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Principal components analysis of elemental distributions among minerals elucidate chemical, thermal, 
and equilibrium effects. Previous approaches in applying thi~ multivariate statistical method to 
petrologic data are united into a single model, so-called three-moc~e principal components analysis. The 
major advantage of the model lies in the separate analysis of each ,of the three modes: element, mineral, 
and sample. The three sets of principal components are related through a 'core matrix'. The model 
accommodates the ordination of pair-w~se combinations of the modes, such as samples and minerals in 
visualization of multidimensional tie.lines. Because of its generality, the model permits great flexibility 
in the study of petrologic data. 
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Principal components analysis is useful in the. 
study of the distribution of chemical species 
among mineral phases. Saxena (1969) begins 
with a matrix of oxide weight percents of coex- 
isting minerals, derives a correlation matrix and 
calculates the eigenvectors in t~ne approach to 
the n-dimensional tie-line problem. In such an 
application, the main interest lies in the exami- 
nation of a plot of mineral-sample points on the 
principal axes and comparison of the tie-lines for 
position and orientation. The eigenvectors 
showing relationships among the chemical 
species possess secondary importance. 

On the other hand, Lindh (1975) uses similar 
kaput data, but plots samples alone on principal 
axes, and examines relationships among min- 
erabchemical species combinations. His ar- 
rangement of the data differs from that of Saxena 
because of his purpose in evaluating element 
distributions among mineral phases. One can 
envisage a more complex study comprising more 
phases than the two coexisting pyroxenes that 
Lindh examines. 

A formal relationship exists between these 
approaches in the form of three-mode principal 
compc tents analysis (Tucker 1966). In the pre- 
sent context, the three modes are: chemical 
species, mineral phase, and sample. Exploitation 
of the three-mode character of petrologic data 
through this analytic model provides a number of 
vantage points for viewing patterns in a data set 
because the eigenvectors of each mode can be 
plotted separately, and studied with respective 

scores of combination modes on principal com- 
ponents. The approaches of Saxena (1969) and 
Lindh (1975) are two special cases of the three- 
mode formulation. Such a synthesis of principal 
components methods may be appropriate to an 
exhaustive study of a data set, in particular one 
in which the nature and significance of internal 
relations are poorly understood a priori. 

An advantage of the model as adopted from 
Tucker (1966) is that a three-mode solution can 
be reduced to a common two-mode format for 
reasons of simplification or proposes of the 
analysis. This reduction can proceed to any of 
three fommts, including those used by other 
workers. 

Procedure 
Because Saxena (1969) describes the rationale 
and calculations behind princip.,d cc,mpor.ents 
analysis, only a few relevant details shall be 
repeated here, mainly for purposes of notation 
and analogy. Representing two-mode principal 
components analysis, i.e. the conventional 
model, as: 

,)~k = ,DmEk (l). 

the matrb.. ~Dm contains the 'loadings' of i vat.. 
hbles on m principai components; the martial 
mE~ contains the 'scores' ofk sample~ on princi- 
pal components; and ~ ,  contains the original 
data entries as estimated from the m compo- 
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nents. The original data matrix, ,X, might com- 
prise a number of cations ir,~ a given mineral 
detertmned for i cations and k samples. From the 
product of this matrix by its transpose,. ~XkX'~, 
eigenvectors normalized to a sum of squares 
.equal to unity are computed, yielding d)~. The 
:scores are calculated from: 

,:~Ek = mD '~Xk (2) 

If the data include determinations of numbers of 
cations from each of several minerals from each 
sample., then there exists an ~Xk fi~r each of the j  
minerals. Concatenating ~hese matrices yields 
~¥0k~. One can picture th~s matrix as a table 
having the cations arranged as rows, and the first 
k columns representing the measurements on all 
of the samples for one mineral, the next k 
columns representing those measurements for a 
second mineral, and so forth. The matrix multi- 
~lication of this matrix by its transpose gives a 
sum of squares and cross products amengst the 
cations: ~X0k~"~, from which a set of 
erigenvectors, ~A~, can be calculated. The data 
matrix can be rearranged such that minerals 
correspond to rows: -~'c~, or such that samples 
become rows: kX(~; again, a set of eigenvectors 
can be calculated from the respective sums of 
squares and cross products matrices, yielding jBj 
and kCk. We shah follow the example of Tucker 
(1966) in calling (jk) or (ik) or (ij) a 'combination 
made ~. 

A fundamental purpose of principal compo- 
nents analysis lies in the reduction of dimension- 
ality, that is, the reduction of a table of many 
columns to one of a few, or the reduction of a 
mtlltid~rnen,sional graph impossible to draw, to  

on,e or two axes - the principal components. The 
model described here allows the independent 
reduction of each mode according to some 
crilferion such as the cumuhtive percentage of 
the total variance explained by the axes. 

We can now state the three-mode principal 
components model in matrix form: 

iXok., =,Ama,p~, (vB¢~qCk ) (3) 

where ~-~0e~ is a principal components approxi- 
mation of the input data. The eigenvector 
matrices, ~A,,, uB~ and qCa. have been reduced to 
m, p and q eigenvectors, respectively. Note that 
use of the combination mode (jk) permits us to 
represent the model in conventional, two-way 
~aatrices, but also necessitates us to use the 
Kronecker product ®, described by Pease 
(1965) and others. The 'core matrix', ,,,G~a~ re- 

lates the principal components of the three 
modes; as with e, igenvector mat-ices, inspection 
of the salient values in mG0,q) provides insight 
into the major patterns in the da:ta. The model of 
(3) states that the original data is approximated 
by the sum of a number of rougher approxima- 
tions. There are m -p .q of these approximations, 
each calculated by considering the matrix multi- 
plication of three eigenvector~, one from each 
mode. The m .p, .q entries of the core matrix 
weight each possible combination of eigen- 
vectors such tlhat those entries with large 
magnitudes indicate the combinations contribut- 
•ng most to the reconstructed data. The core 
matrix is calculated from the three eigenvector 
matrices and the input data: 

, , ,G~, = ,,,A'~Xok ~ .(~B'~®kC'o) (4) 

S c o r e s  

One can rewrite (3) in a conventional two-mode 
form: 

~Xok~ = iA,,,Lok~ (5) 

where tam represents loadings of the i variates on 
principal components, and mLok ) represents the 
scores of units in the combination mode (/k). 
Therefore: 

,,,Lok, =~Go, q, (pB.~®qCt,) (6) 

The fundamental equation (3) can be rearranged 
three ways, conforming with the three possibile 
arrangements of the data as 6escribed abow~. 
The matrices of loadings are the eigenvector 
matrices of (3), and each as a correspondin~g 
matrix of scores, calculated from~ for instance: 

mLok~ = mA "Xok, (7) 

In the two examples below, the data comprising 
each mineral-cation combination were stand- 
ardized to zero mean and unit variance, thus 
weighting the callions equally and offsetting the 
lendency for miinerals of greatest contrasting 
composition to dominate the analysis. In com- 
puting the scores, the unsllandardized data were 
used in order to, restore ~Ihe inter-mineral dis- 
tances and theretbre the iie-lines. 

Example: Madras charnockites 
The data of Howie (1955) were chosen because 
the internal relationships are reasonably simple, 
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Table !. Eigenvalues and ,ercent of total variance along each 
principal component calct, ated from Madras Charnockite data 
(Howie 1955). 

Principal component 

I 2 3 

Cation eigenvalues 15.53 5.36 3.29 
Percent 51.80 17.90 11.00 

Mineral eigenvalues 19.83 6.69 3.47 
Percent 66.10 22.30 1 !.60 

Sample eigenvalues 15.24 4.05 1.25 
Percent 74.20 19.70 6. I 0 

and because they have been used previously in 
studying mineral compositions and equilibria 
(Kretz 1963) and in exemplifying multivariate 
graphical techniques (Saxena 1969). We used the 
number of cations and the ratio, XF~ determined 
from the three minerals hornblende, orthopyrox- 
erie, and clinopyroxene, in each of four samples. 
As stated in the previous section, the four values 
in each of the thirty combinations of three miner- 
als and ten cations were standardized by sub- 
tracting the mean of these four values, and 
dividing by the variance. Then, the three sums- 
of-squares-and-cross-products raatdces were 
calculated, three respective sets of eigenvectors 
extracted, and the core matrix computed from 
(4). The scores were calculated from (7) usin~i 
the unstandardized data. The computer progran~ 
employed in the analysis limited the number of 
c~=tions, oxides, or ratios to ten. Analysis of the' 
cations mode shows that the first two, 
eigenvectors account for 70 percent of the total 
variation in the data (Table 1). The ordination of 
the loadings (Fig. 1) provides information about 
the patterns among catioas and the ratio, Are 
across all minerals and samples. For instance, 
Fe 2~ and Xr~ provide redundant information, 
attributable to the fact that Fe 2+ and Mg ~+ bear 
an almost perfectly inverse partitioning relation- 
ship with each other. 

A plot of mineral-sample scores on principal 
axes is found to be useful in the viewing of 
n-dimensional tie-lines (Saxena 1969). As in the 
conventional graphing of tie-lines on te~ary 
diagrams, features noted include the retative 
positions and angles among the ~ines. It should 
be borne in mind that a given projection might 
correctly represent some relationships and mis- 
represent others. In the present example, samp|e 
4 has a different composition from the others, 
and, as an outlier, tends to domina', • the posi- 
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Fig. i. Loadings and scores for principal components analysis 
of cation mode of Madras Charnockites (Howie 1955). Sample 
numbering corresponds to Howie's numbers in the order: 
4642A, 2270, 2941, 3709. 

fioning of the principal axes. We could have 
repeated the mathematical analysis with this 
sample excluded, allowing more subtie pa~tterns 
among the apparently homogeneous subpopula- 
tion of s~mples l, 2 and 3 to emerge. 

Accounting for 88 percent of the total variance 
(£able 1), the first two eigenvectors of the miner- 
als mode show that clinopyroxene and 
orthopyroxene are end members to the inter- 
medmte composition of hornblende (Fig. 2). This 
observation reflects a well-known property of 
the,,;e minerals, viz. a finear ecluation describes 
the composition of any one pha~e in terms of the 
other two. 

Con'esponding scores of cation-sample com- 
binations are analogous to plots of numbers of 
cations and calculated cation ratios for pairs of 
minerals such as those found in Kretz (11963). In 
the case of principal components scores, each 
axis represents a linear combination of minerals, 
so that graphing these scores pre~ludes ~he need 
for constructing all pair-wise combinations of the 
minerals yet permit~ one to detect strai~.~ht-line 
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of mine~'~ls in Madras Charnockites (Howie 1955). 

¢'4 

0 

-1 
-1 

1~ ,  , I ~ -  I HI  

°3 

o2 
1 . . . . .  I I 

{J 

component 1 

Loadincjs 

~0 
0 
a .  
i= 
0 
I.J -1 

x 0 C~I. t 
.0. "c'" .0 
H 

I I __  I I I 
-2 0 2 

co~ponent 1 

°C 

Scores 

x Fe 2" 
• ,. Mg 

o Ca 

Fig. 3. Loadings and scores for principal components analysis 
of  samples mode. Data are from Howie's study of  Madras 
Charnockites (1955). 

relatioi~ships. In the present example, only a 
small number of scores are shown in order to 
reduce the complexity of the presentation. 
Nevertheless, the near-linearity of the points for 
each cation is apparent. The orthogonality of 
Ca 2+ with respect to FC + is also obvious from 
the scores of Fig. 2., explaining the similar 
orthogonality of these cation loadings in Fig. I. 

The sample Ioadings and scores (Fig. 3) con- 
trast samples I and 4 along an axis that accounts 
for a large proportion of the variance (Table 1). 
The calculations represented by Fig. 3 are 
analogous to Lindh's (1975) analysis of coexist- 
ing pyroxene pairs. A minor difference lies in the 
fact that Lindh scaled the sample eigenvectors to 
the respective eigenvalue~, and has scaled the 
eigenvectors for the cation-mineral combination 
mode to unity. The relationships that Lindh 
found for approximately 100 pyroxene pairs 
compare we[! with those in the present study. 

The core matrix (Table 2) relates the ~hree 

principal components analyses, and can be used 
to inspect the interactions between the 
eigenvectors of different modes. The very large 
or small values indicate those combinations of 
eigenvectors that contribute a lot to the variation 
among the data; near-zero values indicate unim- 
portant combinations. For instance, one value 

Table 2. Core matrix in three-mode principal components 
model of Madras Cl~arnockites. Components in each mode are 
labelled as in Figs. I to 3. 

Sample components 

! 2 

C ation co~alponent 1 
Mineral component I -3.846 -0.050 
Mineral component 2 0.230 -0.467 

Cation component 2 
Mineral component I 0.097 - 1.949 
Mineral compor~ent 2 -0.620 -0.172 
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"lable 3. S u m m a r y  o f  t h e  m i n e r a l  a s s e m b l a g e s  a n d  ~ e g r e e  o f  r e t r o g r a d e  m e t a m o r p h i s m  c a u s e d  b y  t h e  T o b a c c o  R o o t  B a l h o l i t h  

in  t he  S p u h l e r  P e a k  s a m p l e s .  

S ~ m p l e  n u m b e r  

M i n e r a l  ! 2 3 4 5 6 7 $ 9 

P l a g i o c l a s e  x x x x x x x x x 

O r t h o c l a s e  - - - x - - x - - 

G a r n e t  x x x x x x x x x 

B i o t i t e  x x x x x x x x x 

H o r n b l e n d e  x x x x x x x x x 

C u m m i n g t o n i t e  - x - - x - x - x 

Q u a r t z  x x x x - - x - x 

C a l c i t e  . . . . .  x - - - 

S a l i t e  . . . . .  x - - - 

D e g r e e  o f  

r e t r o g r a d a t i o n  S S H S M M M M M 

S = s l igh t ;  M = m o d e r a t e ;  H -- h igh ;  x = m i n e r a l  p r e s e n t ;  - = m i n e r a l  a b s e n t .  

(-3.846) relates the first cation component, the 
first mineral component and the first sample 
component. Because all of the minerals weight 
equally and negatively on the first axis (Fig. 2), 
this core entry refers to a trend present through- 
out the minerals mode. In fact, it contrasts the 
high Mg ~+ and Na + content of sample 4 against 
the high FC + content of sample 1. A second 
important entry (-1.949) suggests a negative 
interaction between the second cation compo- 
nent, the first mineral component, and the sec- 
ond sample component. Again, this interaction 
cuts across all minerals, but perhaps not as 
consistently as the one above. The trend is one 
of Al-rich and Ca-poor minerals in sample 3 
relative to 2. 

Spuhler Peak Formation 
A second example comprises a set of data from 
the Spuhler Peak Formation of the Central To- 
bacco Root Mountains in southwestern 
Montana. The samples were collected from a 
small area in order to keep T and Pt constant. 
The rocks were regionally metamorphosed to 
orthoclase-sillimanite grade (650 + 50°C and 5-7 
Kb) during the F~'ecambrian, and later altered 
along fractures by the emplacement of the To- 
bacco Root Batholith (Laramide age; 70 m.y.) 
(Friberg 1976). All samples appear to have a 
basaltic or graywacke parentage and all contain 
the minerals: phgioclase, garnet, biotite, and 
hornblende (Table 3). The patterns within the 

Spuhler Peak data are probably more complex 
than the Madras data because of the more 
heterogeneous petrochemistry and a more com- 
plex petrologic history. The data comprise 
numbers of cations (see Fig. 4) in four minerals 
from each of nine: samples. 

For brevity, only the first two eigenvectors of 
the cation mode are presented (Fig. 4), although 
the eigenvalues in Table 4 suggest that more 
components give significant information. A third 
axis has salient loadings for Na + and TP +, and a 
fourth axis has salient loadings for Mg 2+ and 
M n  2+ . 

In plotting the mineral-sample scores, the 
ordination of sample loadings on principal com- 
ponents is particu'arly useful in this example for 
locating outliers and defining homogeneous sub- 
populations. Indeed, samples 3, 6, and 7 consti- 
tute obvious ou~tliers around a number of sam- 
ples in the center of the plot (Fig. 5). Sample 3 
:has been highly altered by the metas:~matic 
fluids along fractures and grain boundaries, re- 
sulting in a change in the chemistry of the miner- 
als. Differences in buik chemistry probably ac- 
count for the anomalous positions of samples 6 
and 7. Sample 6 shows the greatest chemical 
variance, with high Ca ~÷ and low SP + content 
reflected in the presence of calcite and salite, 
and the absence of quartz (Table 3). The pre- 
sence of ol~hoclase in sample 7 suggests a high 
K + content. Note that the samples falling near 
the center of Fig. 5 include three samples of 
slight retrogradation, whereas the outliers have 
medium to high retrogradation. The plot sug- 
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gcsts that samples 6 and 7 may reflect a higher 
level of retrogradation than thought when Table 
3 was originally compiled. 

The n-dimensional tie-lines show samples 4 
and 5 to be very similar with some crossing of 
tie-lines (Fig. 6), and show a large similarity 
between these and sample 1 except for differ- 

Table 4. Eigenvalues and percent variance along principal 
components ca;:mlated from Spuhler Peak data. 

Principal components 

i 2 3 4 

Cation eigenvalues 8.33 8.11 6.55 4.81 
Percent 23.10 22.50 18.20 13.40 

Mineral eigenvalues 1 !.24 8.86 8.43 7.46 
Percent 31.20 24.60 23.40 20.70 

Sample eigenvalues 5.58 5.20 1.28 0.43 
Percent 43.~ 40,60 9.90 3.30 

ences in plagioclase composition. These samples 
show a veD ~ different pattern from the outliers 
(Fig. 7). In ILhe interest of a complete array for 
analysis, the data include a retrograde biotite in 
sample 6. Although this d~tum deviates from the 
other biotite points, the most distinctive feature 
of this sample lies in the unusual plag[ clase 
composiition. 

Eigenvalues from analysis of the minerals 
mode (Table 4) indicate that each of the four 
phases contribute to the overall pattern in some 
t, nique way. A t we-component ordination of the 
eigenvector loadings of "['able 5 does not ade- 
quately represe:~t the obse, rved data because no 
one phase can be described as a linear combina. 
tion of the other phases. In addition, the scores 
for the cations do not show the degree of 
linearity evident in the previous example. W!hen 
plotted, these scores detail the varying elemental 
compositions of each sampie,~ viz. the low 
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sodium coment of sample 7, the high silicon 
content of sample 6, and the nearly homogene- 
ous compositions of the majority of samples. 

The core matrix contains a number of values 
very different from zero, suggesting ~aany in- 
teractions cutting across modes (Table 6). The 
negative interaction (- 1.469) between the second 
cation, second mineral, first sample components 
expresses the Al-rich plagioclase and biotite in 
sample 6, consistent with observations made 
above on the mineral assemblage of this sample. 
Similarly, the entry o f -  1.8~ concerns the Ca- 
poor and Fe-rich plagioclase relative to the other 
minerals in sample 3 whicI~ resulted from the 
retrograde metamorphic event. 

Summary of conclusions 
A problem with missing values will arise 
whenever samples do not contain the same rain- 

erals, or when a cation is absent throughout the 
sampling of a mineral. One can simply set the 
missing entries to zero, being careful not to 
attempt standardization of the relevant blocks in 
the array. If a cation is absent from a given 
mineral, then the sums of squares and cross 
products matrix among the cations will have 
unequal diago;ial values; the result can be 
suppression of that cation on the principal com- 
ponents. The same holds true for the minenal 
concerned. Nevertheless, we have followed this 
procedure with data sets after we removed 
blocks of entries with only minor changes in the 
projection. Substituting theoretical or 'typical' 
values for missing entries (Saxena 1969) is prob- 
ably not good practice. Procedures for estimat- 
ing missing values from those present in the data 
array do not apply to systematic omissions. 

In summary, the three-mode principal compo- 
nents model extends the *multivariate approach 
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Table 5. Loadings of four minerals on principal components 
calculated from Spuhler Peak data. 

Principal component 

1 2 3 

Garnet -0.62 i 0.125 -0.242 
Piagioclase A).395 -0.678 -0.56! 
Biotite -0.354 -0.706 0.613 
Hornblende -0.577 -0.165 -0.500 

Table 6. Core matrix in three-mode principal components 
model of Spuhler Peak data. 

Sample components 

core matrix, calculation of the scores matrices 
expedites analysis of some data sets, and in fact 
yields displays equivalent to those used in previ- 
ous studies. The model therefore incorporates 
the features of these specific applications, yet 
maintains a greater generality. 
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! 2 

Cation component I 
Mineral component ! 0.487 - 1.860 
Mineral component 2 0.412 1.068 
Mineral component 3 -!o254 0.366 

Cation component 2 
Mineral component I -0.286 -0.463 
Mineral component 2 - i . 469  -0.169 
Mineral component 3 - I. 166 -0.468 

to analysis of petrologic data by allowing identi- 
cal treatment of each mode. Previous application 
of principal components analysis ihas meant that 
one could obtain loadings of the units of one 
mode, but the other two modes were represented 
in combination as the scores. The present model 
comprises analysis of each mode in isolation, but 
a core matrix combines the separate sets of 
eigenvectors into a single, descriptive equation. 
Because of the difficulty in interpretation of the 
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