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Abstract

A choice of an active conformer and the corresponding alignment rule is an important problem for determining the suc-
cess of 3D-QSAR study. For flexible molecules, this problem is the most difficult one and construction of the method with

w xappropriate chemometric tools has been required. Recently, Bro J. Chemom., 10, 1996, 47–61 has proposed a trilinear PLS
algorithm as the trilinear extension of standard bilinear PLS in the field of analytical chemistry. Bro’s 3-way PLS method
seems to be suitable to the 3D-QSAR problem but only few attempts have so far been made at the subject. The object of this
study is to investigate the ability of Bro’s 3-way PLS method for solving the conformerralignment problem in 3D-QSAR
study. The structure-activity data of insecticidal neonicotinoid compounds were used as a test example. The 3-way arrays
were constructed from eight sample vectors and eight electrostatic similarity matrices derived from eight combinations of
conformers and alignment rules. The correlation between the 3-way arrays and the insecticidal activity vector was investi-
gated by Bro’s 3-way PLS method. The 3-way PLS model with three significant components was obtained, and from its PLS
loading the best combination of conformer and alignment rule could be selected. q 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

ŽQuantitative structure-activity relationship QS-
.AR is an important tool to keep the number of syn-

thesized and tested compounds at a minimum in the
w xprocess of development of new drugs 1 . The pur-

pose of QSAR is to obtain the quantitative correla-
tion of molecular structure with biological activity
and to predict the biological activities for novel com-
pounds. QSAR should help to characterize those
structural features that are responsible for biological
activity and the information is crucial for drug de-
sign. The various QSAR methods that can be applied
are rather different, depending on whether 3-dimen-

Ž .sional 3D structure of the receptor is known or not.
In the latter case, which frequently occurs, any quan-
titative correlation has to be focused on relative dif-

Ž .ferences of structural features descriptors within a
w xseries of compounds 2 .

w xThe work of Hansch and Fujita 3 provided the
first formalism for deriving the QSAR model which
could be used to predict a biological activity from the
structural descriptors. Although this method using

Ž .multiple linear regression MLR has been of general
use, there are a number of practical problems in the
application to a data set of interest. A major limita-
tion is that the descriptors are derived from 2-dimen-

Ž .sional 2D structure. The 2D descriptors are those
based on experimentally derived octanolrwater par-
tition coefficients to model the hydrophobic effect,
Hammett substituent constants to model electronic
effects, and a wide range of descriptors, from molec-
ular weights to complex topological indices, to model

w xsteric interactions 4 . In general, the drug–receptor
interaction has to be described by 3D intermolecular

w xforces 5 , and the 2D descriptors are insufficient to
explain a complex structure-activity data.

In recent years, the growth of computational
chemistry has brought so-called 3D-QSAR study with

w xmolecular and atom-based descriptors 6 . The 3D-
QSAR study includes the descriptors derived from
individual atomic partial charges, HOMOrLUMO

energies, and molecular fields such as comparative
Ž .w xmolecular field analysis CoMFA 7 , etc. With these

types of descriptors, one can easily end up with a data
matrix consisting of a large number of descriptors.
Multivariate statistical techniques have to be adopted
with those many descriptors. MLR causes severe
problems in that case because of chance correlation

w xand multicollinearity among descriptors 8 . Tech-
Ž .niques such as principal component analysis PCA ,

Ž .principal component regression PCR , and partial
Ž .least squares regression PLS , which identify a small

number of latent variables that can explain biological
w xactivity, have been increasingly applied 9,10 .

When analyzing a structure-activity data to gener-
ate the 3D-QSAR model, flexible molecules are the

w xmost difficult to be treated 11 . A choice of an ac-
tive conformer and the corresponding alignment rule
has to be undertaken, either in accordance with avail-
able experimental data or based on hypothetical as-
sumptions. Thus, one of the key steps in the 3D-
QSAR methodology is selection of the active con-
former for each compound in the series, followed by
the molecular alignment rule. The success of 3D-
QSAR study is dependent on both selections.

In order to define the alignment rule for flexible
molecules, one can use a variety of methods. If crys-
tallographic data are available, the field-fit alignment
procedure may be applied based on the crystal struc-
ture as a template molecule. The field-fit procedure

Ž .minimizes the root-mean squares RMS difference
between a fixed template field and the corresponding
field of the molecules being aligned by adjusting
atomic coordinates. This procedure has been exten-
sively discussed in conjunction with alignment issues

w xand applied to some data set 12,13 . When no struc-
tural data are available, the computational procedure
using the conformational and cluster analysis may
keep in finding the molecular alignment rule. In this
procedure, low energy conformers of each molecule
are generated and the best match between various
molecules is selected from all possible combinations
of conformers based on some fitting criteria. Active
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Ž . w xanalog approach AAA 14 and molecular shape
Ž . w xanalysis MSA 15 are the representative tech-

niques belonging to the computational procedure.
The fundamental problem of the above mentioned

methods, especially when crystallographic data are
not available, is that the proposed solution is merely
derived from the geometrical comparison among
conformers. Because the result is not statistically ex-
amined with the structure-activity data, the correla-
tion obtained from the proposed alignment rule may
be spurious.

In a recent report, a novel chemometric approach
for the 3D-QSAR problem was proposed and applied
to a set of flexible DHFR inhibitors by Dunn et al.
w x16 . In their approach, the 3-way arrays were con-
structed from samples, conformers and alignments of
DHFR inhibitors and the active conformer and align-
ment rule were predicted from the factor decomposi-
tion of the 3-way arrays using the 3-way PLS method.
This approach was useful to suggest a new direction
for the 3D-QSAR study, but unfortunately, the algo-

Žrithm used as the 3-way PLS method hereafter, de-
w x.noted as Wold’s method 17 was not a trilinear PLS

algorithm based on the basic property of PLS, namely
maximum covariance between scores and activity in
a trilinear sense. Wold’s method is a kind of interme-
diate between the truly trilinear PLS and standard bi-
linear PLS because it unfolds the 3-way arrays to the
2-way matrix and uses the bilinear PLS algorithm.
Recently, Bro has proposed a trilinear PLS algorithm
as the trilinear extension of standard bilinear PLS
w x18 . He has applied this algorithm to the analytical
problems and discussed its advantages compared with
the unfolding method in view of fewer parameters and
simplicity of the model. Bro’s 3-way PLS method
seems to be suitable to the 3D-QSAR problem but
only few attempts have so far been made at the sub-

w xject 19,20 .
The object of this study is to investigate the abil-

ity of Bro’s 3-way PLS method for solving the con-
formerralignment problem in 3D-QSAR study. The
structure-activity data of insecticidal neonicotinoid

w xcompounds were used as a test example 21 . At the
beginning, four possible conformers on each com-
pound were generated from the X-ray crystal struc-
ture of imidacloprid as a template compound and two
alignment rules were considered to weight the pyri-
dine and imidazolidine-like moiety as the pharma-

cophoric points of molecules. Electrostatic similarity
index between all pairs of molecules based on the

w xCarbo formula was used as structural descriptor 22 .
Based on these definitions, the 3-way arrays were
constructed from eight sample vector and eight elec-
trostatic similarity matrices derived from eight com-
binations of conformers and alignment rules. The
correlation between the 3-way arrays and the insecti-
cidal activity vector was investigated by Bro’s 3-way
PLS method. The 3-way PLS model with three sig-
nificant components was obtained to explain the in-
secticidal activity well. Finally, from the PLS load-
ing and subsequently calculated scoring function, the
best combination of conformer and alignment rule
could be selected and its combination gave the stan-

Ž .dard bilinear PLS model with high internal predic-
tivity.

2. Materials and methods

2.1. Data set

Eight neonicotinoid compounds with insecticidal
activity were used in the 3D-QSAR study. The insec-
ticidal activity was expressed as the logarithm of the

Ž .reciprocal value of binding constant K against thei
Ž .nicotinic acetylcholine ACh receptor derived from

the head of honey bee. The chemical structures and
insecticidal activities of neonicotinoid compounds are
shown in Table 1. The structure-activity data were
taken from the study by Sukekawa and Nakayama
w x21 . Some compounds were removed from the data
set because they did not have the imidazolidine-like
moiety necessary for the alignment.

2.2. Molecular modelling

The conformational profiles of neonicotinoid
compounds are defined by two torsion angles a and

Ž .b Fig. 1 . Four possible conformers of imidacloprid
w xwere generated from its X-ray crystal structure 23 .

Ž .Conformer 1 C1 is identical to the X-ray crystal
structure and the values of two torsion angles are de-

Ž . Ž .fined to be zeros as0, bs0 . Conformer 2 C2
is generated by rotating the first torsion angle of C1

Ž .conformer by 180-degrees a s180, b s 0 . Con-
Ž .former 3 C3 is generated by rotating the second
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Table 1
Observed and calculated insecticidal activity for nicotinic acetylcholine receptor

aObserved activity.
bCalculated activity by 3-way PLS model.
cCalculated activity by standard PLS model.

Žtorsion angle of C1 conformer by 180-degrees as
. Ž .0, bs180 . Conformer 4 C4 is generated by rotat-

ing both torsion angles of C1 conformer by 180-de-
Ž .grees as180, bs180 . These conformers repre-

sent the possible relative configurations between the
pyridine and imidazolidine-like moieties and the ra-
tional framework behind this conformer definition is

w xfully described in the study of Okazawa et al. 24 .
Four conformers of all compounds other than imida-
cloprid were constructed from the corresponding four

conformers of imidacloprid by the standard fragment
library in the molecular modelling software SPARTAN

w x25 implemented on the Silicon Graphics Worksta-
tion. Finally, to avoid the steric clash, all conformers
were energy-minimized by the semi-empirical
molecular orbital calculation with the AM1 method in
SPARTAN.

Two alignment rules were considered in this 3D-
Ž .QSAR study Fig. 1 . The first alignment focuses on

the pyridine moiety and the second one focuses on the
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Fig. 1. Definition of conformers and alignment rules.

imidazolidine-like moiety of the molecule. The fit-
ting atomic points for alignment were marked by a
circle in Fig. 1. This alignment definition corre-
sponds to the two binding modes proposed by Kagabu
w x23 . Four conformers of all compounds were super-
imposed on the corresponding ones of imidacloprid
by the two alignment rules and then eight combina-
tions of conformers and alignment rules were de-
fined.

2.3. Structural descriptors

Electrostatic similarity index between all pairs of
w xmolecules was used as structural descriptors 22 . By

comparing each molecule to every other in a series,
the N by N similarity matrix is formed which pro-
vides a numerical representation of how all the
molecules correlate. The electrostatic similarity in-
dex based on the Carbo formula C is calculatedAB

from the electrostatic properties P and P of theA B

two molecules being compared.
1r2 1r22 2C sÝP PP r ÝP P ÝP 1Ž .Ž . Ž .AB A B A B

The numerator measures a property overlap while
the denominator normalizes the similarity index. In

Ž .this study, molecular electrostatic potential MEP
was used as the electrostatic property P. MEP at the

Ž Ž ..arbitrary position r P r is computed according to
the following equation:

na

< <P r s q r ryr 2Ž . Ž .Ý i i
is1

Here q is the point charge on atom i and r is itsi i

position and na is the number of atoms in the
molecule. MEP is evaluated at the grid points around
the two molecules using the point charge obtained
from the AM1 method. In order to avoid singularities
at the atomic nuclei, evaluation is restricted to grid
points outside the van der Waals volume of the
molecules. The resulting MEP values are then used to
evaluate the electrostatic similarity index numeri-
cally. A symmetric N by N similarity matrix created
from all pairs of molecules was calculated by the ASP
Ž . w xautomated similarity package program 26 imple-
mented on a personal computer.

As a result, the eight by eight similarity matrix was
generated from eight samples and then the 3-way ar-
rays were constructed by collecting the eight similar-

Ž .ity matrices sheets derived from the eight combina-
Ž .tions of conformers and alignment rules Fig. 2 .

Fig. 2. 3-Way arrays for 3D-QSAR study.
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Fig. 3. Schematic illustration of 3-way PLS algorithm.

2.4. 3-Way PLS

The correlation between the 3-way arrays and the
insecticidal activity vector was investigated by Bro’s

w x3-way PLS method 18 . The goal of the method is to
make a decomposition of the 3-way arrays into a set
of triads. A triad consists of one score vector t and
two weight vectors, the vector one in the second mode

Ž .called wj and in the third mode called wk Fig. 3 .
The model of X is given by the equation:

A

Xs t mwj mwk qE 3Ž .Ý h h h
hs1

A

ys t Pq q f 4Ž .Ý h h
hs1

where X and y are the 3-way arrays and insecticidal
activity vector, respectively. Symbol Z is the Kro-
necker product. E and f are the model residuals of
X and y. A is the number of components determined

Ž .by a cross-validation experiment see Section 3 . The
score t is expressed by X and two weight vectors wk
and wj.
tsX wkmwj 5Ž . Ž .

The weight vectors wj and wk should give the
score t that simultaneously satisfies two conditions:
Ž .i the score t is highly correlated with the depen-

Ž .dent variable y; ii the score t models the variance
among the independent variables X as much as pos-
sible. By the simple algebraic manipulations, the
problem of finding the vector wj and wk leads to a

Ž . w xsingular value decomposition SVD of Z 18 . The
matrix Z is a J by K matrix with the jk’th element
being the inner product of y and the column ob-
tained by fixing the second and third mode of X at j
and k, respectively. The 3-way PLS analysis was

w xcarried out using the MATLAB program 27 imple-
mented on the Power Macintosh computer. The
source code of the 3-way PLS method is available

Žfrom World Wide Web http:rrnewton.foodsci.-
.kvl.dkrfoodtech .

3. Results and discussion

3.1. 3-way PLS analysis

In PLS, determination of the optimum number of
components is an important factor to obtain a predic-

w xtive PLS model 9,10 . For this purpose, a cross-
validation experiment was performed, monitoring the
internal predictivity of the model at each component
w x28 . The optimum number of components was as-
sumed to be one which gives the highest internal
predictivity of the PLS model in the cross-validation
experiment. A squared predictive correlation coeffi-
cient Q2 with the leave-one-out procedure was used
as the index of the internal predictivity. Q2 is de-
fined as follows:

n n
2 22Q s1y y yy r y yyŽ . Ž .Ý Ýi ,obs i ,pred i ,obs ave

is1 is1

6Ž .

where y and y are the observed and pre-i,obs i,pred

dicted activity for sample i, respectively. y is theave

averaged activity and n is the number of samples.
Table 2 shows the Q2 value for each component af-
ter centering the insecticidal activity vector y and
electrostatic similarity 3-way arrays X. The values of
the explained variance of X and y are also listed in
Table 2. The cross-validation experiment indicates

Žthat three is the optimal number of components A
.s3 . The calculated insecticidal activity given by the

3-way PLS model with three components is shown in
Table 1.

In order to select the best conformerralignment
combination from a statistical point of view, the PLS
loading of the second weight vector wk was exam-
ined. The loading represents how much each con-
formerralignment combination contributes to a com-
ponent of the model. The loading values of the 3-way
PLS model up to three components are shown in

Table 2
Results of 3-way PLS analysis

Component 1 2 3 4 5

Explained variance of X 0.542 0.841 0.903 0.916 0.933
Explained variance of y 0.792 0.884 0.956 0.974 0.998

2aQ 0.597 0.791 0.855 0.803 0.829

aSquared predictive correlation coefficient.
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Table 3
Loading of second weight vector and scoring function

aComponent 1 2 3 Fs

bC1A1 0.378 0.289 0.360 0.352
C1A2 0.388 0.423 0.278 0.366
C2A1 0.292 0.291 0.472 0.292
C2A2 0.356 0.386 0.355 0.343
C3A1 0.367 0.283 0.312 0.339
C3A2 0.387 0.427 0.242 0.363
C4A1 0.280 0.284 0.433 0.279
C4A2 0.363 0.402 0.319 0.347

aScoring function.
bCombinations of conformerralignment.
For the definitions, see Fig. 1.

Table 3. From the table, no clear by dominant com-
bination for the insecticidal activity is observed.
Therefore, for ranking the set of conformerralign-
ment combination numerically, a scoring function
Ž .F incorporating the partial explained variance ands

loading of second weight vector was computed ac-
w xcording to the previous 3-way PLS analysis 16 :

3

F s pv Pwk 7Ž .Ýs h h
hs1

where pv and wk are the partial explained varianceh h

of y and loading value of the second weight vector
at the h-th component, respectively. The F value ofs

each combination is shown in Table 3. As Table 3
Ž .indicates, the combination C1A2 gives the highest

scoring function among eight combinations. Thus, the
3-way PLS analysis supports the X-ray crystal struc-
ture and binding mode 2 as the conformer and align-
ment rule of imidacloprid. This result should be vali-
dated with the direct biochemical experiments. For
example, the complex structure of ACh receptor and
imidacloprid are decided by the X-ray crystallogra-
phy or high resolution NMR. However, since such
experiments have not been reported so far, the pre-

Ž .dicted conformerralignment combination C1A2 is
assumed to be a good candidate and the standard PLS
analysis was performed for the 3D-QSAR study.

3.2. Standard PLS analysis

For the best conformerralignment combination
Ž . w xC1A2 , the standard PLS method was applied 9,10 .
The insecticidal activity and corresponding similarity
matrix were mean centered before the standard PLS
analysis. A three-component PLS model was derived

by the cross-validation experiment based on the Q2

value. The insecticidal activity calculated by the
standard PLS model equation is shown in Table 1.
Converting the score t to the original structural de-

w xscriptors according to the previous study 29 , the
Ž .following QSAR equation MLR-like equation with

the mean centered descriptors was obtained.
log 1rK s2.045)C q1.935)CŽ .i 1 j 2 j

q1.697)C q1.765)C3 j 4 j

q0.695)C q0.519)C5 j 6 j

y1.610)C q0.254)C7j 8 j

ns8, As3,

R2 s0.913, Q2 s0.800 8Ž .
where n, A, R2, and Q2 are the number of samples,
the number of components, the squared correlation
coefficient, and the cross-validated r-squared value,
respectively. C is the Carbo similarity index whose
definition is described in Section 2.3. The sign of re-
gression parameters in the MLR-like model equation
indicates that the most active molecules should in
their electrostatic properties be similar to compound
1 and dissimilar to compound 7. This is indeed the
real structure-activity result. Compound 1 has the
highest activity while compound 7 has the lowest ac-
tivity in the data set. This easy-to-understand inter-
pretation is the advantage of the similarity approach
w x30 .

As a supplement, the standard PLS method was
applied to the remaining seven combinations and their
Q2 values were calculated. The calculated Q2 val-
ues are listed in Table 4. The Q2 values of seven

Table 4
Results of standard PLS analysis

a 2b 2cA R Q
dC1A1 4 0.955 0.782

C1A2 3 0.913 0.800
C2A1 4 0.933 0.471
C2A2 5 0.985 0.700
C3A1 4 0.949 0.738
C3A2 3 0.903 0.763
C4A1 2 0.761 0.395
C4A2 5 0.982 0.685

a Number of components.
bSquared correlation coefficient.
cSquared predictive correlation coefficient.
dCombinations of conformerralignment.
For the definitions, see Fig. 1.
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combinations were inferior to that of the best combi-
Ž .nation C1A2 . This suggests that the 3-way PLS

method may give a potential solution to the con-
formerralignment problem in 3D-QSAR study al-
though the general utility could not be guaranteed by
this preliminary study.

4. Conclusion

This paper demonstrates that the 3-way PLS
method with Bro’s trilinear algorithm may give a po-
tential solution to the conformerralignment problem
in 3D-QSAR study. From the loading vector of the
obtained 3-way PLS model, the best conformer and
alignment rule of neonicotinoid compounds could be
selected from the chemometric point of view. The
best combination gave the standard PLS model with
high internal predictivity and the insecticidal activi-
ties were fully explained.

The advantage of Bro’s 3-way PLS method, com-
pared to the unfolding methods such as Wold’s
method, is twofold. Bro’s method is much more par-
simonious. This means the model is simple and eas-
ier to interpret because the model uses fewer parame-
ters. Moreover, the model is potentially less prone to
noise, because the information across all modes is
used for the decomposition.

Bro’s 3-way PLS method should be applied to
other types of 3D-QSAR study. Especially, selection
of the best conformerralignment combination is also
a critical problem in CoMFA and this matter will be
investigated in our future report.
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