into a 2D map by Kohonen neural network (KNN). Each node in the map is coded by the associated molecular

electrostatic potential (MEP) or molecular lipophilic potential (MLP) values. The electrostatic and lipophilic KNN maps are

generated for each compound and the four-way array is constructed by collecting two KNN maps of all samples. The correlation

between four-way array and biological activity is examined by four-way partial least-squares (PLS). For validation, the structure�/

activity data of estrogen receptor antagonists was investigated. The four-way PLS model gave the high statistics at calibration and

validation stages. The coefficients of the four-way PLS model back-projected on molecular surface had a reasonable 3D distribution

and it was nicely consistent with active site of the estrogen receptor which was recently made clear by X-ray crystallography.

# 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A relationship between chemical structures and their

biological activities has been studied in the field of

quantitative structure�/activity relationship (QSAR).

The main purpose of QSAR is to obtain a reliable

model equation with both easiness of interpretation for

structure design and high predictability for new chemi-

cal structure. Three-dimensional QSAR (3D-QSAR) is a

special discipline in QSAR taking into consideration of

the 3D structure of molecule (Kubinyi, 1993).

In the late 1980s, a 3D-QSAR technique named

comparative molecular field analysis (CoMFA) was

introduced by Cramer et al. (1988). CoMFA uses the

steric and electrostatic field variables that are calculated

at the intersections of 3D grid surrounding molecular

structure. The relationship between these 3D structural

descriptors and the biological activities is modeled by

partial least-squares (PLS; Geladi and Kowalski, 1986).

The result of CoMFA can be displayed as 3D contour

maps of PLS regression coefficient in computer graphics

and the important regions for biological activity can be

easily identified. In advanced CoMFA, molecular lipo-

philicity potential (MLP) is incorporated into CoMFA

field that may cover hydrophobic interaction and

entropy component (Miyashita et al., 1993). Moreover,

new techniques have been invented for solving some

difficulties originated from the statistical limits of PLS

(Hasegawa et al., 1997; Kimura et al., 1998). Nowadays,

CoMFA is widely used in 3D-QSAR studies, and a large

number of applications have been reported (Kubinyi,

1998).

Although CoMFA is useful, it does not always reflect

real ligand�/receptor interaction. Molecular interactions

between a ligand and a receptor are mainly occurred

near van der Waals surface of the ligand. All grid points

surrounding whole molecule in CoMFA are not im-

portant as molecular descriptors. If each molecule is
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represented by physicochemical parameters on molecu-

lar surface, more precise and realistic 3D-QSAR could

be possible.

Recently, we developed a new surface-based 3D-
QSAR method according to the idea described above

(Hasegawa et al., 2002). In the method, the 3D

coordinates of all sampling points on molecular surface

are projected into a 2D map by Kohonen neural

network (KNN; Devillers, 1996). The 2D map has the

same number of elements for describing molecule,

irrespective of the size of molecule. Each node in the

map is coded by the associated molecular electrostatic
potential (MEP) value. The three-way array is con-

structed by collecting all 2D KNN maps. The correla-

tion between three-way array and biological activity is

analyzed by three-way PLS (Bro, 1996). The three-way

PLS is a robust statistical method against ill noise in

data and it can keep the important neighboring relation-

ship between nodes in KNN map. Our new method was

applied to 25 dopamine receptor antagonists and the
excellent three-way PLS model with the good statistics

was obtained (Hasegawa et al., 2002).

On the basis of this successful result, we reached an

idea that our approach could be extended to more

general case where both the electrostatic and lipophilic

potentials on molecular surface simultaneously change.

In this case, the electrostatic and lipophilic KNN maps

are generated for each compound and the four-way
array is constructed by collecting two KNN maps of all

samples. The correlation between four-way array and

biological activity is examined by four-way PLS. For

validation, the structure�/activity data of estrogen

receptor antagonists was investigated. The four-way

PLS model gave the good statistics at calibration and

validation stages. The coefficients of the four-way PLS

model back-projected onto molecular surface had a
reasonable 3D distribution and it was nicely consistent

with active site of the estrogen receptor recently made

clear by X-ray crystallography.

2. Materials and methods

2.1. Data set

A series of 36 estrogen receptor antagonists reported

in literature was used as test data set (von Angerer et al.,

1984). It has been well known that the active site of the

estrogen receptor is mainly composed of hydrophobic

environments. The lipophilic nature of antagonist is

crucial for antagonistic activity and this data set is a

good example for validation of our approach. The

logarithm value of relative binding affinity (RBA) was
used as biological activity. RBA is given as the ratio of

the molar concentration of 17b-estradiol and 2-phenyl

indole required for decreasing the receptor bound

radioactivity by 50%, multiplied by 100. The binding

affinities of 2-phenyl indoles for the estrogen receptor

were measured by a competitive binding assay with 17b-

[3H] estradiol. Chemical structures of 2-phenyl indoles

and their values of log(RBA) were listed in Table 1. It

has been believed that the estrogen receptor is a good

target for treatment of advanced breast cancer. The

indole binds to the estrogen receptor competing with a

substrate ‘estradiol’. This binding prevents the growth of

advanced breast cancer because the hormonal function

of estardiol is related to the differentiation of cancer cell.

Table 1

Chemical structures of 2-phenyl indoles and their antagonistic

activities

Number R1 R2 X Y RBA log(RBA)

1 H H 6 4 0.01 �/4.61

2 H CH3 6 4 0.06 �/2.81

3 H C2H5 6 4 0.13 �/2.04

4 H H 5 4 0.01 �/4.61

5 H CH3 5 4 0.06 �/2.81

6 CH3 H 6 4 3.80 1.34

7 C2H5 H 6 4 16.0 2.77

8 C3H7 H 6 4 8.50 2.14

9 C4H9 H 6 4 4.30 1.46

10 CH3 CH3 6 4 10.0 2.30

11 C2H5 CH3 6 4 33.0 3.50

12 C3H7 CH3 6 4 13.0 2.56

13 i -C3H7 CH3 6 4 13.0 2.56

14 CH3 C2H5 6 4 5.90 1.78

15 C2H5 C2H5 6 4 21.0 3.04

16 C3H7 C2H5 6 4 19.0 2.94

17 CH3 H 5 4 0.80 �/0.22

18 C2H5 H 5 4 5.80 1.76

19 C3H7 H 5 4 18.0 2.89

20 CH3 CH3 5 4 4.60 1.53

21 C2H5 CH3 5 4 9.50 2.25

22 C3H7 CH3 5 4 16.0 2.77

23 i -C3H7 CH3 5 4 3.50 1.25

24 C4H9 CH3 5 4 4.60 1.53

25 C5H11 CH3 5 4 2.30 0.83

26 C2H5 C2H5 5 4 23.0 3.14

27 C3H7 C3H7 5 4 1.70 0.53

28 C2H5 CH3 7 4 0.02 �/3.91

29 C2H5 H 6 3 1.70 0.53

30 CH3 CH3 6 3 0.55 �/0.60

31 C2H5 CH3 6 3 3.00 1.10

32 C3H7 CH3 6 3 3.50 1.25

33 C2H5 H 5 3 1.70 0.53

34 CH3 CH3 5 3 0.60 �/0.51

35 C2H5 CH3 5 3 2.20 0.79

36 C3H7 CH3 5 3 7.40 2.00
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2.2. Molecular modeling

The 3D structure of each compound was built up

from the fragment library in SPARTAN (SPARTAN,

2002), and it was fully geometry-optimized at the PM3

level. The energy-minimized structure was subjected to

conformational analysis implemented in SPARTAN. Con-

formational analysis was carried out through systematic

conformation option. The systematic conformation

option means all torsion bonds in molecule are rotated

according to empirical rule (60 increments in the case of

sp3�/sp3 bond). A global energy-minimum conformation

of each compound was selected for superimposition.

The indole ring was used as the fitting points for

superimposition of molecular structures. The MEP

value on van der Waals surface was calculated using

the electrostatic potential (ESP) suiting method in

SPARTAN. The molecular lipophilic potential (MLP)

value was calculated on the same point as MEP

according to Furet’s empirical equation (Furet et al.,

1988). The distance between sampling points was set to

be 0.5 Å and approximately 40 000 points were sampled

on van der Waals surface. The Cartesian coordinates

and the associated MEP and MLP values were exported

to a text file for the next KNN training.

2.3. KNN

KNN is based on the idea that human brain tends to

compress and organize sensory data spontaneously.

KNN can be used to generate a projection of objects

from a higher dimensional space onto a two dimensional

space. In other words, this method enables a decrease in

dimension while conserving a topology of the informa-

tion as much as possible (Devillers, 1996).

KNN is typically made up from two layers (input and

output layers). The input layer contains m neurons

corresponding to m variables describing objects. The

output layer is a two-dimensional geometrical arrange-

ment of n neurons and the topology is usually defined as

‘torus’. ‘Torus’ means that the right or top edge of map

is continued to its left and low edge, respectively, and

vice versa. The m neurons of the input layer are all

connected to each of the n neurons of the output layer as

shown in Fig. 1. The network is trained by adjustment of

the connection weight in two phases, competitive learn-

ing and self-organization phases. Initially, the connec-

tion weights are set to random values. Each object in the

data set is considered to be a vector x, consisting of m

values xi ; each neuron j in the output layer is

characterized by a weight vector wj , consisting of m

weights wij . The Euclidean distance, dj , is calculated

between each input vector x and each weight vector wj .

dj �
Xm

i�1

(xi�wij) (1)

A node having the shortest distance to the input

vector x is referred to as winner. After the winning

neuron, denoted by j* , is found, the adjustment of
weight vector starts. The weight vector of the winner

node is modified in order to make this node even closer

to the current object:

wij�(t�1)�wij�(t)�a[xi�wij�(t)] (2)

where a is learning rate and t is iteration number. The

weights of the neighboring nodes on the output layer are

also modified to become closer to the winner and, hence,

to the current object. The range of the neighboring

neurons beyond the winning neuron is determined by

learning area (r). Then, the same procedure is repeated

for all objects. This process called as epoch is carried out

repeatedly while the values of learning rate and learning
area (a , r) are monotonically decreased.

In this study, KNN was trained by all points sampled

on van der Waals surface. Therefore, each input neuron

has three weights corresponding to three Cartesian

coordinates (m�/3). According to the finally established

weight vectors determined by KNN training, each

sampling point was placed on a specific node in the

output layer. After that, each output neuron was coded
by the associated MEP or MLP values of the occupying

sampling point. All coding nodes were collected together

to define chemical descriptors that were used to

correlate the estrogen receptor antagonist activities

(see Section 3 and Fig. 2). Moreover, in order to

compare KNN maps each other the template approach

was employed (Anzali et al., 1996). A reference KNN is

trained with the coordinates of sampling points of the
most active compound (compound 11 in Table 1). Then,

other antagonists are filtered through this network and

thus produce comparative KNN maps.

The parameters of KNN experiments were defined as

follows: map size (n )�/50�/50, initial learning rate

(a )�/0.01, initial learning area (r)�/20, training

steps�/50. These values were determined according to

the previous 3D-QSAR study (Hasegawa et al., 2002).
The KNN experiments were simulated using TUT_-

SOM (Toyohashi University of Technology Program

for Self-Organization Map Satoh et al., 1998) on SGI

workstation.

3. Four-way PLS

PLS is a method for building linear regression model

between independent variable matrix X and dependent
variables vector y (Geladi and Kowalski, 1986). In PLS

algorithm, a latent variable t is derived from indepen-

dent variable matrix and the covariance between t and y
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is maximized. Even in the situation that number of

variables is greater than number of sample and/or that

variables are high correlated each other, PLS can

construct a robust model. In 1996, Bro proposed a

multi-way PLS algorithm as the extension of standard

PLS (Bro, 1996). When independent variable is multi-
way array, multi-way PLS gives more stable model

compared with standard PLS.

The essence of four-way PLS algorithm can be

expressed as follows:

max
wJ wK wL

�XI

i�1

tiyijti �
XJ

j�1

XK

k�1

XL

i�1

Xijklw
J
j wK

k wL
l

and kwjk�kwkk�kwLk�1

�
(3)

where wJ , wK , wL are weight vectors of second, third

and fourth dimensions, respectively. Xijkl is four-way

independent variable array and yi is dependent variable

vector. As standard PLS, the covariance between y and

latent variable t is maximized at each component, and

this model is subtracted from Xijkl and yi , then the
following component is built from residues. After

determination of weight vectors in all components, the

regression equation can be calculated from weights and

latent variable.

yi �
XJ

j�1

XK

k�1

XL

l�1

Xijklbjkl �ei (4)

where bjkl is regression coefficient array and e is residue

error. The algorithm for obtaining regression coeffi-

cients from weights and latent variable was fully
described in literature (Smilde, 1997). The related

programs for multi-way PLS modeling were written in

MATLAB 5.3 on Windows 2000 operating system.

In this study, four-way array for four-way PLS was

constructed from compounds, two-dimensional KNN

maps and two potentials. The resulting size of the four-

way array is 36 (number of compounds)�/50 (number

of first dimension in KNN maps)�/50 (number of
second dimension in KNN map)�/2 (MEP and MLP).

The procedure for construction of four-way array was

graphically illustrated in Fig. 2.

4. Results and discussion

4.1. Four-way PLS analysis

Mean centering was applied to four-way independent

variable array (36 compounds�/50�/50 Kohonen

Fig. 1. Architecture of Kohonen neural network.

Fig. 2. Correlation between antagonistic activity and four-way array.

K. Hasegawa et al. / Computational Biology and Chemistry 27 (2003) 381�/386384



maps�/2 molecular potentials) and dependent variable

vector (36 antagonist activities) as a preprocessing of

modeling. The six-component four-way PLS model was

obtained by the leave-one-out cross-validation experi-

ment. The values of R2 and Q2, cross-validated R2, were

0.89 and 0.80, respectively. The contributions of MEP

and MLP to antagonist activity were estimated 80 and

20% from the sum of squares of coefficients.

The four-way PLS model was converted into the

regression-like model and the regression coefficients

were back-projected onto molecular surface. The result-

ing back-projection map of coefficients was shown in

Fig. 3. Panel (a) and (b) show the projection maps of

MEP and MLP, respectively. Coefficient map was

drawn at the 0.01 level. Compound 11 with the highest

antagonist activity was taken as reference for specifying

3D space. The blue and red colors represent the plus and

minus coefficients, respectively.
We attempted to estimate the structural requirements

for estrogen receptor antagonist from the coefficient

map in Fig. 3. At first, the MEP character is discussed

from panel (a). The plus coefficient region is around the

Y position. It means that the hydrogen atom of

hydroxyl group having the plus MEP value enhances

the antagonist activity. The hydrogen atom of hydroxyl

group may act as hydrogen-bonding donor. On the

other hand, the negative coefficient region is around the

X position. The oxygen atom of hydroxyl group having

the negative MEP value at X improves the antagonist

activity. The oxygen atom of hydroxyl group may act as

hydrogen-bonding acceptor. Next, the MLP character is

discussed from panel (b). The plus coefficient region is

around the R1 position. The hydrophobic substituent

having the plus MLP value at R1 enhances the

antagonist activity. The negative coefficient region is

around the Y position. Y has two opposite coloring
maps derived from MEP and MLP. This suggests that

the Y region has the higher contribution to antagonistic

activity. The clear coloring region is not observed

around the R2 position. It may be considered that the

contribution of the R2 position is lower than that of R1.

For comparative study, standard (two-way) PLS was

applied to the same data set. The comparative KNN

map was transformed to the vector by the unfolding
method (Polanski and Walczak, 2000). The values of R2

and Q2 were 0.98 and 0.79, respectively. The discrepancy

between R2 and Q2 is higher than that of the two-way

PLS model (0.19 vs. 0.09). This indicates the two-way

PLS model is over-fitting and the prediction of new

chemical structure is expected to be difficult. The back-

projection map of coefficients was shown in Fig. 4

(0.005 level). The visual inspection of Fig. 4 demon-
strates that the 3D distribution of the two-way PLS

model is more messy and complex than that of the four-

way PLS model due to the small fraction of coefficient

values (Fig. 4 vs. Fig. 3).

4.2. Validation of model

The 3D structure of complex between 17b-estradiol

and estrogen receptor was made clear by X-ray crystal-

lography (PDB code: 1A52; Tanenbaum et al., 1998).

From the X-ray crystallography, it was found that there

are at least four key ligand�/receptor interactions: The 3-

hydroxyl group interacts with the carboxylate of Glu-

Fig. 3. Coefficient map derived from four-way PLS analysis. (a) MEP,

(b) MLP. Blue and red colors represent plus and minus coefficients,

respectively. Coefficient map was drawn at 0.01 level.

Fig. 4. Coefficient map derived from two-way PLS analysis. (a) MEP,

(b) MLP. Blue and red colors represent plus and minus coefficients,

respectively. Coefficient map was drawn at 0.005 level.
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353 via charge�/charge interaction. The 17b-hydroxyl

group forms the hydrogen bond to the imidazole

hydrogen atom of His-524. The B ring of estradiol is

located in the large lipophilic pocket made from Leu-

384, Met-388, Leu-428 and Leu-391. The C ring of

estradiol interacts with lipophilic amino acid residues

comprised from Ala-350, Leu-346 (Fig. 5). From

molecular modeling, these four interactions of estradiol
correspond to X , Y , R1 and R2 of 2-phenyl indole,

respectively. This nice complementary relationship be-

tween coefficient maps and active site of estrogen

receptor shows the powerful ability of our method for

reproducing a real and meaningful 3D-QSAR model.

5. Conclusion

In the present study, we devised and elaborated a

surface-based 3D-QSAR method, which had been

proposed in the previous study. Our approach is divided

to KNN and four-way PLS. KNN is used for projecting

MEP or MLP on molecular surface to a 2D map. KNN

can overcome the technical problem when dealing with

molecules with the different size. KNN maps are

collected to construct four-way array. four-way PLS is
used for correlating four-way array with biological

activity. The four-way PLS can give more straightfor-

ward and dense contour map than that of two-way PLS.

The result can be visualized by contour map as CoMFA

and it is easier to interpret structure�/activity data.
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