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Abstract

Among the possible (orthogonal) transformations of core arraysin N-way principal components analysis (PCA), the con-
ventional approach of body diagonalization turns out not to provide the simplest structure (in the sense of minimizing the
number of significant entries). As an alternative, the maximization of the variance-of-squared core entries is proposed. Both
criteria are equivalent in a two-way constellation but may differ markedly for N > 3. Actually, using the variance criterion
may provide more insight into the rank structure of the given data, and it is also easily applied to general rectangular core
arrays. In order to clarify the relation between body diagonality and variance-of-squares, we prove the following main result
of the paper: If some cubic N-way core array can be transformed to exact body diagonality, then the same transformation
yields maximum variance-of-squared entries. This result implies the equivalence in the two-way case mentioned above. A
solution algorithm is formulated and illustrated with a small numerical example. The application to data examples from envi-
ronmental chemistry and chromatographic analysis is briefly discussed. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

N-way data analysis has become an efficient tool for solving chemometric problems which are based on com-
plex (N-dimensional or N-way) data arrays as they arise, for instance, from hyphenated instrumentation. For
early papers in this direction, we refer to Refs. [1,2]. Since then, a lot of contributions mainly to three-way data
analysis have appeared. Chemometrically-oriented introductions to three-way analysis may be found in Refs.
[3,4]. Meanwhile, at least the case N = 4 must be considered practically relevant (e.g., emission /excitation data
from fluorescence measurements of different samples under changing conditions like pH [5]). Maybe the most
important methods involved are Parallel Factor Analysis (PARAFAC) [6], Canonical Decomposition
(CANDECOMP) [7] and the Tucker3 model of (three-way) Principal Components Analysis (PCA) [8], but also
some variants of three-way Partial Least Squares (PLS) [9-11].
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The present paper addresses a specific problem of N-way PCA (for an introduction see Ref. [12]). More pre-
cisely, a new approach of transforming core arrays to simple structure is proposed and compared to the conven-
tional diagonalization procedure.

2. Transformation of core arrays to smple structure

The general model of N-way PCA is (compare Ref. [13])
veeX = (A;® --- ® Ay)vecC (1)

Here, X denotes an N-way data array of order (n,,...,ny), the A, are component matrices of orders (n;, s),
where, usualy, the s’s are small numbers for the purpose of data reduction, and C is the so called N-way core
array of order (s, ...,S,). Furthermore, vec and ® denote the vectorization operator and the Kronecker prod-
uct, respectively. It is emphasized, that in the following vec will be understood as an operator unfolding the
given array in away that the first index runs fast and the last index slowly. For matrices, this corresponds to the
usual stacking of columns (note that there is some inconsistency in the definition in Ref. [13], pages 30 and
363). Accordingly, we understand the Kronecker product in the sense
byA - b,A
A®B=|: IR

byA - bLA

The aim of N-way PCA is, given X, to find the component matrices (sometimes additionally required to be
column-wise orthonormal) and the core array such that the above approximation is optimal in the sense of least
squares deviations. The component matrices A; allow to plot the basic factors in each of the N modes influenc-
ing the total variation in the array X. The core array C, on the other hand, indicates how factor combinations
from different modes interact. For instance, in a three-way constellation (N = 3) with orthonormal component
matrices, the squared core element c2,, measures the amount of data variance covered by combining the first
factor of the first mode with the second factor of the second mode and the first factor of the third mode. Such
consideration of interactions is not necessary in conventional two-mode PCA since the core matrix can always
be diagonalized there. Hence, the information in data tables is exhausted efficiently by independent extraction of
successive factors for objects and variables. The explanatory effect of interactions (say by combining the first
factor of objects with the second factor of variables) can always be made zero. Things become different for data
arrays of dimensions larger than two. Of course, one might still suppress interactions by restricting the model of
decomposition, which is the case in the PARAFAC approach. However, such decomposition is no longer the
most efficient one. Indeed, using the Tucker3 model with possible interactions between different factors of dif-
ferent modes, the same amount of data variation as in a PARAFAC decomposition might be explained by a
smaller number of factors. On the other hand, interactions are more difficult to interpret. In particular, a general-
ization of the well-known bi-plots from two-way PCA to ‘tri-plots’ or * N-plots' is not straightforward. There-
fore, a common strategy is to simplify the interaction structure among factors after a Tucker3 analysis as far as
possible. Thisisthe aim of simple-structure transformations of core arrays. In the ideal case, one could remove
all the interactions and would arrive at the same result as with a direct PARAFAC approach. Unfortunately, this
is not possible in general, so one has to be satisfied with structures simplified according to suitable criteriawhich
will be discussed in the sequel. For an illustration of the PCA decomposition according to the Tucker3 model
(1) and for an interpretation of the core elements, we refer to the data example in Section 5.

While the optimal component matrices in (1) may be determined by an alternating least squares algorithm
(see Ref. [14]), the corresponding optimal core array results from them according to (compare Ref. [13])

vecC = (A} ® - - ® Al )vecX
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On the other hand, neither the component matrices A ;, nor the core array C are uniquely determined in the de-
composition (1). Indeed, using nonsingular matrices P; of orders (s, s), this same decomposition transforms to
(by PP~ t=1,):

veeX = (A;® --- ® Ay)vecC
=(A1® - ®A)(I,® - ®I )vecC
=(A;® - @A\ )(P,® - ®P)(Pi'® --- ® Py')vecC
=(A;® - ®Ay)vecC',

where A'; = A;P, are the transformed versions of the original component matrices A;, and C’ is the new core
array which relates to the old one through

vecC' = (P;*® --- ® Pyt)vecC (2)

Along with the transformed core C', the A, provide the same approximation of X as the original A; and C.
Actually, corresponding to the manifold of possible nonsingular matrices P, there is an infinite number of equally
good approximations of the given data array. For simplicity and comparison to existing methods, we restrict the
further presentation mainly to orthogonal transformations. Then, the inverses P! in (2) simply become the
transposed matrices P". Furthermore, in this case, the transformed component matrices A'; remain orthonormal
if so were the original ones A; and, hence, the entries of the transformed core C' may be interpreted as variance
contributions of factor combinations from different (transformed) components A'; as it held true for the origina
core C and the original components A ; (see above).

A reasonable choice of a particular solution in (1) would require the core array to have as few significant
entries as possible in order to arrive at a model with a minimum number of describing factors. Doing so, the
interpretational effort of the results obtained may be considerably reduced. For the purpose of illustration, con-
sider the following three-mode core arrays of order (2,2,2), in unfolded form (i.e., the third index refers to the
dice left or right to the separation line while the first two indices are read in the slices as for usual matrices):

R N
V2. V2 |V2 2 .(1 0‘1 0)_ (\/50 oo) 3
1 11 a1 lo 1o 1) lo yzlo o

V2 V2 [ V2 V2

All these cores can be transformed into each other by using appropriate orthogona matrices in (2). It is clear
that the structure simplifies from the left to the right: in the situation of the very left core one would have to
interpret eight equally important factor combinations of the N-way PCA model. This number reduces to four in
the second and to two in the third core. Sometimes, additional knowledge about the model allows to fix specific
core elements as zero and to consider restricted core arrays from the very beginning of analysis. This approach
is discussed in Ref. [15] and it has been applied to a selected calibration problem of analytical chemistry in Ref.
[16]. In general, however, the insight into the problem structure is rather limited, so premature restrictions of the
core might not be advisable. Instead, one can admit a completely loaded core as the output of any N-way PCA
algorithm and afterwards use the degree of freedom in the decomposition (1) discussed above, in order to find
transformation matrices P;, such that the new core resulting from Eqg. (2) has a simple structure. In the follow-
ing, we restrict considerations to cubic core arrays of order (s,...,s). This restriction is not necessary for the
approach to be described here, but it allows comparison with existing methods. In the sense of the discussion
above, one may imagine several criteria for measuring ‘ simple structure’. In Ref. [17], the simple structure was
formulated as a dice-wise diagonality of the (three-way) core array. The theoretical argument behind this s, that
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in case of a possible exact slice-wise diagonalization, the Tucker3 model reduces to a PARAFAC model as soon
as one renounces the orthogonality of the components. For instance, both, the second and third core in (3) are
slice-wise diagonal .

On the other hand, with orthogonality constraints imposed on the components—and this may have certain
advantages—Tucker3 reduces to PARAFAC (also with orthogonal components) only in case that the core has
so-called body diagonal shape. By this, it is meant that the entries of C satisfy C; ; =0ifnoti, = --- =1iy.
None of the coresin (3) are body diagonal, since, in all cases there are nonzero entries outside the left upper and
right lower corners of the unfolded arrays. Indeed, in this data example, there does not exist any orthogonal
transformation of the given cores to exact body diagonality. Body diagonality is a desirable property of the core
in that it avoids interaction between unequal components from different modes. From a more practical stand-
point, body diagonality allows superposition and joint interpretation of component plots. As in the example, ex-
act body diagonalization of core arrays fails in most cases. At least, one can try to fit body diagonality as close
as possible, which amounts to maximize the sum of squared body diagonal entries diag = £7_,C? ;. The total
sum of squared core entries being invariant under the transformation (2) with orthogonal P, this means to mini-
mize the squared off-diagonal entries, hence, a body diagonal shape of the core is approached.

In (3), one computes the values diag, = 1, diag, = 2, diag; = 2 for the succeeding cores. Actualy, the value
2 represents the maximum of diag among all possible transformations (2) with orthogonal P,, so the second and
third core are not only slice-wise diagonal, but they have maximum body diagonal shape at the same time. If
exact body diagonality was possible here, then one should obtain diag = 4, a value which is equal to the total
sum of sguares in the cores. An algorithm for (maximum) body diagonalization of three-way core arrays was
suggested in Ref. [18]. In Ref. [19], theoretical bounds for the success of body diagonalization of three-way core
arrays were derived. For the special case of cores of order (2,2,2)—which is important in exploratory diagram
analysis of components—a degree of 80—90% of body diagonality (= diag divided by the total sum of squared
entries) may be expected on the average. This makes diagondization a useful approach for obtaining simple
structure of cores.

Simple structure of the core can be understood, however, in a sense different from diagonality. It seems natu-
ral to look for transformations providing the smallest number of significant core entries, or equivalently, the
largest number of negligible (if not zero) entries. This is a direct formulation of minimizing the effort of inter-
pretation of components. It is intuitively clear, that this aim is not automatically realized by body diagonaliza-
tion since the latter restricts not only the number of significant elements but simultaneously the shape of the
core. Renouncing the diagonality shape, one has hope to find cores with fewer significant entries although not
necessarily located on the diagonal. Although, due to its simplicity, the example (3) is not capable of completely
highlighting this aspect, it suffices to demonstrate that maximum body diagonality is not directly related with
simple structure. As aready stated above, both the second and third core in (3) have the same degree of body
diagonality while the structure of the third core is much simpler with only two significant entries as compared to
the second core. Much more evident examples will be provided in the following sections.

3. Variance-of-squares

3.1. Definition of the criterion

As a quantitative criterion directly oriented towards maximizing the number of negligible entries in the core,
we propose to use the variance of the squared entries of the core. More precisely, we define

Var:_i (Cizl...iN_E)z (4)

P4
I Mo
o
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where

E- ¥ - Y ¢t /8"~ [veoC] [vecCl/s" (5)

=1 in=1

is the mean of squared entries.

Eq. (4), as a numerical entity, is identical with the quartimax criterion defined for simple structure transfor-
mations of loading matrices in factor analysis [20], but it must not be confused with these. Optimizing the two-
way quartimax measure, which relates to loading matrices rather than core matrices, does not necessarily pro-
duce simple core arrays which is the aim of the current discussion. Therefore, we keep the name * variance-of -
sgquares’ criterion in order to avoid any confusion with concepts from factor analysis.

The justification of the variance-of-squares criterion relies on the following simple observation: If a set of
vectors (X4, ..., X,) is restricted to have non-negative components x; which sum up to a constant value, then
the variance of the components attains its maximum at those vectors having exactly one component different
from zero. In order to trandate this result to the context of core arrays, consider now the set of vectors(x,, ..., x,)
which are vectorizations of sguared entries of core arrays related by transformations of type (2). Obviously, the
components x; are non-negative, and they sum up to a constant value, since the sum of squares in a core array
does not change under the considered transformation (2) with orthogonal P, (compare aso the first statement in
the proof of the Theorem in Section 3.3). Therefore, maximum variance of the x;, which is the maximum vari-
ance of the squared core entries, aims at reducing the number of nonzero core elements to one. In Eg. (3), the
third core has maximum variance-of-squares among all possible transformations. The concrete values var, = 0,
var, = 2, var; = 6 for the three cores reflect quite well the increasing simplicity of their structure.

Note that, although the justification given above relates to orthogonal transformation matrices P; in (2), the
variance-of-squares criterion itself may be applied to general nonsingular transformation matrices P,. In the spe-
cial case of orthogonal transformations which we focus on in this paper, the objective of maximizing the vari-
ance-of -squares measure becomes similar to a specia case of the three-mode Orthomax criterion proposed by
Kiers [21]. The three-mode Orthomax measure is optimized successively for each of the three modes by maxi-
mizing the ORMAX matrix operator

r m y(m 2
ORMAxm,y):z( Aﬁ——(ZAﬁ)) ®)
=1 \i=1 mii-a
with A;, denoting the element in the ith row and the jth column of the matrix A. A scalar y weighs the squared
mean of the squared column entries of A . In the three-mode Orthomax approach, ORMAX is applied alternat-
ingly to the three unfoldings of the core to yield an overall optimization. Setting v = 0 for all three modes, the
criterion simplifies to the three-mode Quartimax measure. This situation entails that the squared mean values of
the sguared entries are neglected, causing the sum of the fourth powers of the core elements to be maximized.
Similarly, for orthogonal transformation matrices the variance-of -squares measure (4) will have an invariant mean
vaue of the squares, implicitly resulting in maximization of the fourth powers of the core elements (compare
(7). Whereas, the three-mode Quartimax procedure operates on the unfoldings of the core, the variance-of-
sguares procedure addresses the problem by optimizing the core directly. Also, both approaches differ when
general nonsingular (not just orthogonal) transformations are allowed, since the mean of sguares is no longer
invariant and, hence, the maximization of the variance-of-squares is no longer equivalent to the maximization of
fourth powers then. In terms of understanding the effects of core transformations, we prefer the variance-of-
sguares measure since variance has an intuitive meaning for analysts while the Quartimax measure is somewhat
abstract. Recently, an approach for simultaneous optimization of the orthogonality of the core and the compo-
nent matrices has been proposed, see Ref. [22].
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3.2. On the relations between body diagonality and variance-of-sguares

Let us now check the relations between the body diagonality and variance-of-squares criteria. The second and
the third core in (3) show that maximum body diagonality does not automatically provide maximum variance-
of-squares. The example was for three-way cores, but what about the simpler two-way case (N = 2), where body
diagonality reduces to conventional diagonalization of square matrices? The answer is given by the Corollary to
the Theorem in Section 3.3: In the two-way case, the maximization of ‘ body diagonality’ implies the maximiza-
tion of the variance-of-sgquares of a quadratic core matrix. In other terms; For N = 2, there is no gain by intro-
ducing the variance criterion, and the core simplification is completely achieved by singular value decomposi-
tion, which is an admissible transformation in the sense of (2). This equivalence in the two-way case might ex-
plain why the consideration of the quite natural variance-of-squares criterion has been ignored so far in favour
of different diagonality criteria.

A misleading feature of the example in (3) is that the core with maximum variance-of-squares (third core) is
contained in—although not identical with—the set of cores having maximum body diagonality. This is not true
in general. In order to obtain a more general impression, consider Fig. 1 where variance vs. diagonality plots for
three different cores each subject to 5000 random orthogonal transformations are given. Here, the plots (a), (b),
and (c) refer to transformations of the cores

1 «a
C_(al

1 B
B 1)

where a=8=0in(a), a=B=—-0.1in(b), and a= —0.1, B3=0.1in (c). Obviously, Fig. 1(a) relates to
transformations of the cores in (3) since, for « = 8 =0, C is equal to the second core there. As a consequence,
the three cores of (3) are contained in the plot of Fig. 1(a) as points with the coordinates (diag, var) = (1,0),
(2,2), and (2,6), respectively. Note that the vertical line, joining the last two of these points, represents an infi-
nite number of transformed cores with maximum body diagonality but with varying values for the variance-of-
squares. Such a phenomenon is not stable since an arbitrarily small perturbation of the core entries (e.g., the
parameters «, B) will destroy this vertical line, and a constellation as in Fig. 1(b) and (c) is likely to occur.
Here, the qualitative relationship between the diagonality and variance criteria is quite different: In Fig. 1(b),
maximum body diagonality implies maximum variance-of-squares (which was not true in Fig. 1(a)), while in
Fig. 1(c), the maxima of diag and var are completely unrelated: indeed, the maximum of diag leads only to a
vaue of var, which is less than haf the maximum of var. In contrast to Fig. 1(a), both situations are stable with
respect to small perturbations of the core entries (due to the fact that var and diag are continuous functions of
the core), hence, both of them are typically observed.

Now, the question arises, under which conditions does the one or the other situation occur. As the main result
in this direction the following statement, which even relates to general (cubic) N-way cores, is proved in the
Theorem of Section 3.3: If the given core array may be transformed according to (2) to exact (1) body diagonal-
ity, then the resulting diagonal core array has maximum variance-of-squares at the same time. This result is
mainly of theoretical interest in that it connects the relation between both criteria with the structure of the core
array. By contraposition, one concludes that neither the cores in Fig. 1(a) nor those in Fig. 1(c) can be trans-
formed to exact body diagonality (since there are transformations providing maximum diagonality but not maxi-
mum variance-of-squares). From the practical point of view, one has to take into account of course that a trans-
formation of cubic N-way cores to exact body diagonality is possible for N > 3 in exceptional cases only.

By the way, Fig. 1 also shows, that even minimum diagonality can lead to maximum variance-of-sgquares. At
least for two-way matrices of order (2,2), this is not surprising since the diagonal elements may be placed as
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var a)

diag

diag

0.5 1 1.5 2
Fig. 1. Plot of variance-of-squared entries vs. body diagonality for 5000 random orthogonal transformations of three different core arrays.

well on the anti-diagonal without changing the variance. For higher order, this is no longer true as can be seen
from the simple two-way example:

0 1 1
1 0 1
1 1 0

This matrix has evidently minimum diagonality with variance-of-squares equal to 2, whereas maximum diago-
nality is attained (after a similarity transformation) when the eigenvalues 2, — 1, — 1 are placed on the diagonal.
This gives a variance-of-sguares equal to 14, which must be the maximum according to the Corollary proved in
Section 3.3. Consequently, in this example, minimum diagonality yields a variance-of-squares value which is far
from the maximum.



196 R. Henrion, C.A. Andersson / Chemometrics and Intelligent Laboratory Systems 47 (1999) 189-204

3.3. Theoretical results

Now, we prove the statements referred to above. To thisaim, let C denote a cubic N-way core array of order
(s,...,s). Given any N-tuple of orthogonal matrices P,,...,Py of common order (s,s), the following functions
are introduced:

T(P, - ,Py) =Vec‘l[(PI ® -+ Q® P,])vecC]

S S _ 2
var(Py, - Py = L L (T (P P = T(PL Py
i;=1 in=

Here, vec™! refersto the operator which assigns to each vector with sN components the uniquely defined N-way
array of order (s,...,s) the vectorization of which gives this vector. Obviously, T(P,,...,Py) is exactly the
transformed core array C' from (2). In the second definition, T(P,,...,Py) denotes the mean of squares of the
transformed core array (compare (5)), so var (P, ...,P,) is the variance of squared entries in the transformed
core array.

Theorem 3.1. If there exist orthogonal matrices P* (i =1,...,N) of common order (s,s) such that
T(PS,...,Py) is body diagonal, then var(P;,...,Py) maximizes the expression var (P,,...,Py) among all

N-tuples of orthogonal matrices Py, ...,P, of common order (s,s).

Proof. We start with the obvious observation that the mean of squares of a core array is invariant under the
transformation T. In fact, due to the orthogonality of the P;, one has

T(Py - Py) = [VecT(Py, -+ P [vecT(Py, - - Py ] /8"
=[(Pf® -~ ® Pl )vecC] [(PI ® - - - ® P )vecC] /s"
= [vecC]'((P,P]) ® - -+ ® (PyP]))[vecC]/s"
= [vecC]'[vecC]/s"
=C,

where C refers to the mean of squares of C (see (5)). Therefore, the variance criterion, as a function of the
chosen transformation, written as

S S _\2
var(Py, -+ Py)= X - X (TifmiN(Pl"”'PN)_C)
=1 in=1
S [—
=) Z iN(Pl’“"PN)—’_SNCZ
ip=1 in=1
_ S S
Y T T (P )
i—1 =1

Z W(Pu- e Py) —SC? (7)

Il
" Mw
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In the following, we shall make use of the known or easy to verify relations
(Q ® R)vecS= vec(QSR") (8)
ZQ.J <t[Q"QJ* (9)

between Kronecker product, matrix product, vectorization and trace of matrices Q, R, S with suitable orders.
Now, for a cubic N-way array M of order (s,...,s), define its unfolding u(M) to be the uniquely determined
matrix of order (s,sN~1) such that vec M = vec u(M). Then, using (8), one gets

vec u(T(P R 'PN)) =V8CT(P e 'PN)=(PI ® -+ ® P,\T)vec U(C)
= vec[P]u(C)(P,® -+~ ® Py)]
Consequently, u(T(P,,...,Py)) =P u(C)P,® --- ® Py) which implies

tr[u(T(Py, -+ PY) u(T(Py, - PN))] —t[(PI e -~ ®P])u(C) uC)(P e -~ ®Py)]°
—t(Pl® --- o B])[u(C) u(C)|'(P,® --- ®Ry)

—tr[u(c)"u(©)] (10)

On the other hand, for the particular choice of transformation matrices providing body diagonality (see state-
ment of the theorem), one has

om0 ) TP PO = e BT (R ) (1)

This follows from the fact that body diagonality of T(P;",...,Py) implies its unfolded copy u(T(P;",...,Py))
to have in each column and each row at most one entry different from zero. Combining (7), (9), (10) (which in
particular holds for the transformation matrices P,*) and (11), one arrives at

var(Py, -+ Py) <tr|u(T(Py, -+ P)) U(T(Py, - - ,PN))]Z—
- tr[u(C)Tu(C)]2 —sNC?

[ u(T(Py -+ Py ) u(T(Py - ,PN*))]Z—

S
=X DT (PR S

=1 iv=1
—var(P;, -+ Py)

Since the P,’s were chosen arbitrarily among all orthogonal matrices of common order (s,s), this last inequality
proves that var (P,,...,Py) is maximized by the transformation matrices P, . O

Corollary 3.2. In the two-way case (N = 2), maximization of diagonality implies maximization of the variance-
of-squares of a quadratic core matrix.

Proof. Since any (square) matrix C may be transformed to diagonal shape via a singular value decomposition
PTCQ with orthogonal P and Q, and since this is an admissible transformation in the sense of (2) (recall that
ved(PTCQ) = (PT ® Q")vec C), the same transformation yields maximum variance-of-squares according to the
Theorem. O
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4. A transformation algorithm

In this section, we formulate an algorithm in order to find the optimal orthogonal matrices P, in (2) trans-
forming the given core array C, which is the output of any N-way PCA algorithm, into one with a maximum
variance-of-squares value. We omit the theoretical derivation of the algorithm and refer to Ref. [23].

1. Set C™¥:=C (= origina core array) and P"™" =1, (i=1,...,N)

2. Set j=0

3 Set j=j+1, CY=C"™, P°Y:=P"™ and compute an orthogonal matrix P such that P'A becomes a
symmetric matrix, where the general entry of A is(1<k< s, l<l< sj)

S S-1 S+1 0 S _
Ak|= Zl : 1 121(C|210|d|1_1|”+1|N_C)C|(ild”_1||]+l|NC|(:)lId|J_1k|J+1|N
h= li—a=Llj=11Iy=
DefineC™ by vecC™:=(I®...® 1, ®P®l, ®I )vecCand P"" :=PP.If j <N, then
goto 3. ' o A
4. 1f var(C™") differs significantly from var(C°9), then goto 2.
5. Stop.

The final C™" is the optimally transformed core array and the final P, are the corresponding transformation
matrices for the transition from C to C™" via(2). The decisive step in this algorithm is the symmetrification of
PTA in 3. This can be realized by a singular value decomposition of A by means of orthogonal matrices U, V of
order s, which yields UAV = D with diagonal D. Then, setting P=U"V ", one gets

PTA=VUA=VUU'DVT=VDVT,

which is the desired symmetric matrix. A numerical example shall serve as an illustration of the algorithm. Con-
sider the maximization of the variance-of-squares criterion var for the three-dimensional core array of order

(2,2,2) given by
_(0 1|1 2
1 1|0 1

The mean of squared entries is C = 1.125 and the variance-of-squares criterion for the initial core is var(C) =
10.875. In the first step of the algorithm, one has to compute the matrix A with general element

Clll C121
C211 C221

C:112 ClZZ
C212 C222

2 2
Ag= 2 X (CI2i2i3 - C)Cli2i3cki2i3 (k=12;1=12)

i,=1iz=1
For instance, A;; = 0—0.125— 0.125 + 11.5 = 11.25. For the whole matrix, one has

A_(1125 —0.375
5625 —0.375

From singular value decomposition of this matrix, one finds that P'A becomes symmetric for

p_ (0011 0412
0412 -0911

Applying the transformation (P® |, ® | ,) vec C to the original core array yields the new core array

crew 0.412 1323 |0.911 2234
—0911 -0.500/0.412 —0.088
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with a significantly increased variance-of-squares value of var(C™") = 19.36. In the next iteration, the matrix A
has to be considered with j = 2. Accordingly, its general element is

2 2
Ag= Z Z (Cizlli3 - C)Cilli3ci1ki3 (ki1=12)
ip=1iz=1
where C refers to the previously obtained C™". Proceeding as before, one finds a transformation matrix P sym-
metrifying PTA and a new core via vec C"™ = (1,,P,l ,)vec C. The new variance-of-squares value then be-
comes var(C™") = 27.64. Findly, after three main iterations (i.e,, 3 X 3 =9 single iterations), the var-value
reaches a relative precision of 0.001 at var = 48.6. The resulting core is

c_[-012 029
-0.83 0.63

—-015 2.76
0.08 -0.41

Although the sum of sgquares is the same as in the original core, there is practically only one significant entry
left now (after squaring in mind all contributions).

5. Applications

Two applications shall illustrate the ideas discussed so far. The first application is a data example considered
in more detail in Ref. [12]. It relates to a water quality study carried out in the course of 1 year in the Niger delta
area. More precisely, 13 physicochemical parameters were measured 22 times at 10 sampling stations, thus,
yielding a three-way data array of order (10, 13, 22). The data were scaled in a way to give al physicochemical
parameters zero mean and unit variance (over al sampling stations and sampling times). The first column of
diagrams in Fig. 2 provides the loading plots resulting from a Tucker3 decomposition of the array with two
components considered for each mode. Thus, the diagrams correspond to the component matrices A, in (1). The
first diagram reveals a strong grouping among sampling stations (‘a’ and ‘b’) in accordance with their known
degree of pollution. The second diagram refers to the physicochemical parameters among which a salinity-re-
lated group (conductivity ‘co’, chloride concentration ‘Cl" and hardness ‘ hr') shows high loadings on the first
factor and the chemical oxygen demand ‘cO,’ has a high loading on the second factor. In the third diagram,
successive sampling times (1,2 = February, . .. ,21,22 = December) have a strong temporal trend along the first
factor. For better visualization the loadings of this first factor are plotted vs. time in the diagram at the very
bottom. The resulting curve indicates a clear temporal factor in the data. In order to detect how these factors of
different modes relate to each other, one has to study the core array, which in unfolded form, is given by

1.36 0.48 ‘0.35 —0.35)

C=|_o037 —o011|1.02 -057

Accordingly, two major entries seem to be present, namely c,;; = 1.36 and c,;, = 1.02. The first one relates to
the joint effect of al first factors in the three modes. Re-inspecting the diagrams one recognizes this factor as a
seasonal change of salinity which is almost uniform for all stations (similar loadings of stations on the first fac-
tor). Indeed, the time curve reflects quite well the rainfall period (September to November) with low salinity.
The second contribution relates to the combination of the second factors of sampling stations and times with the
first factor of physicochemical parameters. Hence, again salinity is involved, but now with a geographical rather
than seasonal meaning: the vertical arrangement of sampling stations corresponds quite well to their geographi-
cal positions with increasing distance to the shore resulting in decreasing salinity, while there is no systematic
variation of the loadings of sampling times on the second factor.

Among the remaining entries of the core array there are five with comparable contributions, and it seems
hard to decide whether all or which of these have additional importance in the explanation of data structure. To
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Fig. 2. Origina (first column) and rotated (second column) loading plots for sampling stations, physicochemical parameters and sampling
times in the water chemistry example. The loadings with respect to the first factor of sampling times are plotted as a curve over time (the
same curve refers to both origina and rotated loading plots for sampling times).

answer this question, a simple-structure transformation was realized according to the variance-of-squares crite-
rion. The optimally transformed core array turns out to be

C= 148 0.11|0.05 -0.04
0.00 0.16|0.72 1.02

In contrast to the original core array, a distinction between significant and nonsignificant contributions is much
more evident now. This fact is also supported by the increase of the variance-of-squares criterion from 2.83 to
4.41. Obvioudy, three relevant factor combinations have to be taken into account. The corresponding rotated
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loading diagrams leading to this core array are plotted in the second column of Fig. 2. It is remarkable that only
a dlight change takes place in the component matrices, nevertheless providing a much clearer core structure. In
particular, all sampling stations get even more equal weights on the first factor. Minor changes take place for the
parameters, too, whereas the loadings of sampling times remain practically unchanged (in particular the seasonal
curve is the same as before). Apart from the two factor combinations c,;,, C,;, dready discussed before (but
now with changed importance), a third combination c,,, = 1.02—namely the one of all second factors—is found
to be significant. According to the vertical axes in the diagrams, this relates to a distinction of sampling stations
into groups ‘a and ‘b’ mainly due to differing values of chemical oxygen demand uniformly over time. Some
effect of pollution is likely to be hidden in this factor combination. However, we do not go into further details of
possible interpretations since the main objective of the example is to illustrate the Tucker3 model and the effect
of core simplifications.

In order to emphasize the benefits of core rotation, we shall give another example dealing with the differ-
ences between cores with optimum variance-of-squares and optimum diagonality. To keep the discussion fo-
cused and aimed at core rotation, no explicit chemical interpretation of the factors will be given. The data to be
analyzed are derived from fluorescence intensity measurements of 13 thick juice samples. Thick juice is an in-
termediary product in the production of sugar and ongoing projects aim at obtaining means to control and de-
crease the unwanted formation of colour during the process, see Refs. [5,24].

The 13 thick juice samples have been separated into 28 fractions (each of 700 wl) on a 200 mm Sephadex
G25M column that separates components according to molecular size in the approximate range of 1000 to 5000
MW. A sample volume of 300 .l was introduced into the isocratic and agueous 0.01 w/w% NaCl carrier run-
ning with a flow of 0.8 ml /min. For each fraction, six preselected combinations of excitation and emission
wavelengths have been measured using spectrofluorometry. The filter combinations were found in earlier inves-
tigations [25]. The six combinations of excitation and emission wavelengths cover the range 270 nm to 390 nm
of the excitation range and 280 to 420 nm of the emission wavelength range. The collected three-way data array
has dimensions (13,28,6) where the respective modes refer to sample number, fraction number and combination
of excitation—emission wavelengths.

For exploration of the data, we have chosen to analyze the data by N-way PCA, whereby the significant vari-
ation of the data is condensed into a few factors allowing for easy interpretation. In order to illustrate the bene-
fits of core rotation, we will compare two cores derived from rotation of the initial core according to the maxi-
mum variance-of-squares measure and the maximum diagonality measure. From the cores discussed in the se-
quel, it will appear that the PARAFAC model is inadequate of handling the data in question due to severe non-
diagonality of the core.

Prior to analysis, the data were mean-centred across the third mode since the filter combinations of the appa-
ratus result in quite different levels of signals. This pretreatment ensures that the arbitrary differences between
the response levels are removed from the modelling step in accordance with the aim of the investigation.

A three-way model with three factors in each mode was chosen as a compromise between having a small
number of factors and a close fit to the data. The SV D-based agorithm used to calculate the PCA model is de-
scribed in Ref. [26]. The model explains 71.7% of the variation of data (i.e., sum of squares) and the initial core
was found to be

3383 2805 493 |2600 —2300 —215
C=|( —-2037 2116 124 | 1096 888 — 1484
—284 526 —1208| 246 4 1353

16 530 213
—251 554 454

—220 —477 110 )

where the elements have been rounded to the nearest integer to provide a clear view of the significant elements.
The variance-of-squares of C is 2.26 X 10* and the degree of diagonality is 25.2%. Apparently, there are up to
six significant elements in the unrotated core. The sum of sguares of the three largest squared elements explains
52.8% of the total sum of squaresin C.
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Upon maximization of the variance-of-squares, the core takes the form of

. 4516  —87 4 122 -3377 —152 | —-114 94 167
C=(—-194 2837 —229(1388 —441 —1495| 112 744 318
—-33 320 -—912| 263 —78 1546 | —19 607 —744

where the variance-of-squares measure increases to 5.37 X 10* and the degree of diagonality is 42.8%. Now,
the three largest squared elements are responsible for 80.7% of the total sum of squares. As seen directly from
C, the interpretation has become easier since much variation accounted for by severa less significant factor
combinations has been condensed into a lower number of more significant ones.

When optimizing the diagonality of C instead, the core transforms into

. 4424  —484 12 | —407 —1156 2857| 444  —285 562
C=(-705 —-667 1747 |—794 2700 —67|—322 -39 87
—139 225  —1796| 1285 -35 978 | —48 165 —1093

with a degree of diagonality at 56.8%. The variance-of-squares measure becomes 4.40 X 10*. For comparison
with the core shown above, the three largest elements account for 70.9% of the total variation in the model, this
is approximately 10%—points less than the core that is optimal in the variance-of-squares sense. This means
that the analyst, by using the variance-of-squares optimized core C rather than the diagonalized core C, will
include what corresponds to 10%-points more variation of data in his interpretation. It is noteworthy that the
structure in the data does not conform with the PARAFAC model, since diagonality of the core C cannot be
obtained.

In Fig. 3, the 15 largest squared elements from the cores C, C and C are plotted. The line denoted by (a)
represents the largest squared elements from C. The differences between successive sgquared core elements are
small, leading to arather flat line that indicates the low variance of the core elements. Without core rotation, the
analyst has to interpret, perhaps, five factor combinations in order to give a detailed picture of data. Line (b)
describing C depicts a much higher variation in the core elements. We see that the three largest elements are all
much higher than the fourth. This allows the analyst to focus on three factor combinations. Note, that the three
largest elements from the rotated core explain the same amount of variation (80.7%) as the five largest elements
from the initial core (80.9%). Line (c) describes the elements in the core with optimal diagonality, i.e., C. The
indication of the presence of three significant factor combinations is more clear than with the unrotated core, but

Squared value of core element
—_

8
.

~—

8 1
Sorted core elements

Fig. 3. The 15 largest squared core elements of the three cores are sorted and plotted. Line (a) represents the 15 largest squared core ele-
ments of the untreated core. Line (b) are the 15 largest squared elements of the core with optimal variance-of-squares measure, and (c)
shows the 15 largest squared elements of the core with optimal diagonality.
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a b c

Fig. 4. Symbolic plots of core arrays of order (5,5,5) unfolded to matrices of order (25,5). The left array refers to the origina core, the

medium one to the transformed core with maximum body diagonality and the right one to the transformed core with maximum variance-of-
sguares. The squared entries of the cores are translated to diameters of filled circles.

not as clear as with the core with optimal variance-of-squares. The core C suffers from the fact that the core
could not be diagonalized, since this structure is not present in data. Furthermore, we see that the levels of the
remaining squared core elements remain high for C and C. This is sub-optimal, because the size of the elements
reflects what is not included in the interpretation of the model. The low level of all elements but the significant
ones for the line (b) is a direct consegquence of maximizing the variance-of-squares measure in C.

Finally, we want to indicate the potentials of maximizing the variance-of-squares criterion in a higher-dimen-
sional setting. To this aim, a random three-way core array of order (5,5,5) was created with entries uniformly
distributed between — 1 and 1. This original core was transformed both to maximum body diagonality and max-
imum variance-of-squares. The results for the unfolded cores (= matrices of order (25,5)) are shown in Fig. 4.
For better visualization, the squared values of the entries are translated into diameters of filled circles. Due to
the random nature of the original core, there are many positions of medium relevance in the first array (a). In
contrast, the two transformed cores show a clear distinction between significant and nonsignificant elements. Not
surprisingly, in the core with maximum body diagonality (b), the five major entries are distributed along the
diagonal of the unfolded core. Such diagonal structure is lost in the array with maximum variance-of-squares
(c), but thislossisin favour of ayet smaller number of significant elements. Comparing (c) with (b) on arough
scale, two rather than three entries are found to be significant. On afiner level, three rather than five entries are
clearly distinguished from the rest.

6. Conclusion

The proposed variance-of-squares criterion has a great potential for simplifying the structure of core arraysin
N-way PCA and, hence, for facilitating the interpretation of solutions obtained. Its main advantage over the
well-established method of body diagonalization is directly to aim at a reduction of the number of significant
entries. Moreover, its application is not restricted to cubic cores. The maximization of the criterion can be car-
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ried out by an iterative solution algorithm providing reliable results in a short period of time, thus, higher di-
mensional arrays (e.g., N=7) may be easily treated as well. Some theoretical results giving insight into the
relations between the variance-of-squares and body diagonality criteria have been derived. A convergence proof
for the algorithm is given in Ref. [23].
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