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Abstract 

Henrion, R., Henrion, G. and Onuoha, G.C., 1992. Multi-way principal components analysis of a complex data array resulting from 
physicochemical characterization of natural waters. Chemometrics and Intelligent Laboratory Systems, 16:87-94. 

Multi-way principal components analysis (MPCA) is an efficient tool for reducing higher dimensional data arrays. Using the 
Kroonenberg algorithm - which originally was developed for three-dimensional data arrays but may be generalized to arbitrary 
dimensions in a straightforward manner - MPCA is applied to a complex example from the chemistry of waters. The data 
originated from the measurements of fifteen physicochemical parameters (variables) at ten different locations (objects) within some 
specific area of the Niger delta. These measurements were consistently recorded 22 times (occasions) in the course of a year. 
MPCA allows the detection of spatial and temporal factors of influence and the classification of the parameters considered 
according to these factors. 

INTRODUCTION 

Principal components analysis (PCA) has be- 
come one of the main tools for structural investi- 

Correspondence to: Dr. R. Henrion, Humboldt-University 
Berlin, Department of Chemistry, Hess&he Strasse l-2, O- 
1040 Berlin, Germany. 

gations of multivariate data sets. There have been 
a lot of applications in chemometrics which con- 
sider classical, multivariate data tables, i.e. two- 
dimensional data arrays which are built up by 
measurements of p variables characterizing a set 
of 12 objects. In the last few years a tendency has 
been observed towards dealing with even higher 
dimensional data arrays (think, for instance, of a 
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constant set of IZ objects being determined by p 

variables measured on q different occasions). 
Such investigations have been instigated due to 
the increasing complexity of experimental design 
and the improving performance of analytical in- 
struments. As a consequence, attempts are being 
made to generalize classical methods from multi- 
variate statistics. One of these generalizations is 
multi-way principal components analysis (MPCA) 
which was first introduced by Tucker in 1964 [l]. 
Essential practical and theoretical progress was 
achieved by Kroonenberg and De Leeuw in 1980 
[2]. The first authors to mention this topic in the 
chemometric literature, to our knowledge, were 
Wold et al. in 1987 [3]. Since then an increasing 
number of reviews [4-71, applications [8,91, and 
theoretical developments [lo] concerning MPCA 
have been published. 

In the present work MPCA will be used to 
display the essential structures in a three-way 
data array. The data originated from a complex 
investigation of regional and seasonal variation of 
physicochemical parameters in a specific area of 
the Niger delta. Of course, for instrumental ap- 
plications, even higher dimensional data arrays 
may be considered (compare ref. 3 for a list of 
instrumental setups in analytical chemistry yield- 
ing up to six-way arrays). The abstract basis for 
MPCA, however, remains unchanged. We there- 
fore prefer to formulate the general n-way algo- 
rithm in a separate section, rather than the Kroo- 
nenberg algorithm for three-way data, which is 
properly contained within the general algorithm 
as a special case. Before doing so we shall men- 
tion some simplifying versions of the analysis. 

UNFOLDING TECHNIQUES AND DATA REDUCTION 

A ndive approach to the investigation of multi- 
way arrays would be to reduce the analysis to 
situations where classical tools, like conventional 
PCA, may be applied. In the simplest case, for 
instance, a three-way array could be cut out along 
one of the three ways. One then obtains as many 
two-way data tables as there are elements in the 
third way. Each of these tables can be subjected 
to PCA. The number of such PCAs, however, 

rapidly increases with the number of modes and 
the number of elements per mode. Furthermore, 
the results of such separate PCAs frequently hap- 
pen to contradict each other to a certain degree. 
Summarizing, this naive approach is not appro- 
priate for efficient data reduction; similarly, it is 
not very efficient to replace the analysis of a data 
table by separate univariate analyses. A some- 
what more advanced approach is the so-called 
unfolding (in ref. 3 this is called a ‘quick and dirty 
way’). The idea behind this is quite simple: define 
two of the three ways so that they form one single 
way. If one takes, for instance, twenty variables 
consistently measured on ten occasions, then one 
would arrive at 200 (new) variables (each variable 
on each occasion). So the three-way array is un- 
folded to a conventional data table. At least, one 
obtains one single PCA model, rather than sev- 
eral separate ones. This idea of unfolding may be 
generalized in a straightforward manner to n-way 
data arrays (compare Wold et al. [3]) and a slightly 
more general decomposition is even possible by 
identifying k ways on the one hand and the 
remaining 12 - k ways on the other hand, yielding 
two new artificial ways (compare Geladi [41). Nev- 
ertheless, such unfolding still does not meet the 
requirement of efficient data reduction. It would 
obviously be much easier to consider a display of 
twenty variables and another display of ten occa- 
sions rather than a display of 200 variables which, 
apart from this, are hard to interpret since they 
are artificially interconnected. Next one arrives at 
Tucker’s original method, which is based on un- 
folding: first, identify variables and occasions to 
obtain scores for objects by conventional PCA. 
Next, identify objects and occasions to obtain 
loadings for variables by another conventional 
PCA. Finally, compute loadings for occasions af- 
ter identifying objects and variables. By so doing, 
one achieves a decomposition of the three-way 
array into three separate representations. The 
task of data reduction is thus fulfilled. But now 
the computed constellations fail to be least 
squares solutions (compare ref. 2). This means 
that when decomposing an n-way array into n 
separate component models, then the Tucker so- 
lution does not, in general, give the best repro- 
duction of the original array in terms of the 
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component models. This last obstacle, however, 
may be circumvented by using the Kroonenberg 
algorithm, which is described below. We empha- 
size that the abovementioned simplified versions 
of n-way analysis are useful only if standard 
software is available, but one should be aware of 
the fact that, to a certain degree, either data 
reduction is not performed efficiently, or that the 
least squares fit is not optimal. 

MULTI-WAY PRINCIPAL COMPONENTS ANALYSIS 

Consider an N-dimensional data array Z with 
general element z~,,~, ,,,,, iN (1 Q i, G ~zr,. . . , 1 G i, 
Q nN). As an illustration for the case N = 3, 
think, for instance, of the analytical supervision 
of a chemical process with .z~,,~,,~, denoting the 
concentration of element No. i, in sample No. i, 
at time i,. The aim of MPCA is to extract the 
informative part of the variance within Z and to 
separate it from noise. More exactly, one searches 
for small numbers sr G n,, . . . , sN Q n,,, of compo- 
nents which are able to explain a maximum 
amount of the variation in Z. Components within 
each of the N ways are required to be orthogo- 
nal. A very popular application of MPCA is the 
graphical description of the essential data struc- 
ture which may be obtained by restriction to the 
case sr = s2 = . * 1 = sN = 2 where, for each of 
the N ways, a display can be established by using 
the two components as axes. Before formulating 
the theoretical background of MPCA one needs 
some introductory concepts for the manipulation 
of N-way arrays: 
- Denote by M”‘*,,,* “N the linear space of N-way 

arrays of order (n,, . . . , n,). 
- Define the transposition operator T : M”~,...~“N 

+A4”N~~.~~nl by assigning to the array P E 
M”I...,,“Jv the array PT E M”N,...,~I with gen_ 

era1 element PLT,. , i, := Pi,, , i,* 
- Define the Kronecker product @ : M”12”* X 

M”3r’Q + M”l’“Q’z’“4 by assigning to each pair 
of two-dimensional matrices (Q, R) E M”IT”~ X 

MQn4 the two-dimensional matrix P := Q @ R 
E Mn1’“@2’“4 with general element pij := qm8 . 
rvs, where (Y := [(i - II/n,] + 1, p := [(j - 
l)/n,l+l, y:=i-n,*(a-11, fS:=j-n4.(P 
- 1) and [ ] denotes the integer fraction. 

- Define the cutting operator cuti : M”l,...,‘Q’+ 
M”,. . . . . nk-].“k+,,....“N (1 <j G n,) by assigning 
to the N-way array P the (N- O-way array 
P* := cut;(P) with general element pc,,,,,i,_, 

‘=Pi., ,..., ik_,.jrik+, ,..., iNe 
- Define the vectorization operator vet: 

M”,,..., “N -+ Mnl..‘n~ inductively in the follow- 
ing way: 

- For two-dimensional matrices one defines 
vet: M “142 + M”I’“z by assigning to each 
matrix P the vector q := vet(P) with gen- 
eral component qk :=pij where j := [(k - 
1)/n,] + 1, i := k - n1 * (j - 1) (‘stacking 
of columns of P’). 

- In the N-dimensional case, to the N-way 
array P there is assigned the vector q := 
vet(P) which is explained by q := vet(R) 
where RE M”z...n~snl is a two-dimen- 
sional matrix the jth column of which is 
fixed to be vec(cut$P)). Note that this 
last expression is defined since cut{(P) is 
a (N - l&way array. 

Algebraically, the task of MPCA is formulated 
as the following minimization problem (we adopt 
the notation of Magnus and Neudecker [ll]): 

minimize eTe with 

e := vec(ZT) - g Ai .vec(CT) 
i=l 

(1) 

subject to A;A, = I,, 

Here, I,, denotes the identity matrix of order si 
and the vector e is referred to as the residual 
vector and expresses that part of the data array Z 
that is not modeled by the component matrices 
Ai. In the graphical application mentioned above 
the two columns of Ai would contain the display 
coordinates for each of the ni items of the ith 
way. The core matrix C is of order (si, sz, . . . , sN) 
and describes how the components of the differ- 
ent ways relate each to another. To obtain a 
solution of Eqn. 1 one may use the alternating 
least squares algorithm proposed by Kroonenberg 
[12] in its generalization from the three-way PCA 
to n ways (according to ref. 11) which runs as 
follows: 

Step 0. Choose starting matrices tiy’ of order 
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(ni, si) whose columns are orthonormal (e.g. the 
first standard unit vectors). 

Step 1. Put fir := A$) @ A(30) 0 - * * 60 A$$. De- 
fine the (ni, nil-matrix P with general element 
pij := aTaj, where a, := A’vec(cut’,(Z)). Let A’:) be 
the (n,, $,)-matrix whose columns are built up 
from (normalized) eigenvectors belonging to the 
si largest eigenvalues of P. Repeat this procedure 
with subsequent indices. For instance, now put 
A, := A’;’ @ A(;) @ . . . 

put A,:= 
Q A$ and in the last run 

A’:) 8 A$) 8 * - * @ A”)_ . In the kth 
run, define the (IZ~, n,)-matriuNP1as above, with 
ai := A:vec(cut’,(Z)>. By doing so, one obtains 
matrices A”’ 1 ,...,A$! 

Step 2. Repeat the whole step 1 as long as the 
matrices ti8r) differ significantly from the matri- 
ces A’? - ‘1. 

Stek 3. If convergence is obtained, compute 
the core matrix C according to 

vec(CT) := & Ai 
i 1 

T 

vec( Z') . 
i=l 

When passing from classical PCA to MPCA one 
has to take several essential differences into ac- 
count: 

- It is not possible to reduce the method to 
the solution of an eigenvalue problem. 

- In PCA the core matrix C is automatically 
diagonal and hence frequently suppressed by in- 
cluding it into A, or A,. This is not the case for 
more than two ways. 

- In contrast to PCA the solutions of MPCA 
need not be nested, e.g. if in the situation de- 
scribed above one finds an optimal (~zr, 2)-matrix 
A, (after choosing sr = 2) then the first column of 
A, need not constitute an optimal (n,, D-matrix 
AT (after choosing si = 1). 

- There are many more ways of data scaling 
in MPCA compared to PCA. The specific choice 
of scaling (e.g. scaling of variables or scaling of 
variables along occasions, etc.) should be in ac- 
cordance with prior information on the data set 
and has to be respected in the interpretation of 
results. 

- Due to the increased complexity in MCPA 
the variance percentages covered by a given num- 
ber of components are generally much lower. 

- In classical PCA it is possible to superpose 
object and variable displays and to interpret mu- 
tual influences. Due to the non-diagonality of the 
core matrix such simple superposition does not 
make sense in MPCA. 

Concerning the last item, various attempts have 
been made to obtain joint representations of all 
ways allowing an interpretation of mutual depen- 
dencies. We shall follow here the approach of 
simplifying the core matrix structure. We restrict 
ourselves to the case N = 3 and sr = s2 = s3 = 2 
(two-dimensional displays) which will be consid- 
ered in the application below. In this case the 
core matrix is a 2 X 2 X 2 data array with general 
entry cijk. This number cijk indicates how the 
components i, j, k of the three ways relate to one 
another. The larger cijk the more one has to take 
account of the corresponding components. If, in 
the given situation, all eight entries of C have 
equal magnitude, then it will become a tedious 
operation to interpret all these relevant combina- 
tions of components. Instead of this, one should 
try to simplify the structure of C by using rota- 
tions of the set of component scores obtained 
(note that, upon orthogonal transformation of Ai, 
the degree of fit in Eqn. 1 remains unchanged). 
In ref. 12 a procedure is proposed which pro- 
duces an ‘optimal diagonal structure’ of C by 
keeping A, (representation of occasions) fixed 
and rotating A, and A, (representations of ob- 
jects and variables). In general one can only ex- 
pect to obtain ‘almost diagonal’ frontal planes of 
C (i.e. cut:(C) and cut:(C)). Nevertheless this can 
substantially reduce the effort of interpretation. 

With regard to the computational aspects of 
MPCA, one has to note first that the amount of 
time required is essentially higher than in conven- 
tional PCA due to the fact that no eigenvalue 
formulation of the problem is available. Although 
the Kroonenberg algorithm (as described above) 
looks quite simple in tensorial notation, one 
should realize that even in the case N = 3 the 
computation of one single element pij of the 
matrix P in step 1 (for one single way in one 
single iteration) requires the calculation of a six- 
fold sum over certain index-dependent products. 
Roughly speaking, the computational effort 
(number of multiplications) in three-way PCA is 
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proportional to nf * r$. ~2% -it (nl, n2, n3 = 
number of objects, variables and occasions, it = 
number of iterations). The constant of propor- 
tionality may be reduced by a factor of ca. twenty 
if symmetries in the formal description of the 
algorithm are exploited. This, however, does not 
change the computational complexity. In all our 
applications a number it = 3 of iterations (each 
including three sub-iterations for the three ways) 
was absolutely sufficient. Before starting the 
Kroonenberg algorithm ref. 12 recommends that 
one first applies some iterations (e.g. five) of 
Tucker’s original algorithm (which is much faster 
but does not yield optimal solutions). 

In our computations we implemented the 
Kroonenberg algorithm in Turbo Pascal source 
code which was run on a PC 386-AT (32 MHz, 
numerical co-processor). 

PHYSICOCHEMICAL CHARACTERIZATION OF THE 
B~NNYEST~ARYWATI~RS(NIGERDELTA) 

The application to be described here had its 
origin in studies carried out at the University of 
Port Harcourt (Nigeria). The aim was to reveal 
spatiotemporal variations in certain physicochem- 
ical factors of water. In detail the following fif- 
teen properties (concentrations in the chemical 
context) were measured as variables of the data 
set (the abbreviations used in the figures are 
given in parentheses): temperature of air and 
water, transparency (trp>, pH, conductivity (cond), 
chloride (Cl-), hardness (hrd), total alkalinity (alk), 
dissolved oxygen (02), biological oxygen demand 
(02b), chemical oxygen demand (024, oil and 
grease (oil), ammonia-nitrogen (NH3-N), nitrate- 
nitrogen (N03-N), nitrite-nitrogen (N02-N). 
Measurements were taken at ten regular sam- 
pling stations (objects of the data set) distributed 
along the Bonny estuary of the Niger delta. 
Among these, the first five sampling stations were 
located around the effluent discharge point of the 
Port Harcourt oil refinery (downstream). The re- 
maining five stations served as reference for wa- 
ters that did not receive effluent, and were dis- 
tributed along the University of Science and 
Technology area (upstream). Finally, this constel- 

lation was consistently recorded twice a month in 
the course of a whole year. Since January mea- 
surements were available for the downstream sta- 
tions only, we excluded them from our computa- 
tions. Thus, the third way of the data array is 
built up of 2 X 11 = 22 consecutive temporal oc- 
casions. 

As a pre-treatment the data were subjected to 
so-called ‘j scaling’, which means that centering 
and variance scaling of each variable was carried 
out along objects and occasions. In this way tem- 
poral variations may be detected which would be 
equalized in the case of so-called ‘jk scaling’, 
where standardization is carried out for each 
variable at each occasion separately along ob- 
jects. Fig. 1 shows the (separated) displays of 
objects, variables and occasions resulting from 
the corresponding matrices A,, A, and A 3. To 
make components within one way comparable 
they were scaled afterwards according to their 
contribution to the fit of Eqn. 1. In regard to the 
object display one can clearly recognize the two- 
class subdivision into effluent-receiving and non- 
effluent-receiving stations. Apart from this, there 
is a remarkable arrangement in Fig. la: stations 
6-10, in their physicochemical characterization, 
exactly follow their geographical order towards 
the mouth of the Bonny river. Among variables, 
as was to be expected, the temperature of air and 
water built up an isolated group. Apart from 
these, one observes high loadings for nitrate- 
nitrogen and the (hardness, chloride, conductiv- 
ity, alkalinity) group on the first axis, and for 
chemical oxygen demand on the second axis. The 
similarity of hardness, chloride, conductivity and 
alkalinity is not surprising, since all of them are 
related to salinity. The representation of occa- 
sions reveals a clear temporal factor (first axis) 
within the data. It seems reasonable to distin- 
guish two major groups, one ranging from Febru- 
ary to May and the other ranging from August to 
December. June and July occupy a medium posi- 
tion. It is interesting to note that, within the 
second half of the year, the range from August to 
October reaches an extreme position in terms of 
the physicochemical characterization of waters. 
These represent the actual flood months, when 
real, fresh inland water enters the river water. 
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Fig. 1. Display of objects (a), variables (b) and occasions (c) for the multi-way principal components analysis of a three-dimensional 
data array (for abbreviations see text). 
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Until now we have only presented a separate 
analysis of variables, objects and occasions, with- 
out knowing how certain identified factors among 
these link together. This link is determined by the 
abovementioned 2 X 2 X 2 core matrix, the two 
frontal planes of which are 

( 
- 24.5 -2.5 

1 ( 
-1.8 3.0 

-2.4 -0.6 12.9 - 13.3 1 

Here, the columns refer to components of vari- 
ables, rows represent components of objects, the 
first matrix relates to the first component of 
occasions and the second matrix relates to the 
second component of occasions. The correspond- 
ing squared elements c& measure the contribu- 
tion of components i, j, k for the three ways in 
the total fit of Eqn. 1. Hence, in the present 
situation one would have first of all to consider 
the following three combinations of components: 
i=l,j=l,k=l(c,,,=-24.5),i=2,j=l,k= 
2 (c*r2 = 12.9) and i = 2, j= 2, k = 2 (czz2 = 
- 13.3). Furthermore one has to take account of 
the signs of the core elements before superposing 
the relevant components. We do not intend to 
give a joint interpretation of the three ways using 
the original core matrix. Rather, the procedure of 

PC2 

rotation described above will be applied to give 
this matrix a ‘more diagonal shape’. Doing so, 
one finds that, after appropriate rotation of ob- 
jects and variables in the plane (keeping occa- 
sions fixed), the new core matrix is: 

( 
25 .O -4.4 

1 ( 
0.5 -4.3 

3.6 -0.7 -5.6 17.5 1 

Note that the degree of fit in Eqn. 1 remains 
unchanged after such a rotation, i.e. the sum of 
c& is the same in both cases. Nevertheless, the 
percentage of the sum of squared non-diagonal 
elements decreased from 23% to 8%. Actually, 
only two combinations of relevance remain: all 
first components of the three ways and all second 
components. This fact allows the superposition of 
all three representations to yield a single one, 
and the interpretation of factors by projection of 
all points onto either of the two component axes. 
The superposed display is shown in Fig. 2. As has 
already been mentioned, the configuration of oc- 
casions is still the same, but objects and variables 
are moved in contrast to Fig. 1. Projection of all 
points onto the horizontal axis (main contribution 
in the core matrix) motivates the identification of 
the first axis as a temporal factor, differentiating 

02c 

alk 

02b 
NH+N 

Oil PTrp 

NO?-N 
02 PC1 

t.&.y$:; octi 

MY2 dac2 

juni 

j”,2’w&t2 @ 

novi 

deci 

Fig. 2. Superposed display of objects, variables, and occasions after a rotation procedure with simplification of core matrix 
structure. 
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between the two halves of a year and determined 
mainly by air and water temperature, hardness, 
chloride, conductivity and (negatively correlated) 
nitrate-nitrogen. One recognizes especially that 
projection of the (hardness, chloride, conductiv- 
ity) and of the (augl, aug2, sepl, sep2, octl, oct2) 
group onto the first axis yields opposite positions. 
This confirms the abovementioned relation be- 
tween rainfalls from August to October - bring- 
ing fresh water - and (low) salinity. In regard to 
nitrate-nitrogen one observes higher values in the 
second half of the year (positions on the right- 
hand side of the first axis) compared to the first 
half. All other physicochemical parameters have 
minor importance with respect to temporal varia- 
tions. Furthermore these facts are consistently 
valid for all ten sampling stations since these are 
nearly projected onto a single point of the first 
axis. 

Turning to projections onto the vertical axis, 
one can clearly identify this factor as a spatial 
one since it distinguishes between the effluent-re- 
ceiving and non-effluent-receiving regions. This 
distinction is first of all determined by values of 
chemical oxygen demand, minor contributions 
come from ‘salinity’ and temperature variables. 
This spatial factor is again quite stable over time 
(occasions are not projected onto different ends 
of the vertical axis). 

CONCLUDING REMARKS 

Summarizing, one may conclude that multi-way 
principal components analysis allows one to de- 
termine that, in the example considered, the 
greatest part of the variation in the data is ex- 
plained by a dominant temporal factor (governed 
by salinity, temperature and nitrate-nitrogen) and, 
independently, by a spatial factor (governed by 
chemical oxygen demand). While salinity is closely 
related to rainfall, another relation seems to exist 
between effluents near the pipeline discharge 
point and chemical oxygen demand. The impact 

of this effluent on phytoplankton productivity and 
its relations to physicochemical parameters will 
be discussed in a future paper [13]. 

ACKNOWLEDGEMENT 

The authors wish to thank the Fonds der 
Chemischen Industrie for financial support. 

REFERENCES 

L.R. Tucker, The extension of factor analysis to three-di- 
mensional matrices, in H. Gulliksen and N. Frederiksen 
(Editors), Contributions to Mathematical Psychology, Holt, 
Rinehart and Winston, New York, 1964, pp. 110-119. 
P.M. Kroonenberg and J. de Leeuw, Principal component 
analysis of three-mode data by means of alternating least 
squares algorithms, Psychometriha, 45 (!980) 69-97. 
S. Wold, P. Geladi, K. Esbensen and J. Ohman, Multi-way 
principal components and PLS analysis, Journal of Chemo- 

metrics, 1 (1987) 41-56. 
P. Geladi, Analysis of multi-way (multi-model data, 
Chemometrics and Intelligent Laboratory Systems, 7 (1989) 

11-30. 
L. StHhle, Aspects of the analysis of three-way data, 
Chemomettics and Intelligent Laboratoty Systems, 7 (1989) 

95-100. 
P. Geladi, Analysis of multi-way (multi-mode) data, an 
overview, Analytical Proceedings, 27 (1990) 306-308. 
H.J.H. MacFie, Simultaneous multivariate analysis of mul- 
tiple data matrices, in H.L.C. Meuzelaar and T.L. Isen- 
hour (Editors), Computer-Enhanced Analytical Spec- 

troscopy, Plenum, New York , 1987, pp. 103-119. 
Y. Zeng and P.K. Hopke, Methodological study applying 
three-mode factor analysis to three-way chemical data 
sets, Chemometrics and Intelligent Laboratory Systems, 7 

(1990) 237-250. 
9 R. Henrion, G. Henrion, P. Heininger and G. Steppuhn, 

Statistical analysis of complex round robin tests, Acta 
Hydrochimica et Hydrobiologica, 19 (1991) 603-614. 

10 E. Sanchez and B.R. Kowalski, Tensorial resolution: a 
direct trilinear decomposition, Journal of Chemometrics, 4 

(1990) 29-45. 
11 J.R. Magnus and H. Neudecker, Matrix Differential Calcu- 

lus with Applications in Statistics and Econometrics, Wiley, 
Chichester, 1988. 

12 P.M. Kroonenberg, Three-mode Principal Component Anal- 
ysis: Theory and Applications, DSWO Press, Leiden, 1983. 

13 R. Henrion and G.C. Onuoha, in preparation. 


