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Abstract Excitation-emission matrices (EEM) from flu-
orescence spectroscopy may contain characteristic infor-
mation about different algae species. As a result of mea-
surements, one gets a whole stack of EEMs each of them
corresponding to one species. Such a stack of matrices has
to be understood as a cubic data array spanned by the di-
mensions ‘ excitation’, ‘emission’ and ‘ species’. Theinter-
pretation of higher dimensional data arrays requires effi-
cient tools from multivariate data analysis. In this paper, it
isillustrated how Three-way Principal Components Analy-
sis as the appropriate generalization of conventional Prin-
cipal Components Analysis may serve as a powerful method
for classification of algae species.

1 Introduction

The usua method of characterizing the biological compo-
sition of phytoplankton samples is based on microscopic
counting and on the determination of volume according to
Utermohl [1]. The limitations of this method are defined
by its expense of time. Therefore, its application fails, for
instance, when short-term changes of phytoplankton com-
positions are studied with a high temporal resolution and
numerous samples have to be processed in a short period
of time. On the other hand, due to the distinction of taxo-
nomic groups according to their excitation and emission
spectra, fluorescence spectroscopic measurements are ap-
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propriate in order to reduce or replace microscopic count-
ing. Up to now, only singular attempts have been made to
characterize populations of phytoplankton on a fluores-
cence spectroscopic basis [2], [3], [4], [5], [6]. The fluo-
rescence behaviour reflects the pigment composition of
algae [7]. The contents of chlorophyll-a and accessory
pigments varies between different species [8], and, within
aspecies, it depends on the growth conditions. Apart from
pigmentation, the amount of absorbed energy being emit-
ted as fluorescence is also a function of the physiological
condition of algae [9]. According to the studies of Hilton
et a. [2] and Oldham et al. [11], this influences the inten-
sity of fluorescence only, but not the spectral patterns of
single species. Therefore, appropriately scaled spectra
could be useful for differentiation of algae groups, and the
attempts of Oldham et al. [11] to record excitation-emis-
sion matrices (EEM) suggest not only to determine the to-
tal biomass of agae but even quantitatively to estimate
the composition of algae in natural mixture samples.

In order to arrive at such characterizations of algae
species and having in mind that EEMs usually produce
high amounts of data, one has to employ appropriate
methods from multivariate data analysis. These are well
described both in statistical and chemometric literature
(e.g. [12], [13], [14]). Due to their bilinear nature, EEM
data can be decomposed into typical emission and excita
tion profiles by using Principal Components Analysis
(which basically corresponds to a singular value decom-
position). These profiles may serve as a characteristic fin-
gerprint for the algae species under consideration. For
comparison of different species, the advantage of using
the profiles rather than the original EEMsrelies on the ex-
treme data (and noise) reduction which is achieved in this
decomposition step. Nevertheless, visua inspection and
comparison of even a moderate number of different pro-
files soon becomes a tedious work with growing risk of
subjective errors. At this point, one could proceed by ap-
plying other methods of data analysis (such as cluster
analysis, for instance) to the profiles obtained. To our ex-
perience, however, it is more efficient to replace such a
sequential, data table oriented approach by so-called Three-



way Principal Components Analysis, a method which di-
rectly takes account of the very three-dimensional data
structure (emission x excitation x algae species). The in-
vestigations to be discussed here are restricted to alimited
data base consisting of the EEMs of five algae species, in
order to intimate the methodology and potentials of the
described approach rather than to give a thorough inter-
pretation of all possible details.

2 Experimental

Five species of algae were used for fluorescence measurement
from different monospecies cultures. Aphanizomenon flos-aque,
Asterionella formosa, Cryptomonas sp., Monoraphidium minutum
and Synura petersenii. These species were selected to represent
main groups of phytoplankton: Cyanobacteria, Diatoms, Crypto-
phytes, Chlorophytes and Crysophytes.

Fluorescence was measured on a SPEX Fluorolog 2 with a 150
Watt Xenon arc lamp and single-grating Czerny-Turner-Mono-
chromators with focal length of 0.227 m (excitation) and 0.34 m
(emission), respectively. Depending on the fluorescence intensity
of the sample, all dlits at both the excitation and the emission
monochromators were fixed at 1 mm or 2.5 mm, respectively, to
reach a spectral dispersion of 2.5 or 6.2 nm. The detector was a
PMT Hamamatsu R928. During measurement, samples were mag-
netically stirred to keep homogeneity.

Each EEM consists of 10 excitation spectra from 350 to 630,
step 1 nm. The integration time was 0.1 /nm. The emission varied
from 660 to 705 with a stepwidth of 5 nm. Eleven EEMs of each
sample were averaged to reduce noise.

3 Results and discussion
3.1 Database and preliminary steps of analysis

The data base to be considered in the following consists of
the EEMs of the 5 algae species mentioned in the experi-
mental part. The EEMs cover a range of 281 excitation
wavelengths and 10 emission wavelengths. The first 14
excitation wavel engths are removed from the original data
base since they contain perturbations of extreme intensity
which would be likely to dominate the interesting part of
data information. Figure 1 shows as an example the EEM
of Cryptomonas sp.. Some perturbation caused by the
Raman emission of water is visible around the excitation
wavelength of 400 nm and the emission wavelength of
650670 nm. Since this EEM resulted from a single
species, it may be assumed to be generated (up to noise)
by atypical emission and excitation spectrum. If, instead,
the EEM is caused by a mixture of different species, then
it would be based on a whole set of typical emission and
excitation spectra. The identification of the underlying
spectra is made possible by methods like Principal Com-
ponents Analysis or Factor Analysis. Principal Compo-
nents Analysis decomposes a data table into independent
pairs of column and row profiles (principal components)
thereby successively exhausting maximal parts of data
variation. Without noise there would be as many principa
components as species in a mixture. Figure 2 shows the
first two principal components of the EEM in Fig.1. The
first principal component corresponds to the typical emis-
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Fig.1 Excitation-emission spectrum of a selected algae species
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Fig.2a—d Principal components decomposition of the EEM in
Fig. 1. Thefirst principal component contains the emission and ex-
citation spectra, respectively, shown in a and b. Similarly c and d
refer to the second principal component

sion (Fig.2a) and excitation (Fig.2b) spectrum. For the
purpose of definition, the emission spectrum is normal-
ized to unit length (the squares of components sum up to
one). These two curves may serve as a fingerprint for the
considered algae species. In contrast to the use of any of
the original spectra (EEM dlices at afixed emission or ex-
citation wavelength), they are strongly noise-reduced and
also freed from minor device perturbations. This can be
seen from the second principal component (Figs.2c, d)
which at an excitation wavelength of 400 nm exhibits a
sharp peak surrounded by noisy data. Actualy, this peak
corresponds to the perturbation mentioned in Fig.1 (but
note the different scales of intensity in Fig.2d compared
to Fig.2b).

Similar fingerprints as given by the curvesin Fig.2a, b
result for the remaining 4 species. Visual comparison of
these curves sometimes reveal s evident differences. How-
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ever, the more species are involved in the analysis, the
more complicated it becomesto get a systematic overview
of similarities or dissimilarities among species without
additional tools from data analysis. One possibility is to
transform the curve similarities into a taxonomic dendro-
gram of species by means of hierarchic clustering. Doing
s0, the intended classification of species is achieved by a
two step procedure: the first to extract typical spectra and
the second to detect similarities. In the next section, a
method is described that allows classification and spectral
identification in a single step by taking into account the
three-dimensional structure of data.

3.2 Three-way Principal Components Analysis

As aresult of fluorescence measurements, one gets a col-
lection of EEMs each of which may be viewed as a data
table with excitation wavelengths defining the rows and
emission wavelengths defining the columns (although of
course, physically the EEMs are recorded as files on a
computer). However, regarding the whole data base as a
loose collection of isolated tables and separately analyz-
ing them as intimated in the preceding section, leads to a
loss of information about interrelations. It is advisable in-
stead to understand a collection of tables with equal di-
mensionality as a three-dimensional array. This is illus-
trated in Fig.3 where the EEMs of different species are
stacked on top of each other. Accordingly, an element of a
three-dimensional array isidentified by x; where k refers
to the number of the corresponding EEM (species) while
i, ] denote the position in the data table (row, column). An
appropriate generalization of Principal Components Analy-
sis from data tables to three-dimensional arrays was first
proposed in psychometric literature by Tucker [15] in
1963. The model aims at representing the measured data
as a linear combination of few idealized, orthogonal fac-
tors. These idealized or |latent factors need not be measur-
able themselves (like certain psychological categories)
but rather serve as abasis to explain the measured data. In
our context of algae classification, one might ask for ide-
alized emission spectra, idealized excitation spectra and
idealized algae species, which may or may not coincide
with single or a group of spectra or species, but few of
which are sufficient to describe the major part of informa-
tion contained in the data base. More precisely, the Tucker
model writes as

s t
Xijk = Z Z ZgiutheKWCUVW + Eij

)

r
u=1 v=1 w=1

Here, as noted above, the x; refer to the measured data,
the g;, denote the intensity of the idealized excitation spec-
trum no. u at wavelength i, the h;, are the intensity of the
idealized emission spectrum no. v at wavelength j and the
8. represent the loading of algae species no. kin the ide-
alized species no. w. The r, s and t are preselected num-
bers of idealized factors of the three dimensions. Usualy,
asmall value of r, sand t suffices to describe a major part

Fig.3 A cubic data array built
up from a stack of EEMs
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of data variation. The coefficients c,,, indicate how all
these idealized factors linearly mix together to yield the
measured data. Appropriately put together, the ¢, built
up a three-dimensional array C which is called the core
matrix or core array. This core matrix contains valuable
information for the interpretation of the factors obtained.
The sguared elements c?,,,, for instance, indicate how
much data variance is described by the combination of the
idealized factors u, v, and w, respectively. An essential
feature of model (1) is that the idealized factors are re-
quired to be orthogonal to each other within a fixed di-
mension. More precisely, if G, H, E are the matrices col-
lecting the elements g;,, h;,, &, in (1), then these matrices
are supposed to be orthonormal. Finally, € is an error
term indicating the difference between measured (x;;) and
explained data (triple sum). Given the measured data and
the numbersr, s, t of assumed idealized factors, these fac-
tors may be identified using an Alternating Least Squares
(ALS) agorithm proposed by Kroonenberg and De
Leeuw [16]. In short terms, this algorithm proceeds asfol -
lows:. starting with some initial orthonormal matrices G,
H, E two of these are fixed in turn while the third one is
optimized (in the sense of minimizing the error term €).
This optimization is based on a specific eigenvector prob-
lem. After convergence of these iterated matrices, con-
taining as their columns the desired idealized factors, the
optimal core matrix can be easily estimated as an inde-
pendent variable. For details of this algorithm and its gen-
eralization to N dimensions, we refer to [17]. Two further
aspects of Threeeway Principa Components Analysis
merit to be mentioned: first, the possible ways of data
scaling become much more complex as compared to con-
ventional tables. In the present analysis the cubic data ar-
ray was scaled in such away as to give al the EEMs of
different species the same (unit) variance. There was no
scaling carried out within the EEMs. Second, the obtained
idealized factorsin (1) are unique only up to rotation, i.e.
postmultiplication of the factor matrices G, H, E will not
affect the goodness of the solution. But it will change well
the structure of the core matrix. Therefore, appropriate ro-
tations of the solutions are frequently looked for asin fac-
tor analysis in order to simplify the interpretation. In par-
ticular the core matrix should contain as few significant
elements as possible, in this way reducing the number of
factor combinations (between different dimensions) to be
interpreted. Finally, it is noted that there exist aternative
ways of Three-way decomposition among which the Par-
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alel Factor Analysis (PARAFAC) model is likely to be
the most important. For its application to fluorescence spec-
troscopic data see, for instance [18] or [19]. The PARAFAC
model is simpler and easier to interpret than Tucker's
model. It is useful, in particular, if the data array is com-
pletely determined by instrumental responses (like emis-
sion x excitation x time in a fluorescence-HPLC cou-
pling). On the other hand, this model does not alow for
interactions between factors of different dimensions. Such
interactions are typical, however, if noninstrumental vari-
ables (like algae species in our context) enter the data
base.

3.3 Results

For the given data base the number of idealized factors
was chosen to be three in al three dimensions (i.e.r =s=
t = 3in (1)). Although the general model allows for inde-
pendent variation of r, s, t we restrict considerations to an
equal number of components in order to keep the presen-
tation simple. Including more than three factors was not
advisable here, because then uninteresting parts of data
variation (e.g. device-specific perturbations or increasing
noise) enter the solutions.

Figures 4 and 5 contain visualizations of the idealized
excitation and emission spectra as well as of idealized a-
gae species. Formally, these are plots of the g, h and e- co-
ordinates in (1). The plots are normalized to render the
sum of squared coordinates equal to 1 for each factor. The
first excitation and emission factor (Fig.4a, d) resembles
very much the corresponding spectra of Cryptomonas
speciesin Fig. 2, so this speciesis likely to be reflected in
the first idealized factor. Note, however, that at least the
excitation spectrum (Fig.4a) is again noise-reduced to the
corresponding spectrum in Fig.2 of conventional Princi-
pal Components Analysis. For the moment, we skip the
remaining spectra but turn instead to Fig. 5. Here, the five
algae species are plotted corresponding to their loadings
with respect to the idealized specieslabeled, z;, z,, z;. The
numbers are chosen according to the ranking of species
given in Section 3.1. The diagrams offer an easy way of
visual classification: the first diagram suggests that there
are mainly two different groups of algae species in the
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Fig.5a, b Plot of the loadings of the five observed algae species
with respect to the first vs. the second (a) and the first vs. the third
(b) idealized species

Table1l Variance contribu-

2 3 2
tions of the leading 8 factor (U, v, w) Clnd 25y.z Gz
combinations as percentage re- 0
lated to the sum of all 27 (;’ ; ;) 73220;0
squared core matrix elements (222 -2970

(2,1,2) 8.46%
(1,2 1) 1.00%
y =y . (1]
(3,1,3) 0.73%
(1,2, 2) 0.71%
y Iy . (1]
1,3,3 0.18%
y &y . 0
2,2,1) 0.12%

present data base. On the one hand, one has species (2, 3,
4, 5) seemingly coincident with z;. On the other hand, one
has the independent (recall the orthogonality of idealized
factors) species 1 which might be identified with z,. The
second diagram reveals minor differences (factors are
ranked according to their importance) in the bigger group
mainly by opposing species 2 and 4. This differenceisre-
flected in the idealized species z;. But how does this clas-
sification relate to the idealized spectrain Fig.4? To an-
swer this question one has to study the core matrix along
with the identified factors. As mentioned in the preceding
section, the squared core matrix elements indicate the
variance covered by a corresponding factor combination.
Instead of collecting all 27 elements of the (3 x 3 x 3) core
matrix (duetor =s=t=23) Table 1 isreduced to the 8 ma-
jor elements normalized in such a way as to render the
sum of all 27 core matrix elements equal to 100%. The
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factor combinations (u, v, w) have to be read in the order:
idealized excitation spectrum, idealized emission spec-
trum, idealized species. Obvioudly, the biggest part of data
variation is covered by a combination of all first idealized
factors (1, 1, 1). Thismeansthat the first idealized species
z, — reflecting the group (2, 3, 4, 5) of observed algae
species —first of all relates to the first idealized excitation
spectrum (Fig.4a) and to the first idealized emission
spectrum (Fig.4d). In other words, in a first approxima-
tion these spectra may be taken as typica fingerprints
common to all of the four mentioned species. Concerning
idealized species z,, which may be identified with original
species No. 1 (see Fig.4a), the mgjor variance contribu-
tion is split into the combination (2, 2, 2) and (2, 1, 2).
The first index both times being equal to 2, the idealized
excitation spectrum of Fig.4b isidentified as the one typ-
ical for this species. This excitation spectrum is clearly
different from the one of Fig.4a which explains the clas-
sification of No. 1 as an independent species. The second
index being equal to 1 or to 2 with comparable variance
contributions indicates, that the measured emission spec-
trum of this species is an average of the idealized emis-
sion spectrain Fig.4d, e. The reason for this splitting isto
be found in the fact that the emission spectra of species
No. 1, on the one hand, and the other observed species, on
the other hand, are correlated to a certain degree (in con-
trast to the amost uncorrelated excitation spectra). But
the idealized spectra are always uncorrelated, so the red
emission spectrum of species No. 1 is a weighted sum of
the curvesin Fig.4d, e. Finally, according to Table 1, the
third idealized spectra (Fig.4c, f) are both related to the
third idealized species z;. The shape of both spectraistyp-
ical for shifting dightly (compare the magnitudes of con-
tributions (3, 1, 3) and (1, 3, 3) with that of (1, 1, 1)) the
position of peaks in the main spectra (Fig. 4a, d) after su-
perposition. These difference spectra give the main dis-

tinction between species No. 2 and 4 aong the z;- axisin
Fig.5b). In contrast, species No. 3 and 5 have almost
identical fingerprints corresponding to the first idealized
spectra. These two species are hardly distinguished by
their fluorescence behaviour.
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