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The PARAFAC algorithm for factor analysis of three or
higher way datasets is summarised. A series of
simulations of kinetic profiles of two-way diode-array
HPLC data is described. A three-phase reaction system of
reactant, intermediate and product is used to illustrate the
method, each closely eluting and with similar spectra
based on experimental HPLC with diode-array detection
of chlorophyll degradation products. A kinetic parameter
is varied to change the relative concentration of the
intermediate in each series of simulations. Several indices
of quality of reconstruction are introduced. It is
concluded that the number of factors used to model the
data is crucial to the quality of reconstruction. A good
approach is first to use fewer factors than are expected,
then increasing the number until each elution profile
shows a single maximum.
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Three-way data are common in analytical chemistry.1,2 An
example is a series of chromatograms recorded in time. If these
chromatograms consist, in turn, of two-way data such as in
HPLC with diode-array detection (DAD) or GC–MS, the full
series of chromatograms may be regarded as a three-way
dataset. One mode is time or sample number, whereas the other
modes are elution time and a spectroscopic parameter, such as
wavelength or mass number. Conventionally, each chromato-
gram is analysed independently by factor analysis or multi-
variate calibration, but this ignores the fact that there are
components common to the entire series of chromatograms with
similar spectra and elution profiles. Treating the entire dataset
as one three-dimensional block provides more information than
treating each chromatogram separately.

There are several methods for three-dimensional factor
analysis,3–7 and it is the purpose of this paper to evaluate one of
the most common, called PARAFAC. In this approach, the
three-dimensional data are decomposed into a series of factors,
each relating to one of the three physical variables.

Theory

PARAFAC (parallel factor analysis) is a method of decompos-
ing a three-way data array, or tensor, into a series of two-way
arrays. The original algorithms were developed by psychome-
tricians for the decomposition of multiblock data.8–11 Mathe-
matically, PARAFAC can be seen as a simplification of the
Tucker3 Model proposed by Tucker,12 in which a three-way I3
J 3 K array is decomposed into three loadings matrices A(I 3
L), B(J3M) and C(K 3 N), where L, M and N are the number
of factors in the first, second and third modes, respectively. I, J,
and K may be regarded as the number of samples, elution times
and wavelengths, respectively. In most areas of chemistry, L, M
and N will be equal and are the number of detectable
components in a mixture, making the chemometric problem
simpler than the psychometric problem.

In this case, a three-way array (or tensor) X, whose
dimensions are sample number, elution time and spectral
wavelength in the case of HPLC–DAD, is decomposed into
three matrices A, B and C such that,

  

xi, j,k = ai, f bj, f

1

F

Â ck, f + ei, j,k (1)

where F is the number of factors used in the model and e is the
error term. A is a matrix of I rows consisting of sample numbers
and L columns consisting of the number of detectable
components in the mixture; B and C correspond to the elution
profiles and spectra of these L components.
This model can also be written as

    

X = a f

1

F

Â ƒ  bf ƒ  cf + E (2)

where # represents the ternary tensor product of the three
vectors. The field of tensor algebra as applied to chemical data
is discussed extensively elsewhere.13 The definition and
representation of tensor products varies depending on the
context, but it is sufficient here to state that the tensor product
of vectors I,1a, J,1b and K,1c is a vector with co-ordinates xi,yj,zk.
Combining all of these vectors over all factors gives the three-
way data matrix. Graphically, the PARAFAC model for a three-
way, two-component system is shown in Fig. 1.

The simplest way of implementing a PARAFAC model is by
alternating least squares. Starting with a known three-way
matrix, X, and two randomly initiated loadings matrices, A and
B, the third loadings matrix, C, can be estimated. Then, from
this new estimate of C, A and B then C can be successively
estimated and so on until there is convergence in the model.

The advantage of this approach is that, apart from the number
of factors, F, no prior knowledge of the system is required.
Furthermore, apart from scaling considerations, PARAFAC
produces a unique solution. However, as it is a numeric rather
than an analytical method, care must be taken to ensure that the
algorithm converges properly and operates at an acceptable
speed. The theory of the PARAFAC algorithm is discussed
further elsewhere,14–16 as also are further applications to
calibration.17–20 Practical applications, however, have been
limited.21–23

Method

Experimental

Spectra of three chlorophyll degradation products were ob-
tained experimentally from a Waters (Milford, MA, USA)

Fig. 1 Graphical representation of the PARAFAC method.
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Model 990 HPLC–DAD system. For chlorophyll degradation
mixtures, closely eluting compounds often possess very similar
spectral characteristics, posing real problems in resolution by
chemometric means. Spectra were recorded between 350 and
800 nm at 2 nm intervals.

A common problem involves detecting crucial intermediates
that are present in low concentrations, e.g., in the reaction A ?
B ? C, where the first reaction is slow and the second is fast.
A full kinetic model for the pathway requires the detection of B,
which may be present in small amounts, dependent on the
relative rates of the two reactions. If HPLC is employed to study
such reactions, the intermediate, which may be a stereoisomer
of the parent compound, could have very similar elution profiles
and spectra to one of the other components. This situation is
well established in the study of the degradation of chlorophyll
by HPLC .

Simulation Design

The data were designed to simulate the degradation of
chlorophyll-a products investigated elsewhere.24 Each three-
way dataset is constructed from modes representing elution
profiles, spectra and degradation profiles of each component.

Three spectra obtained experimentally were used to represent
three compounds with very similar spectral characteristics. The
elution profiles were simulated and the degradation profiles
represent a series of HPLC–DAD traces used to monitor a three-
reactant system.

The three species formed are assumed to form part of a
reaction series, where the reactant (R) is converted into an
intermediate (I), which is then converted into a product (P).

Elution Profiles

The elution data matrix is represented by 20,3A, representing 20
chromatographic points in time. The chromatographic profile of
compound l (where l = 1, 2 and 3 for the reactant, intermediate
and product, respectively) at time I is given by al,i. Each column
of A is an individual elution profile represented in this
simulation by Gaussians centred at points 10, 14 and 6 in time
and given by

  ai,1 = e
-

(i-10)2

6 (5)
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The data are designed so that the product elutes first, followed
by the reactant and then the intermediate. The elution profiles
are shown graphically in Fig. 2.

Spectra

Spectra were chosen from previous work to represent each
component. Brereton and co-workers24,25 have shown that in
chlorophyll degradation studies the ratio of absorbances
between the two absorbance maxima, at approximately 430 and
665 nm, respectively, is very diagnostic. These spectra were
chosen so that the reactant and the intermediate had spectra with
similar features. Table 1 gives the spectral characteristics of
each component. The spectra, shown in Fig. 3, were scaled to
constant maximum absorbance and stored as 226,3B, where each
column represents a spectrum taken between 350 and 800 nm,
digitised at a resolution of 2 nm, i.e., 226 readings per
spectrum.

Degradation profiles

The degradation profiles were designed to represent a reactant
decreasing in concentration as the experiment proceeds, a minor
intermediate increasing to a maximum, then decreasing and a
product increasing in concentration. Concentrations are such
that at any time the total concentration of all species is constant.
The degradation data matrix 20,3C represents the concentration
of the three components at 20 sampling points throughout the
experiment where the three columns represent the reactant,
intermediate and product respectively. The profiles for each
component are given by

ck,1 = 5e2k/8 (8)

ck,2 = (5 2 5e2k/8)e2k/d (9)

ck,3 = 5 2 5e2k/8 + e2k/d 2 5e2(k/8 + k/d) (10)

where k is the sample number arranged sequentially in time and
d is a parameter varying according to the relative significance
and kinetic stability of the intermediate. The greater the value of
d the slower is the decomposition of the intermediate, and so the
easier it is to detect. Different simulations were performed at
different values of d and simulated degradation profiles are
shown in Fig. 4.

Fig. 2 Simulated elution profiles.  8, Reactant; 3, intermediate; and 5,
product.

Table 1 Position of maxima of designed and predicted elution profiles.

Elution maximum

Reactant Intermediate Product
10 14 6

Rate parameter, d Factor 1 Factor 2 Factor 3

1 10 10 6
3 10 10 6
5 10 6 14

10 6 10 14
20 14 6 10

Fig. 3 Experimentally obtained spectra used in the simulations. Solid line,
reactant; dotted line, intermediate; and dashed line, product.
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Formation of three-way data set

The three-way, three-component model 20,226,20 X is formed
by

  

xi, j,k = ai, f bj, f ck, f

f =1

F

Â (11)

where f is the component number and F is the number of
components, which in this study is three. Five datasets were
created in which the rate constant, d, was 1, 3, 5, 10 and 20.

Application of PARAFAC Algorithm

No pre-processing is performed on the data in this paper. The
issue of pre-processing of three-way arrays is more complex
than for the two-way case. Centring can be performed across
either one, two or three of the modes and can distort the trilinear
model. The order of any pre-processing is also critical. These
issues have been discussed elsewhere.9,15,26,27

The datasets were decomposed by the PARAFAC written in
Matlab 4.2 (Mathworks, Natick, MA, USA).

The algorithm was used to extract three factor matrices from
each simulated dataset initialised using random vectors and a
convergence limit of 1 3 1026 between successive estimates of
the sum of squares of the misfit.

Indicators of Quality of Reconstruction

Various functions can be used to compare the results from the
simulations with the design data.

Component sum of squares

This gives a measure of the size of each component and factor,
which aids in the identification of factors and gives an
indication of their purity. The size of each predicted component,
Ŝf, is given by

  

Ŝf = (âi, f b̂j, f ĉk, f )2

k=1

K

Â
j=1

J

Â
i=1

I

Â (12)

The values obtained for the predicted model using eqn. (12) can
be compared to the size of the true components, Sf, calculated in
the same manner as above, but with the estimated vectors
replaced by their true equivalents.

The square root of the ratio of the estimated to the true sum
of squares, Qf, is given by

  
Qf = Ŝf / Sf (13)

The closer this value is to unity, the better is the modelling of the
factor f. The concentration of the reactant will decrease

identically from sample to sample in each simulation. The
relative concentration of the intermediate will increase with
increasing d and the product will decrease. The total concentra-
tion of the reactant, intermediate and product at any one point
will always be constant, but the sum of squares will not.

Regression

For each of the elution, spectral and degradation modes, the
predicted data are regressed on to the real data. In each case a
matrix R can be obtained, often called a rotation or transforma-
tion matrix. For example, for the elution data, if A is the true
elution datum, Â is the predicted data and RA is the rotation
matrix, then

Â = ARA (14)

RA is found by the pseudo-inverse:

RA = (AAA)21 AAÂ (15)

For a good model, each column and row of the rotation matrix
contains only one value significantly greater than zero.

Using the rotation matrices obtained above and the rotation
matrix, a ‘predicted true’ dataset can be obtained, denoted by a
circle overscript, e.g. for the elution data

Å = ÂR21
A (16)

Calculating a residual root mean sum of squares RMSEP(A)
between the actual true and predicted true data, across each
matrix, gives a further indication of the quality of regression:

  
RMSEP( )
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¥
==
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(17)

Spectral characteristics and elution maxima

A simple measure of the success of the decomposition can
obtained by comparing the predicted design parameters with
those listed in Table 1. From the predicted elution data the
position of the maximum of each component can be obtained as
the maximum of each column of Â. Similarly, the positions of
the two absorbance maxima and their ratio can be computed
from the estimated spectral data.

Results

Most methods for factor analysis depend first on determining
the number of significant factors. This is particularly true when
the aim is to model the entire dataset. The importance of
detecting and modelling all significant components in two-way
factor analysis has been discussed in the context of mid-infrared
(MIR) spectrometry.28,29 If a third significant factor is ignored,
then the information from this compound is mixed with the
other two compounds. In contrast, if a third factor is small it
may become confused with the other two factors if a three-
factor model is employed. PARAFAC depends crucially on a
prior estimate of the number of significant factors as shown
below. The following section reports the results assuming a
three component mixture and the subsequent section a two
component mixture.

Another important aspect is that the order in which the factors
are extracted may differ according to how the algorithm is
implemented, e.g., the starting point of the iterations. This

Fig. 4 Simulated degradation profiles. 8, Reactant; 3, intermediate; and
5, product.
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means that, over a series of datasets, the first factor may
correspond to physically different compounds in each run, so it
is first necessary to reorder the factors according to presumed
physical significance. In some cases, where the interpretation of
each factor is in doubt, this can be difficult. In the tables, the
factors are ordered according to the order in which they were
extracted.

Three-factor Systems

The predicted maxima positions of the elution profiles, in terms
of elution index for the three component, three-factor system,
are given in Table 2. At the levels where d, the kinetic rate
parameter, is low, i.e., 1 and 3, the PARAFAC algorithm fails to
position the three components correctly, whereas at higher
levels of d all three components are correctly determined.

Table 2 lists the spectral parameters determined from the
predicted data. In all cases the product (factor 3 at d = 1 and 3,
factor 2 at d = 5 and 20 and factor 1 at d = 10) is predicted well,
with a peak ratio of 1.65, and a low-wavelength absorbance
maximum at 424 or 426 nm. There is a slight problem with
predicting the high-wavelength absorbance maximum at higher
values of d, presumably because the prediction ability decreases

as the amount of intermediate increases. However, the high-
wavelength absorption maximum is always @660 nm. A 4 nm
shift in position represents only two sampling points in the
wavelength direction.

In this study, the data were designed with very similar
spectral parameters and the PARAFAC algorithm has succes-
sively determined these, so it is trivial to establish the
correspondence between components and factors. However,
this will not always be true and in cases where there are several
very similar components, a confident identification of the
factors based on spectral parameters may not be possible.

The component sum of squares for the true and predicted data
are given in Table 3. At all levels the size of the product is
predicted remarkably well. The reactant and intermediate,
however, are only closely estimated at the two higher levels of
d. This can be understood by considering that the reactant and
product had similar spectral characteristics. At the lower levels
of d, the intermediate is relatively minor compared with the
reactant, but as the intermediate increases in significance at
higher levels of d, it is easier for the algorithm to distinguish
between them.

The elution profiles for d = 1 and 20 are presented
graphically in Fig. 5. It is obvious that the product and
intermediate are not distinguished when d is low; these two

Table 2 Design and predicted spectral parameters for the three factor
model.

Design Reactant Intermediate Product

Spectral ratio 1.28 1.24 1.65
Absorbance max. 1/nm 434 434 424
Absorbance max. 2/nm 670 670 660

d = 1— Factor 1 Factor 2 Factor 3
Spectrum ratio 1.29 1.28 1.65
Absorbance max. 1/nm 436 436 426
Absorbance max. 2/nm 670 670 660

d = 3—
Spectrum ratio 1.30 1.27 1.65
Absorbance max. 1/nm 434 434 424
Absorbance max. 2/nm 670 670 660

d = 5—
Spectrum ratio 1.28 1.65 1.24
Absorbance max. 1/nm 434 426 436
Absorbance max. 2/nm 670 660 670

d = 10—
Spectrum ratio 1.65 1.28 1.24
Absorbance max. 1/nm 424 424 434
Absorbance max. 2/nm 658 668 668

d = 20—
Spectrum ratio 1.24 1.65 1.28
Absorbance max. 1/nm 434 424 434
Absorbance max. 2/nm 668 656 668

Table 3 Size of each design component and factors for the two- and three-
component systems

Rate parameter, d

1 3 5 10 20

Reactant 9100 9100 9100 9100 9100
Intermediate 8 167 591 2570 7165
Product 14827 13416 11750 7637 3547

Three-component system—
Factor 1 842 1825 8201 7640 6334
Factor 2 4741 3803 11751 8463 3547
Factor 3 14285 13412 572 2483 9461

Two-component system—
Factor 1 9209 9872 11684 13111 5317
Factor 2 14312 13473 10795 7549 15294

Table 4 Prediction ratios, Qf, for the two- and three-component models

Ratio Qf

Three-component model Two-component model

d Reactant Intermediate Product Reactant Product

1 0.9999 10.2884 0.7218 1.0060 1.0009
3 0.9999 3.3054 0.6465 1.0416 1.0021
5 1.0000 0.9836 0.9493 0.9972 1.0892

10 1.0002 0.9829 0.9646 1.2003 0.9942
20 1.0197 0.9402 1.0001 n/a n/a

Table 5 Root mean square error of prediction (RMSEP) for the three-factor
models

Data mode

d A B C

1 1.1 3 1027 4.19 3 1027 3.5 3 1028

3 4.2 3 1028 2.89 3 1028 2.3 3 1028

5 1.4 3 1028 2.89 3 1027 3.5 3 1028

10 3.7 3 1028 2.3 3 1028 3.6 3 1028

20 3.37 3 1028 3.55 3 1027 2.63 3 1028

Fig. 5 Elution profiles obtained for the three factor models at (a) d = 1
and (b) d = 20.
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species have similar spectral characteristics. Figs. 6(a) and (b)
are representations of the corresponding spectra and it can be
seen that they are recovered well.

It can be concluded that when the number of components is
correctly known, the PARAFAC algorithm produces excellent
decomposition results. These results are the best when all of the
components are relatively significant, as shown by the square
root of the ratios of predicted to true sum of squares, Qf, given
in Table 4, and the RMSEP in Table 5. For the elution data, A,

improves considerably from the d = 1 to the d = 20 level.
There is also an improvement, but to a lesser extent, for the
spectral data. The error in the kinetic profiles is reasonably
constant at each level.

Two factor Systems

The PARAFAC algorithm was repeated on the datasets but with
two rather than three factors used to model the data. The elution
and spectral parameters found are given in Tables 6 and 7,
respectively. As can be seen from Table 6, at each level of d the
algorithm appears to detect successfully the reactant and
product without any interference from the intermediate. Note
that the product should elute at datapoint 6 and the reactant at
datapoint 10.

Again, in Table 7, it appears that the two-component model
produces good predictions of the spectrum ratios and ab-
sorbance maxima at each level of d, although the peak ratio for
the product (1.56) is lower at d = 20.

However, when the sum of squares of the factors and
components are computed (Table 3), the situation is not so
straightforward. At the lower two levels of the intermediate the

Table 6 Position of maxima of predicted elution profiles for the two factor
model

Elution maximum

d Factor 1 Factor 2

1 10 6
3 10 6
5 6 10

10 10 6
20 6 10

Fig. 6 Predicted spectra for (a) three factors at d = 1, (b) three factors at d = 2, (c) two factors at d = 1 and (d) two factors at d = 20.

Fig. 7 Elution profiles obtained for the two factor models at (a) d = 1, (b) d = 3, (c) d = 5, (d) d = 10 and (e) d = 20.
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factors predict the size of the component reasonably well, but at
the higher levels it becomes more difficult to distinguish the
factors. This result reinforces the observation from above that a
univariate measure such as elution maximum is not a sophisti-
cated measure of data quality and a multivariate method,
utilising the data from all available modes, should always be
used in preference. This is important as the PARAFAC
algorithm distributes all of the observed systematic variance
between the factors in the model, so that these are not
necessarily pure factors.

Unlike the three-factor model above, predictions for the two
factor model are better when the unmodelled component is
relatively insignificant. As can be seen in Table 4, as the level
of the intermediate increases the quality of reconstruction of the
spectrally similar reactant decreases, but this is only observed
when a multivariate measure such as the sum of squares or the
rotation matrices is used. The quality of the product also falls
but less significantly. Because at the d = 20 level a confident
determination of the identification of the reactant and product
cannot be made, the prediction ratio therefore cannot be
calculated.

The five recovered elution profiles are shown in Fig. 7. These
supplement the data in Table 6; it is obvious that for d = 20 the
first factor has, in fact, two clear maxima. Interestingly, the
intermediate is confused with the product and predicted as one
factor, despite the difference in both spectral characteristics and
elution profiles. This unexpected result can be explained in
terms of kinetic profiles; the level of intermediate builds up
rapidly and then decreases with time, and so the kinetics of the
two compounds are fairly similar. Two components with
identical kinetics but different spectra and elution profiles could
be modelled as a single factor. Visual inspection of the predicted
chromatograms in Fig. 7(c)–(e) should provide clues that the
number of predicted components is too few, and so lead to
rerunning the model including further components. The spectra,
Fig. 6(c) and (d), are recovered well again.

Conclusions

PARAFAC is a powerful approach for resolving out series for
two-way chromatograms recorded over a number of samples.
The methods can be extended to three-way or higher data, e.g.,
chromatograms could be recorded at different pH values and
times; the change in chromatography with pH complements the
change in intensity with time.

The dataset in this paper is demanding, with the following
properties. The middle chromatographic peak has no composi-
tion 1 or selective region, and most factor analysis methods find
it difficult to resolve out unselective peaks. The spectra of the
reactant and intermediate are almost identical, with similar
spectra ratios and absorbance maxima, and also partially co-
elute. Approaches such as windows factor analysis and
evolutionary factor analysis will not resolve out neighbouring
peaks with very similar spectra; these will simply be modelled
by one principal component. Even two-dimensional peak purity
methods such as derivatives depend on change in spectral
composition over elution time and simply would not detect a
difference between the reactant and intermediate. By using
PARAFAC on a series of chromatograms, these peaks can be
distinguished provided that the concentration of the inter-
mediate is not too low. Hence PARAFAC has potential as a
major technique for the resolution and quantification of a series
of two-way of chromatograms, often in cases where normal
factor analysis methods will fail.

The major drawback is that a good estimate of the number of
components is required in advance for sensible models. If this is
unknown, it is better to perform the models with fewer
components first to see whether there are any elution profiles
with more than one maximum. If so, the algorithm can be
repeated, increasing the number of components until unimodal
elution profiles are achieved.

The authors thank R. Bro for providing the Matlab PARAFAC
algorithm and EPSRC for providing financial support for this
project.

Appendix

List of Notation Used

i Elution time index
I Total number of elution points (20)
j Spectral wavelength index
J Number of points in each spectrum (226)
k Sample number
K Number of reaction times (20)
A Elution data matrix, with individual point al,i

B Spectra data matrix, with individual point bl,j

C Concentration data matrix, with individual point cl,k

l Component number
L Number of components
d Kinetic rate parameter
X Three-way data, with individual point xi,j,k

f Factor number
F Total number of factors

Three-way matrices are represented by underlined upper-
case bold italic characters, e.g., X, two-way matrices by upper-
case bold italic characters, e.g., A, vectors by lower case bold
italic characters, e.g., af, and scalars by non-bold characters.
Estimated variables are denoted by a ‘hat,’ e.g., Â, except in
eqns. (16) and (17), where the ‘estimated true’ data are
represented by a circle overscript. Dimensions of matrices are
given as left-hand side subscripts, e.g., 20,10A is a matrix of 20
rows by 10 columns.
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