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Principal components analysis of elemental distributions among minerals elucidate chemical, thermal,
and equilibrium effects. Previous approaches in: applying thiz multivariate statistical method to
petrologic data are united into a single model, so-called three-moce principal components analysis. The
major advantage of the model lies in the separate analysis of each of the threc modes: element, mineral,
and sample. The three sets of principal components are related through a ‘core matrix’. The model
accommodates the ordination of pair-wise combinations of the modes, such as samples and minerals in
visualization of multidimensional tic-lines. Because of its generality, the model permits great flexibility
in the study of petrologic data.
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Principal components analysis is useful in the
study of the distribution of chemical species
among mineral phases. Saxena (1969) begins
with a matrix of oxide weight percents of coex-
isting minerals, derives a correlation matrix and
calculates the eigenvectors in cne approach to
the n-dimensional tie-line problem. In such an
application, the main interest lies in the exami-
nation of a plot of mineral-sampie points on the
principal axes and comparison of the tie-lines for
position and orientation. The eigenvectors
showing relationships among the chemical
species possess secondary imporiance.

On the other hand, Lindh (1975) uses similar
inpat data, but plots samples alone on principal
axes, and examines relationships among min-
eral-chemical species combinations. His ar-
rangernent of the data differs from that of Saxena
because of his purpose in evaluating element
distributions among mineral phases. One can
envisage a more complex study comprising more
phases than the two coexisting pyroxenes that
Lindh examines.

A formal relationship exists between thesc
approaches in the form of three-mode principal
compc ients analysis (Tucker 1966). In the pre-
sent context, the three modes are: chemical
species, mineral phase, and sample. Exploitation
of the three-mode character of petrologic data
through this analytic model provides a number of
vantage points for viewing patterns in a data set
because the eigenvectors of each mode can be
plotted separately, and studied with respective

scores of combination modes on principal com-
ponents. The approaches of Saxena (1969) and
Lindh (1975) are two special cases of the three-
mode formulation. Such a synthesis of principal
components methods may be appropriate to an
exhaustive study of a data set, in particular one
in which the nature and significance of internal
relations are poorly understood a priori.

An advantage of the model as adopted from
Tucker (1966) is that a three-mode solution can
be reduced to a common twe-mode format for
reasons of simplification or purposes of the
analysis. This reduction can procced to any of
threc formats, including those used by other
workers.

Procedure

Because Saxena (1969) describes the rationale
and calculations behind principal compor.ents
analysis, only a few relevant details shail be
repeated here, mainly for purposes of notaiion
and analogy. Representing two-mode principal

components analysis, i.c. the conventional
model, as:
Xy = DnEy ()

the matrix ;D,, contains the ‘loadings’ of i var-
iables on m principai compcnents; the matrix
mE contains the ‘scores’ of k samples on princi-
pal components; and ;X contains the original
data eniries as estimated from the m compo-
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nents. The original data matrix, .X; might com-
prise a number of cations in a given mineral
determined for i cations and k samples. From the
product of this matrix by its transpose, ; X, X',
eigenvectors normalized tv & sum of squares
equal to unity are computed, yielding ;D,,. The
scores are calculated from:

mEx =mD i Xy )

If the data include determinations of numbers of
cations from each of several minerals from each
sample, then there exists an ;X for each of the j
minerals. Cencatenating these matrices yields
Xu- One can picture this matrix as a table
having the cations arranged as rows, and the first
k columns representing the measurements on all
of the samples for one mineral, the next &
columns representing those measurements for a
second mineral, and so forth. The matrix multi-
plication of this matrix by its trenspose gives a
sum of squares and cross products amongst the
cations: X, X';, from which a set of
eigenvectors, ;4;, can be calculated. The data
matrix can be rearranged such that minerals
correspond to rows: ;Xg,, or such that samples
become rows: , Xg;,; again, a set of eigenvectors
can be calculated from the respective sums of
squares and cross products matrices, yielding ;B;
and ,C,. We shal! follow the example of Tucker
(1966) in calling (k) or (ik) or (ij} a ‘combination
made’.

A fundamental purpose of principal compo-
nents analysis lies in the reduction of dimension-
ality, that is, the reduction of a table of many
columns to one of a few, or the reduction of a
multid'mensional graph impossible to draw, to
on¢ or two axes - the principal components. The
model described here allows the independent
reduction of each mode according to some
criterion such as the cumuiative percentage of
the total variance explained by the axes.

We can now state the three-mode principal
components model in matrix form:

X ={AnGpe 6B®,Cy) 3)

where X, is a principal components approxi-
mation of the input data. The eigenvector
matrices, ;A , ,B; and ,C,. have been reduced to
m, p and q eigenvectors, respectively. Note that
use of the combination mode (k) permits us to
represent the model in conventional, two-way
matrices, but also necessitates us to use the
Kronecker product ®, described by Pease
(1965) and others. The ‘core matrix’, ,Gqq re-
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lates the principal componenis of the three
modes; as with eigenvector matrices, inspection
of the salient values in ,,G, provides insight
into the major patterns in the data. The model of
(3) states that the original data is approximated
by the sum of a number of rougher approxima-
tions. There are m -p - g of these approximations,
each calculated by considering the matrix multi-
plication of three eigenvectors, one from each
mode. The m-p-q entries of the core matrix
weight each possible combinstion of eigen-
vectors such that those entries with large
magnitudes indicate the combinations contribut-
ing most to the reconstructed data. The core
matrix is caiculated from the three eigenvector
matrices and the input data:

nGon= nd" i X (jB’D®kC'q) “)

Scores

One can rewrite (3) in a conventicnal two-mode
form:

Xar=ilmL g (5)

where ;4,, represents loadings of the i variates on
principal components, and ,,L, represents the
scores of units in the combination mode (k).
Therefore:

mL(ik) =mG(pq) (DBJ®0C!:) (6)

The fundamental equation (3) can be rearranged
three ways, conforming with the three possible
arrangements of the data as described above.
The matrices of loadings are the eigenvector
matrices of (3), and each as a corresponding
matrix of scores, caiculated from, for instance:

mL(ik) =md X ak) )

In the two examples below, the data comprising
each mineral-cation combination were stand-
ardized to zero mean and unit variance, thuas
weighting the cations equally and offsetting the
tendency for minerals of greatest contrasting
composition to dominate the analysis. In com-
puting the scores, the unstandardized data were
used in order to restore the inter-mineral dis-
tances and therefore the tie-lines.

Example: Madras charnockites

The data of Howie (1955) were chosen because
the internal relationships are reasonably simple,
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Table 1. Eigenvalues and ‘zrcent of total variance along each
principal component calcu. ated from Madras Charnockite data
(Howie 1955).

Principal component

1 2 3
Cation eigenvalues 15.53 5.36 3.29
Percent 51.80 17.90 11.00
Mineral eigenvalues 19.83 6.69 3.47
Percent 66.10 22.30 11.60
Sample eigenvalues 15.24 4.05 1.25
Percent 74.20 19.70 6.10

and because they have been used previously in
studying mineral compositions and equilibria
(Kretz 1963) and in exemplifying multivariate
graphical techniques (Saxena 1969). We used the
number of cations and the ratio, Xy, determined
from the three minerzls hornblende, orthopyrox-
ene, and clinopyroxene, in each of four samples.
As stated in the previous section, the four values
in each of the thirty combinations of three miner-
als and ten cations were standardized by sub-
tracting the mean of these four values, and
dividing by the variance. Then, the three sums-
of-squares-and-cross-products matrices were
calculated, three respective sets of eigenvectors
extracted, and the core matrix computed from
(4). The scores were calculated from (7) using
the unstandardized data. The computer program.
employed in the analysis limited the number of
cztions, oxides, or ratios to ten. Analysis of the:
cations mode shows that the first two
eigenvectors account for 70 percent of the tota!
variation in the data (Table 1). The ordination of
the loadings (Fig. 1) provides information about
the patterns among cations and the ratio, X,
across all minerals and samples. For instance,
Fe?- and Xy, provide redundant information,
attributable to the fact that Fe?* and Mg?* bear
an almost perfectly inverse partitioning relation-
ship with each other.

A plot of mineral-sample scores on principal
axes is found to be useful in the viewing of
n-dimensional tie-lines (Saxena 1969). As in the
conventional graphing of tie-lines on temary
diagrams, features noted include the relative
positions and angles among the lines. It should
be borne in mind that a given projection might
correctly represent some relationships and mis-
represent others. In the present example, sampie
4 has a different composition from the others,
and, as an outlier, tends to dominat * the posi-
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Fig. 1. Loadings and scores for principal components analysis
of cation mode of Madras Charnockites (Howie 1955). Sample
numbering corresponds to Howie’s numbers in the order:
4642A, 2270, 2941, 3709.

tioning of the principal axes. We could have

repeated the mathematical analysis with this
sample excluded, allowing more subtie patterns
among the apparently homogeneous subpopuia-
tion of sumples 1, 2 and 3 to emerge.

Accounting for 88 percent of the total variance
(Table 1), the first two eigenvectors of the miner-
als mode show that clinopyroxene and
orthopyroxene are end members to the inter-
mediate composition of hornblende (Fig. 2). This
obscrvation reflects a well-known property of
these minerals, viz. a linear ecuation describes
the composition of any one phase in terms of the
other two.

Corresponding scores of caiion-sample com-
binations are analogous to plots of numbers of
cations and calculated cation ratios for pairs of
minerals such as those found in Kretz (1963). In
the case of principal components scores, each
axis represents a linear combination of minerals,
so that graphing these scores precludes the need
for constructing all pair-wise combinations of the
minerals yet permits one to detect straight-line
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Fig. Z. Loadings and scores for principal components analysis
of minerals in Madras Charnockites (Howie 1955).

relaticiships. In the present example, only a
small number of scores are shown in order to
reduce the complexity of the presentation.
Nevertheless, the near-linearity of the points for
each cation is apparent. The orthogonality of
Ca?* with respect to Fe?* is also obvious from
the scores of Fig. 2, explaining the similar
orthogonality of these cation loadings in Fig. 1.
The sample loadings and scores (Fig. 3) con-
trast samples 1 and 4 along an axis that accounts
for a large proportion of the variance (Table 1).
The calculations represented by Fig. 3 are
analogous to Lindh’s (1975) analysis of coexist-
ing pyroxene pairs. A minor difference lies in the
fact that Lindh scaled the samp'e eigenvectors to
the respective eigenvalues, and Las scaled the
eigenvectors for the cation-mineral combination
mode to unity. The relationships that Lindh
found for approximately 100 pyroxene pairs
compare well with those in the present study.
The core matrix (Table 2) relates the three
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Fig. 3. Loadings and scores for principal components analysis
of samples mode. Data are from Howie's study of Madras
Charnockites (1955).

principal components analyses, and can be used
to inspect the interactions between the
eigenvectors of different modes. The very large
or small values indicate those combinations of
eigenvectors that contribute a lot to the variation
among the data; near-zero values indicate unim-
portant combinations. For instance, one value

Table 2. Core matrix in three-mode principal components
model of Madras Charnockites. Components in each mode are
fbelled as in Figs. 1 to 3.

Sample components
1 2
Cation component 1
Mineral component 1 -3.846 -0.050
Mineral component 2 0.230 ~0.467
Cation component 2
Mineral component 1 0.097 -1.949
Mineral comporent 2 -0.620 ~0.172
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Table 3. Summary of the mineral assemblages and Gegree of retrograde metamorphism caused by the Tobacco Roet Batholith

in the Spuhler Peak samples.

Sample number

Mineral 1 2 3 4

Plagioclase
Orthoclase
Garnet

Biotite
Hornblende
Cummingtonite
Quartz
Calcite

Salite

Degree of
retrogradation
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S =slight; M =moderate; H =high; x =mineral present; - = mineral absent.

(—3.846) relates the first cation component, the
first mineral component and the first sample
component. Because all of the minerals weight
equally and negatively on the first axis (Fig. 2),
this core entry refers to a trend present through-
out the minerals mode. In fact, it contrasts the
high Mg?* and Na* content of sample 4 against
the high Fe?* content of sample 1. A second
important entry (-1.949) suggests a negative
interaction between the second cation compo-
nent, the first mineral component, and the sec-
ond sample component. Again, this interaction
cuts across all minerals, but perhaps not as
consistently as the one above. The trend is one
of Al-rich and Ca-poor minerals in sample 3
relative to 2.

Spuhler Peak Formation

A second example comgrises a set of data from
the Spuhler Peak Formatior. of the Central To-
bacco Root Mountains in southwestern
Montana. The samples were collected from a
small area in order to keep T and P, constant.
The rocks were regionally metamorphosed to
orthoclase-sillimanite grade (650 +50°C and 5-7
Kb) during the Precambrian, and later altered
along fractures by the empiacement of the To-
bacco Root Batholith (Laramide age; 70 m.y.}
(Friberg 1976). All samples appear to have 2
basaltic or graywacke parentage and all contain
the minerals: plagioclase, garnet, biotite, and
hornblende (Table 3). The patterns within the

Spuhler Peak data are probably more complex
than the Madras data because of the more
heterogeneous petrochemistry and a more com-
plex petrologic history. The data comprise
numbers of cations (see Fig. 4) in four minerals
from each of nine: samples.

For brevity, only the first two eigenvectors of
the cation mode are presented (Fig. 4), although
the eigenvalues in Table 4 suggest that more
components give significant information. A third
axis has salient loadings for Na* and Ti**, and a
fourth axis has salient loadings for Mg®* and
Mn?t,

In plotting the mineral-sample scores, the
ordination of sample loadings on principal com-
ponents is particularly useful in this example for
locating outliers and defining homogeneous sub-
populations. Indeed, samples 3, 6, and 7 consti-
tute obvious outliers around a number of sam-
ples in the center of the plot (Fig. 5). Sample 3
has been highly altered by the metassmatic
fluids along fractures and grain boundaries, re-
sulting in a change in the chemistry of the miner-
als. Differences in buik chemistry probably ac-
count for the anomalous positions of samples 6
and 7. Sample 6 shows the greatest chemical
variance, with high Ca?* and low Si** content
reflected in the presence of calcite and salite,
and the absence of quartz (Table 3). The pre-
sence of ortheclase in sample 7 suggests a high
K* content. Note that the samples falling near
the center of Fig. 5 include three samples of
slight retrogradatior, whereas the outliers have
medium to high reirogradation. The piot sug-
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Fig. 4. Loadings of cations on principal components calculated
from Spunler Peak Formation data (Friberg 1976).

gests that sampies 6 and 7 may reflect a higher
level of retrogradation than thought when Table
3 was originaily compiled.

The n-dimensional tie-lines show samples 4
and S to be very similar with some crossing of
tie-lines (Fig. 6), and show a large similarity
between these and sample 1 except for differ-

Table 4. Eigenvalues and percent variance along principal
components ca;:ulated from Spuhler Peak data.

Principal components

1 2 3 4
Cation eigenvalues 833 8.1 655 48!
Percent 23.10 2250 18.20 13.40
Mineral eigenvalues i.24 886 843 746
Percent 31.20 2460 23.40 20.70
Sample eigenvalues 5.58 5.20 1.28 043
Percent 4300 4000 990 3.30

compoonenf 1

¢ Spotted Amphibolite

<o Coarse Hornblende Gneiss
o Hornblende- Garnet Gneiss
o Basal Member

Fig. 5. Loadings of samples from Spuhler Peak Formation on
principal components. The feur rock types are described in
Friberg (1976).

ences in plagioclase composition. These samples
show a very different pattern from the outliers
(Fig. 7). In the interest of a complete array for
analysis, the data include a retrograde biotite in
sample 6. Although this datum deviates from the
other biotite points, the most distinctive feature
of this sample lies in the unusual plagi clase
composition.

Eigenvalues from analysis of the minerals
mode (Table 4) indicate that each of the four
phases contribute to the overall pattern in some
unique way. A two-component ordination of the
eigenvector loadings of Table 5 does not ade-
quately represent the observed data because no
one phase can be described as a linear combina-
tion of the other phases. In addition, the scores
for the cations do not show the degree of
linearity evident in the previous example. When
plotted, these scores detail the varying elemental
compositions of each sampie. viz. the low
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Fig. 6. Scores of mineral-sample combinations on principal
componen’s with a few of the tie-lines drawn ip. Data are
from Spuhler Peak Formation (Friberg 1976).

sodium content of sample 7, the high silicon
content of sample 6, and the nearly homogene-
ous compositions of the majority of samples.

The core matrix contains & number of values
very different from zero, suggesting many in-
teractions cutting across modes (Table 6). The
negative interaction (- 1.469} between the second
cation, second mineral, first sample components
expresses the Al-rich plagicclase and biotite in
sample 6, consistent with observations made
above on the mineral assemblage of this sample.
Similarly, the entry of —1.850 concerns the Ca-
poor and Fe-rich plagioclase relative io the other
minerals in sample 3 which resulted from the
retrograde metamorphic event.

Summary of conclusions

A problem with missing values will arise
whenever samples do not contain the same min-
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samples graphed for the four minerals.

erals, or when a cation is absent ihroughout the
sampling of a mineral. One can simply set the
missing entries to zero, being careful not to
attempt standardization of the relevant blocks in
the array. If a cation is absent from a given
mineral, then the sums of squares and cross
products matrix among the cations will have
unequal diagounal values; the result can be
suppression of that cation on the principal com-
ponents. The same holds true for the mineral
concerned. Nevertheless, we have followed this
procedure with data sets after we removed
blocks of entries with only minor changes in the
projection. Substituting theoretical or ‘typical’
values for missing entries (Saxena 1969) is prob-
ably not good practice. Procedures for estimat-
ing missing values from those present in the data
array do not apply to systematic omissions.

In summary, the three-mode principal compo-
nents model extends the multivariate approach
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Table 5. Loadings of four minerals on principal components
calculated from Spuhler Peak data.

Principal component

1 2 3
Garnet -1.621 0.125 -0.242
Plagioclase .395 -0.678 -0.561
Biotite -.354 -0.706 0.613
Horntlende -(.577 -0.165 -0.500

Table 6. Core matrix in three-mode principal components
model of Spuhler Peak data.

Sample components

1 2

Cation component |

Mineral component 1 0.487 -1.860

Mineral component 2 0.412 1.068

Mineral component 3 -1.254 0.366
Cation component 2

Mineral component 1 -0.286 -0.463

Mineral component 2 -1.469 -0.169

Mineral component 3 -1.166 -0.468

to analysis of pstrologic data by allowing identi-
cal treatment of each mode. Previous application
of principal components analysis has meant that
one could obtzin loadings of the units of one
mode, but the other two modes were represented
in combination as the scores. The present model
comprises analysis of each mode in isolation, but
a core matrix combines the separate sets of
eigenvectors into a single, descriptive equation.
Because of the difficulty in interpretation of the
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core matrix, calculation of the scores matrices
expedites analysis of some data sets, and in fact
yields displays equivalent to those used in previ-
ous studies. The model therefore incorporates
the features of these specific applications, yet
maintains a greater generality.
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