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We previously proposed a family of models that deal with the problem of factor position shift in

sequential data. We conjectured that the added information provided by fitting the shifts would

make the model parameters identifiable, even for two-way data. We now derive methods of

parameter estimation and give the results of experiments with synthetic data. The alternating least

squares (ALS) approach is not fully suitable for estimation, because factor position shifts destroy the

multilinearity of the latent structure. Therefore an alternative ‘quasi-ALS’ approach is developed,

some of its practical and theoretical properties are dealt with and several versions of the quasi-ALS

algorithm are described in detail. These procedures are quite computation-intensive, but analysis of

synthetic data demonstrates that the algorithms can recover shifting latent factor structure and, in the

situations tested, are robust against high error levels. The results of these experiments also provide

strong empirical support for our conjecture that the two-way shifted factor model has unique

solutions in at least some circumstances. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In Part I [1] we described a method of ‘shifted factor analysis’

(SFA) that might be useful in analyzing sequentially orga-

nized data such as chemical spectra, time series or digitized

images. This paper will develop estimation algorithms for the

two-way model and describe results of applying them to

synthetic data. We begin by briefly reviewing the non-stan-

dard formulation and notation needed to state the model.

The bilinear factor analysis model is typically written as a

matrix product, such as

X ¼ AB0 þ E ð1Þ

where X is an I� J matrix of data, A is an I�R factor loading

matrix giving weights of each of the R factors for each of the I

rows of X, B is a J�R factor loading matrix giving weights of

the R factors on the J columns of X, and E is an I� J matrix of

errors or residuals. As pointed out in Part I [1], the shifted

factor generalization of the bilinear model cannot be written

in this full-matrix form. Instead, we must either (a) write it in

representative vector form and apply a ‘shift operator’ or (b)

write it using array notation [2] and represent shifting by

constants added to the subscripts.

Suppose we rewrite the bilinear model in terms of an

arbitrary, representative column xj taken from X. This gives

xj ¼ Abj þ ej ð2Þ

where A is as in (1) and bj is row j of B written as a column

vector. Now consider the case where X contains sequential

data, with each column representing a different time series or

spectrum. The shifted factor representation of these data can

be written for column j as

xj ¼ sj
Að Þbj þ ej ð3Þ

where sj
�ð Þ shifts the columns of A by the amounts con-

tained in vector sj, which is row j in the J�R shift size matrix

S. See Part I [1] for a full description of the shift operator.

Hereafter we use the shorthand form of the shifting operator

for brevity unless ambiguity arises, e.g., j Að Þ instead of

sj
Að Þ.

In array index notation (AIN) [2] the bilinear model (1) can

be written in full-matrix terms as

x
IJ
¼ a

IR
b

JR
þ e

IJ (4)

The shifted factor generalization is

xIJ ¼ a½Iþsjr �R
b

JR
þ eIJ (5)

which differs only by the addition of sjr to the index I, where

sjr is an element from an implied matrix of shift values. (For

comparison with (2) and (3), the ‘representative vector’ ver-

sions would be written in array notation as xIj ¼ aIRbjRþ
eIj and xIj ¼ a½Iþsjr�RbjR þ eIj.)

Methods of parameter estimation for this shifted factor mo-

del can be derived and expressed using either approach (a) or

(b). For simplicity, we will only use the more familiar matrix

approach in the following sections (refer to Reference [3] for

the AIN equivalents of all equations in the following sections).
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2. PARAMETER ESTIMATION FOR SFA:
QUASI-ALS

Unusual difficulties are encountered when one tries to

develop a procedure for estimating the parameters of the

shifted factor model. The alternating least squares (ALS)

approach is not fully suitable, because factor position shifts

destroy the multilinearity of the latent structure. Therefore

we have developed an alternative ‘quasi-ALS’ approach.

Our approach resembles the more conventional ALS

method in that: (a) the parameters for each mode are

estimated separately and are conditional on the parameter

values for the other mode; (b) estimates for each parameter

set are obtained sequentially and cyclically until conver-

gence is reached; and (c) for any mode in which it is

appropriate, a standard ALS regression-like estimation is

used. However, factor position shifts make a (multi)linear

approach inappropriate. Here, two other techniques are

employed: (d) to estimate weights, we employ a regression

using modified arrays from which interfering systematic

variance has been (approximately) ‘partialled out’; and (e)

to estimate shifts, we use a straightforward search for a

maximum fit by testing each of a set of feasible alternatives.

Considered together, we refer to this collection of strategies

as a ‘quasi-ALS’ approach.

2.1. B and S estimation
Unlike ALS, the SFA estimation procedure differs from one

mode to another. First one estimates B and S in an interlock-

ing fashion, deriving the R factor weights and R shift values

at each level of mode B (the shifting mode) before proceeding

to the next level. For, say, level j, conditionally optimal shift

values are determined by trying a number of combinations of

values for sj and, for each set of trial values, obtaining

regression estimates for the corresponding bj factor weights

to find the one with the best fit. Of course, the estimates of

both B and S are conditional on all the other model parameter

values, which are held fixed. One might consider the estima-

tion of B and S as a subiterative optimization within one of

the quasi-ALS steps. bj can be estimated as

b̂bj ¼ j Að Þ
h iþ

xj ð6Þ

where (�)þ represents the Moore–Penrose generalized in-

verse.

It is implied in (6) that the shift vector sj is provided.

Unfortunately, the shift sizes cannot be estimated directly

by regression and so the best sj must be found by some other

optimization method. At this stage of the quasi-ALS estima-

tion we assume integral values of shift. It is thus possible to

find the conditional global optimum by means of an exhaus-

tive search. The first stage in this (initial) algorithm uses (6) to

compute and evaluate trial values of bj for all combinations of

allowed integer shift values, a method which we refer to as

‘Exhaustive Integer Search’ (EIS). For example, when it is

assumed that there are three factors and that the real shift is

no greater than 5 in either direction, there are 11 possible

positions for each factor (11 being the number of integers from

�5 to 5) and hence 113 alternative combinations of integer

shifts to try for column j. Recall that the sign of shift values

represents forward or backward shifting. At the completion of

the trials for column j, one replaces sj with the best combina-

tion of shifts, and bj with the resulting regression estimate

that minimizes the sum of squares of error for column j (i.e.

the b̂bj due to (6)). When this has been done for all columns, the

updated shift and factor weight estimates are then used in

estimating the other mode loadings. The maximum allowed

shift must be determined externally, based on the knowledge

about a given data set and the nature of the sequential factors

of interest. Since the number of combinations to try increases

multiplicatively with the maximum shift allowed, there are

limits to what is feasible.

2.2. A estimation
In the estimation of A it is necessary to undo the factor

shifting in the data so that the alignment of a given factor is

consistent across the columns of X and between X and A.

However, the realignment of columns in the data must be

done independently for each factor so that the ‘unshifting’

(i.e. lining up across columns) applies only to the contribu-

tion of a certain factor to the data. This is because the pattern

of shifts (across J columns) for each factor is allowed to be

independent of the pattern for the other factors. Thus it is

necessary to separate the data into two latent parts before

unshifting a certain factor’s contribution to the data: one part

is due to factor r and the other is due to the remaining factors

and residuals. The factor r part in column xj is estimated by

x̂xjðrÞ ¼ xj � j Að�rÞ
� �

bjð�rÞ ð7Þ

where the parenthesized subscripts indicate which factors

are involved either in the isolated part of the data or in a

parameter set to be used for estimation. For example, the

parenthesized �r indicates that column r is replaced with

zeros so that the contribution of factor r is removed. Once

x̂xjðrÞ is isolated from each data column xj, one can then

reverse-shift x̂xjðrÞ to undo the factor shifting that occurred

in the factor r part. This can be written as an inverse shifting

for all columns in the factor r part at once as

eXXðrÞ ¼ �1
r XðrÞ
� �

ð8Þ

where �1
r �ð Þ represents an inverse shifting operator (i.e.

�1
sr

�ð Þ ¼ -sr
�ð Þ; refer to Part I [1] for the properties of the

shifting operator). It is used here to ‘unshift’ the isolated

factor r part of the data. The shift for each of the J columns in

the isolated factor r part is given by the values in sr, the rth

column of the shift matrix S. The tilde on top of the left hand

XðrÞ indicates that the J columns in XðrÞ are properly unshifted

for factor r. Once the factor isolation and the following

unshifting are done, ar can be estimated by regression as

âar ¼ eXXðrÞ b0
r

� �þ ð9Þ

Note that the isolation of the variance that is due to factor r

is only approximate. The isolation is particularly approxi-

mate at the beginning stage of iterations, since all other

parameter estimates are yet very rough, and improves as

the other parameters are better estimated. The least squares

property of (9) would hold if Equation (9) described a

regression based on an observed X matrix. Since eXXðrÞ is a

modified X adjusted by imperfectly subtracting variance due

to all factors except r, the regression is only approximately
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least squares in terms of residuals from the original X. As a

result, the estimation of A is not true least squares, but in

later iterations comes close to it.

2.3. WLS for the ends of factor profiles
When one shifts forward the location (i.e. increases the

subscript value) of elements in the columns of A or X,

some elements at the beginning of the shifted column

become ‘empty’; there are no elements preceding them that

can be shifted into the newly opened positions. The question

then becomes: how should one fill these cells? One choice is

to fill them with zeros. However, when their previous values

are substantially greater than zero in absolute value, zero

may be an inappropriate estimate. This could produce sub-

stantial error in data fit at the ends and indirectly lead to

distorted values for the intermediate locations as well. To

handle this problem more gracefully, a weighted least

squares (WLS) algorithm has been developed for estimation

of the sequential mode parameters.

Given an I� J data matrix (I being the number of levels in

the sequential mode) and a predetermined maximum inte-

ger shift of smax, the number of levels in the sequential mode

is increased to Iþ 2smax by adding smax levels to both ends

before the actual estimation starts. These locations are re-

ferred to as ‘beyond-window’ levels. These added levels are

then treated as missing data. Of course, A is also augmented

so that it contains the weights for the beyond-window levels

as well as for the original window levels. The estimation of A

then ‘ignores’ those locations by means of a weighted least

squares version of (9) in which these locations are given a

weight of zero in the fixed parameter set.

The WLS procedure for A must estimate one element in ar

at a time, since whether or not a location in any column of

XðrÞ is empty will differ from one row to the next. The

estimates are obtained as

âair ¼ ~xx0iðrÞ b0
r � w0

iðrÞ

� �þ
ð10Þ

where ‘�’ represents the Hadamard (i.e. element-wise) pro-

duct and ~xxiðrÞ is row i in eXXðrÞ, the matrix of isolated and

realigned (or ‘unshifted’) factor r contributions to the data.

wiðrÞ is a J-element weighting vector of 1 or 0 for row i of

factor r. If a cell in ~xxiðrÞ is empty (and hence temporarily filled

with zero) after unshifting, the corresponding value in the

weighting vector becomes 0; otherwise, it is 1. This ensures

that the elements in the fixed parameter set (i.e. br) corre-

sponding to the empty cells are not used in the air estimation.

It is noted that this can happen only at the ‘beyond-window’

levels, i.e. in the first and last smax rows of the (Iþ 2smax)� J

augmented (and isolated) data eXXðrÞ. When all values are zero

in ~xxiðrÞ, the previous air remains, since there is no valid

element at level i in the data for air.

In the mode B estimation, only the original window levels

in the augmented A are used after properly shifting the

columns of A. After all parameters are updated once in this

way, one replaces the ‘missing’ values of the beyond-window

levels in the augmented X with the values predicted by (3),

this time with the augmented A. The imputed values for the

beyond-window levels will provide the least squares prop-

erty for the first and last smax levels when they are included in

the window after unshifting. See Reference [4] for the least

squares property of the imputed values in the ALS estimation.

2.4. Fractional shift estimation
Although it seems natural to shift a sequential factor profile

by an integer number of levels along the sequential mode,

such an integer limitation may not be valid for real data.

Obviously, the measurement unit is somewhat arbitrary; it

depends on the refinement of the measuring tool used, the

smoothness of the sequential factors of interest, conventions,

etc. Consequently, it may be useful to generalize the shift es-

timation method to one that allows for a fractional number of

shifting units. This might become particularly valuable when

sequential factor profiles rise or fall steeply from one level to

the next, such as happens with sharp-peaked and complex

multi-peaked spectra. A method that we currently use to

implement a fractional shift algorithm is discussed below.

Once all parameters have converged in the EIS (Exhaustive

Integer Search) stage, our current quasi-ALS procedure shifts

to a new estimation algorithm which searches fractional shifts

to minimize further the residual sum of squares. This algo-

rithm uses a shift estimation procedure based on a ‘Fractional

Line Search’ (FLS). It involves both a bracketing procedure

and semi-exhaustive trials. Given all converged factor load-

ings and integer shifts from EIS, FLS starts with an initial trial

interval of 0.5. For example, given an integer shift estimate

of 3 for sjr from EIS, FLS tries shifts of 2.5, 3 and 3.5. If either

2.5 or 3.5 results in a smaller residual sum of squares for

level j than does 3, one replaces sjr with it and cuts the interval

in half. FLS then tries 2.25, 2.5 and 2.75 in the next iteration if

2.5 had a better fit, or 3.25, 3.5 and 3.75 if 3.5 did. Otherwise,

both the bracketing intervals of fractional shifts and the shift

estimates remain the same. FLS tries all combinations of the

three evenly spaced fractional values for each factor in

order to avoid any order effect among factors. Thus there

will be always 3R combinations of fractional shifts for level j in

FLS when R is the number of factors to extract. See Refere-

nces [5,6] for further details on the bracketing procedure.

2.5. Modified procedures to accelerate
estimation
In addition to the basic estimation procedures just described,

several techniques to speed up the procedure have been

developed. These include two-stage EIS, application of ex-

haustive search only every n iterations, identification of

conditions allowing early termination of the shift search,

rational initialization of shifts, and, in certain cases, a method

of reducing the number of modes in the data. These are

described in the Appendix.

3. DATA ANALYSIS

We now study the properties of the shifted factor model (3),

and the quasi-ALS estimation procedure described above, by

using them to analyze error-free and fallible synthetic data.

This is to be followed by an application to real data (the same

data as in Reference [7]), but since this involves a four-way

data set and model, it will be covered in Part III [8].

The initial analyses are performed on error-free synthetic

data to empirically confirm the conjectured uniqueness
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properties of SFA models. Next we explore the performance

of SFA with fallible data. Finally we go beyond the domain

covered by current mathematical analysis: instead of using

two-way data sets in which shifted factor profiles are

weighted by mode B factor weights as defined in (3), we

test the shifting per se by fitting model (3) to a two-way shifted

data set in which the mode B factor weights are all unity. This

‘pure shift’ case, with no variation in mode B weights, is of

particular interest with regard to the contribution of shifts to

the uniqueness properties of the two-way SFA model.

3.1. Weighted factor case

3.1.1. Previous results
The first computational tests of uniqueness were carried out

by Hong [5]. His methods and results have not been pub-

lished elsewhere, but they contribute significantly to the

evidence for uniqueness, so we briefly summarize them here.

Because the initial algorithm and computer were relatively

slow, these tests were restricted to the two-factor case, and

only four random starting points were used in the analyses

of each data set. Mode A, the sequential ‘shifted’ mode,

contained 100 or 60 levels and mode B, the ‘shifting’ mode,

contained 20 levels. Three different sets of mode A factor

profiles, shown in Figure 1, were created to simulate electro-

physiological (evoked response) data. The shape of the

‘handmade’ factors is relatively arbitrary; the other two

were created from sections of sine functions. The mode B

factor weights were randomly sampled from a uniform

distribution between 0 and 1. The 20� 2 matrix S of shift

sizes contained integers randomly and uniformly sampled

from the range from �3 to 3.

For all three error-free data sets, Hong found that the true

loadings were perfectly recovered by all perfect-fitting solu-

tions (four of four starts for the ‘handmade’ data, three for

the ‘hump’ and one for the ‘sine’ data). The other solutions

were considered local optima. There was never a perfect-

fitting solution that was different from the true solution used

to generate the data. When the tests were repeated with 5%,

10% and 25% error added to the data sets, the recovered

solutions were consistent with true loadings that had been

corrupted by the noise in the data.

Hong subsequently performed 10 additional analyses of

these data sets (somewhat truncated) using a faster algo-

rithm with an unconstrained nonlinear optimization routine,

FMINU (in the MATLAB Optimization Toolbox, ver. 1.0,

which uses a quasi-Newton method). Again all perfect-

fitting solutions matched the true loadings (10 for the ‘hand-

made’ data, six for the ‘hump’ and four for the ‘sine’ data).

The other solutions were local optima or cases of very slow

convergence. As will be noted in the following subsections, it

seems that curves that change very gradually presented a

more difficult problem to the algorithm, probably because

there was little change in the fit when only modest shifts were

applied. The reader is referred to Reference [5] for a more

complete description and discussion.

3.1.2. New results
Synthetic data sets of two sizes were constructed. The ‘narrow’

size was 60� 15 (i.e. 60 sequential levels in mode A and 15

Figure 1. Sequential factor profiles used in the initial experiment: horizontal axis gives sequence
position (i.e. subscript in factormatrixA); verticalaxisshowsfactorloadingsize.Forclarity, onepro-
fileof the‘hump’and‘sine’curvesismarkedwith‘x’and theotherwith‘*’.
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levels of mode B) and the ‘wide’ size was 60� 75. The loadings

used to generate these data were obtained as follows. Three

vectors of 70 elements were generated to provide the latent

sequential mode factor loading profiles. The profiles are

unimodal and slowly changing (this reduces the effects of

small shift changes during iteration and thus makes the data

more ‘challenging’ for the algorithm). The shape of the three

curves was defined by using a normal density function and a

chi-square density function. In order to ensure that the result-

ing mixture of curves was not ‘selective’ at some levels (i.e.

contained levels in which all but one of the curves have near

zero values), a different positive constant was added to each of

the curves. Figure 2 illustrates the resulting sequential pro-

files*. Since shifts of up to � 5 levels were allowed, we used

70-element latent profiles when generating the 60-element

observed data profiles under different conditions of shifting.

This resulted in 60 levels of complete data for the sequential

mode (mode A). Two sets of the mode B factor loadings

(15� 3 and 75� 3) were sampled randomly from a uniform

distribution of real numbers bounded by 0 and 1 exclusively.

Two shift parameter matrices of the same sizes were also

randomly sampled from a uniform distribution of integers,

but in this case bounded by �5 and 5 inclusively. Then the

three sequential profiles, the two sets of mode B weights, and

shifts were combined to generate error-free 60� 15 and

60� 75 shifted data sets with latent structure specified by

the two-way SFA model (3).

To produce fallible data, normally distributed random

errors were added to the error-free shifted data; this resulted

in some negative observed values. (While we realize that in

many situations noise would be truncated because the data

are non-negative, this is not always the case. Using error

which was not bounded by zero was considered a conserva-

tive choice, since it should make it harder to recover the true

profiles.) The error proportion in the fallible data is, on

average, 14.88% of the total mean square and 42.82% of the

total variance. This large difference reflects the fact that the

true parts have, on average, a total mean of 1.74 standard

units, while the expected mean in the error part is zero. The

fitting of the large mean values in the true part does not

contribute substantially to the estimation of model para-

meter profiles; hence the proportion of error variance better

reflects the ‘difficulty’ of the problem—the information loss

or signal contamination due to error. By this reasoning, the

fallible data sets can be considered difficult cases to fit, since

almost half of the total variance is due to error.

Model (3) was fit to each of the resulting four data sets

using the quasi-ALS procedure. Ten different random starts

were applied in order to increase the probability of obtaining

the global optimal solution. Convergence was evaluated

using the changes in loading parameters rather than in fit,

in order to ensure that the parameter estimates themselves

had become stabilized. The optimization of each of EIS1, EIS2

and FLS was stopped either when all parameters had changed

by less than 0.001% from one iteration to the next, or when

this criterion was not met in 1000 iterations. Factor loadings

were constrained to be non-negative by using the fast non-

negativity-constrained least squares (FNNLS) algorithm due

to Bro and de Jong [9]. This constraint is appropriate because

all true parameters are sampled from a population of positive

values as described above, and realistic because typical

chemical spectral data are non-negative*.

The top part of Table I summarizes SFA recovery correla-

tions for the shifted data generated by using the profiles given

Figure 2. Sequential factor profiles.The middle curve is the normal density function of 70 evenly
spaced standard deviates from �6 to 6. For the skewed curves the chi-square density function of
70 evenly spaced chi-square values from 0.5 to 35 with df¼ 7 is first obtained and then shifted left
by 7 levelswith zeros filling the empty levels.The resultingprofilesare standardized such that each
hasunit mean square.Then a constant of 0.2 or 0.25 is added to these standardized curves to pro-
duce, respectively, the symmetrical (middle) and positively skewed (left) curves. The negatively
skewedcurve (right) is thesameasthepositivelyskewedcurveexcept that theorderof levelsisre-
versedand theaddedconstant is 0.3.

*We also performed a small experiment without the non-negativity
constraint (using the 60� 75 two-way data and the three-way shifted
data to be discussed in Part III [8]) to check uniqueness (see
following paragraphs) and to see if there is a meaningful difference
in fitting time between the constrained and unconstrained SFA. The
time saving that usually results from dropping non-negativity was
not observed here. This is because the SFA algorithm cannot take
advantage of simultaneous estimation of all levels which normally
would become possible. Also, since we used Bro and de Jong’s fast
non-negativity-constrained algorithm, the time cost of applying the
constraint was considerably reduced. More importantly, keeping the
constraint improved the algorithm’s ability to avoid problematic
paths and local optima, thereby reducing the total number of
iterations required to obtain reasonable recovery.

*Initially we tried another set of sequential profiles that are smoother
than those illustrated here and which will be used for the three-way
shifted data in Part III [8]. However, the resulting two-way error-free
shift data were too difficult for the current two-way quasi-ALS
algorithm to perfectly recover the parameters.
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in Figure 2. The results reported are from the final step in the

quasi-ALS estimation, FLS. All recovery correlations are

averaged over the three factors within each solution for

brevity. For the error-free shifted data with 75 levels in

mode B the quasi-ALS procedure correctly recovers all model

parameters except for a few shift values. Recovery (within

1000 iterations) is not as good when there are only 15 levels. In

no case, however, was perfect fit obtained with other than the

values in A and B used to synthesize the data. This supports

the conjecture that model (3) has a unique solution.* It also

shows that the quasi-ALS procedure provides a way to re-

cover the unique valid solution so long as there are sufficient

sources of independent shifts (i.e. enough mode B levels).

Even without the non-negativity constraint, the sequential

factors were perfectly recovered from the wide two-way

data except for about 5 levels at each end (presumably owing

to algorithm limitations). This means that two-way shifted

factors are uniquely identifiable in a broader range (i.e. the

range of real numbers instead of only positive numbers),

although it may be impossible to fully recover the latent

factors near end levels of the sequential mode.

Recovery is always worse for the shift values than it is for

the factor weights. When both the estimated and true shifts

are weighted by the corresponding mode B weights, though,

the recovery significantly improves; the recovery correlation

for S�B (Hadamard product of S and B) becomes almost

perfect. The marked difference between S and S � B is due to

divergence of only one or two shift estimates for each factor,

but the effect is large because these estimates deviate sub-

stantially from the true shifts and hence substantially reduce

the recovery correlation for S. However, inspection reveals

that these highly incorrect shift estimates are at levels for

which the mode B weight for the factor concerned is very

small. Thus the occurrence of these highly deviant values is

understandable: a factor with a very low weight at some

level of mode B makes very little contribution to the data at

that level, and so highly deviant shifts do not substantially

reduce the overall fit. When both the missed shifts and their

true values are downweighted by the corresponding mode B

weights, the recovery correlation improves considerably.

Quasi-ALS recovers A and B from the 75-level fallible

shifted data better than might be expected, given that more

than 40% of the total variance is due to error. This suggests

that the SFA modeling is robust against random error.

Plotted in Figure 3 are the best recovered sequential profiles

from the 75-level cases. The right plot shows the good

recovery by SFA of the sequential factors, even with a

substantial amount of error.

For comparison, the shifted data sets were also fit by the

principal component model. However, the standard two-

way PCA solution places axes in positions which are math-

ematically convenient but usually do not reflect the position

of data-generating factors. Because of this, the associated

recovery correlations would all be low and uninformative.

To make the correlations more meaningful, the components

were ‘rotated’ (i.e. linearly transformed by regression) to

maximum agreement with the true parameters. Two rota-

tions were done, one maximizing the agreement between the

estimated A and true A (with a compensatory rotation of B),

and another one maximizing the agreement between the

estimated B and true B (with compensatory rotation of A).

The PCA model fit and recovery correlations for each data

set are based on one solution, because the two-way PCA

provides a non-iterative closed form solution, given a rota-

tion criterion.

The PCA recovery correlations are presented in the middle

part of Table I. As expected, the recovery of A is better when

PCA components are linearly transformed to maximise fit of

A to the true A than when transformed to maximise fit of B to

the true B and vice versa for the recovery of B. With more

levels in mode B the recovery of A improves while the

recovery of B worsens. The best recovery of B by PCA (after

rotation to maximal agreement with the true) occurs with the

15-level error-free data. Here the fit is better than the

corresponding SFA recovery of B. This confirms that 15

levels are not enough for the quasi-ALS procedure to recover

model parameters well in the current study.* However, the

sufficiency of the number of levels of the shifting mode is

conditional on other things, such as steepness of sequential

profiles, imbedded shift magnitude, independence of the

shifting pattern, etc., and so these results must be interpreted

as given those conditions chosen here.

Table I. Recovery correlations and model fits (R2) for weighted
two-wayshifteddata

15 mode B levels 75 mode B levels

Error-free Falliblea Error-free Fallibleb

Parameter recovery (r)

SFA
A 0.9423 0.8396 1.0000 0.9598
B 0.9775 0.9343 1.0000 0.9285
S 0.8123 0.6393 0.9846 0.7271
S � B 0.9337 0.7594 1.0000 0.8511

PCAc

Mode A agreement maximized:
A 0.7434 0.6249 0.8504 0.8130
B 0.9874 0.9274 0.8838 0.8438

Mode B agreement maximized:
A 0.7790 0.6699 0.8868 0.8380
B 0.9566 0.8426 0.8379 0.8046

Fit to data (R2)

SFA 0.9990 0.7132 1.0000 0.6706
PCA 0.9662 0.6463 0.8610 0.5447

aError proportion is 14.77% of total mean square and 44.50% of total
variance; mean of the true part is 1.7754 standard units.
bError proportion is 14.99% of total mean square and 41.13% of total
variance; mean of the true part is 1.7019 standard units.
cComponents in one mode are ‘rotated’ (linearly transformed) to
maximize agreement with the true structure while a compensatory
transformation is applied to those in the other mode.

*Technically, the solution is ‘essentially unique’, i.e. unique up to
permutation and rescaling of factors; this does not normally affect
interpretation, and so this distinction is overlooked for simplicity in
this paper.

*In order to reduce the possibility that the imperfect solution from the
error-free 15-level data is caused by a premature stop of iteration, we
applied extremely stringent stopping criteria: a maximum iteration
of 10 000 in each stage and a maximum percentage change in para-
meter estimates of 10�10. While providing some improvement, these
criteria still did not result in a perfect solution from the 15-level data.
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The bottom part of Table I shows the overall fit to the data

obtained by each procedure. The fit values for the shifted

factor model are better than the PCA values; this is to be

expected, since the SFA model incorporates and thus ‘cor-

rects for’ the effects of the shifts. In the error-free case the

SFA fit is essentially perfect; in the fallible case it approx-

imates the proportion of true variance in the data, except that

it is inflated somewhat by the fitting of error. While the PCA

model seems to do very well in the 15-level error-free case,

this is because of substantial fitting of error. The lower fit

obtained with the 75-level data sets provides a more realistic

(though still inflated) indication of fit, where there is less

leeway to fit error. Note that both fallible and error-free

shifted data are fallible in PCA, since both the random error

and the independent shifting are not accountable for by the

standard bilinear model.

The FLS algorithm was developed for shifted data in

which the measurement unit of the sequential mode is not

small enough for EIS to precisely adjust for a position offset.

However, even when the true shift values are integers (as

they are here), FLS almost always improves the parameter

estimates as well as model fit unless EIS has already pro-

vided a perfect solution. Inspection of the solutions reveals

that FLS shifts the incorrect position of latent profiles one

unit toward the true positions.

3.2. Pure shift case
Given that the incorporation of shift information into the

factor model allows a unique two-way solution to be ob-

tained (when the shifts vary independently), the question

now becomes: what is the strength of the information pro-

vided by the variation in the data resulting from the factor

shifts—to what degree might it determine the factors recov-

ered by the two-way SFA model, independently of informa-

tion provided by the data variation resulting from factor size

changes across levels of mode B? To explore this, we created

a synthetic shifted data set using the same true A and S

parameters as for the 75-level error-free data, but for which

all true B weights are unity. Thus the mode B variation in the

resulting 60� 75 error-free ‘pure shift’ data is purely due to

the independent shifting. Put another way, the data matrix

would have rank one if not for the effects of factor shifts.

(Because of the shifts, it has full rank.)

In one experiment a restricted SFA model was fit to the

data; this model ‘knew’ that all factor variation was due to

shifting. That is, when this restricted version of the SFA

model (3) was fit the mode B factor weights were constrained

to be unity. Other than this, the fitting procedure was the

same a non-negativity constraint on the mode A weights, and

the stopping criterion of maximum parameter change less

than 0.001% or a maximum of 1000 iterations in each of EIS1,

EIS2 and FLS. The result was that A and S were perfectly

recovered (to four decimals). Since the question here was

theoretical, no fallible data experiments were conducted.

In the second and more stringent test we removed the

equality constraints on the mode B weights; thus we fit the

same model that we did in the weighted factor case. Pro-

vided the two-stage EIS and the same fitting procedure, no

solution was perfect out of 10 random starts; on average,

model fit (R2) was 0.9947 and parameter recovery was 0.6317

for the sequential factors and 0.7987 for shifts.

We speculated that this difficulty in attaining perfect fit

could be due to the nature of the algorithm. For one thing,

the two-stage EIS is more likely to get trapped in a local

optimum. Consequently, we fit the same model given the

same fitting procedure except that the two-stage EIS was

replaced with the single-stage EIS, in which all combinations

of integer shifts are tested in each iteration. Two solutions

out of the 10 random starts were nearly perfect; on average,

R2 was 0.999998 and recovery was 0.9995 for the sequential

factors and perfect for shifts. The imperfect recovery of the

sequential factors in these solutions seemed to be a result of

insufficient iteration (1000 iterations in each of EIS and FLS).

Since shifts were already perfectly recovered and almost

certainly would not change in subsequent iterations given

the closeness of the recovery of the other parameters, we

sped up the subsequent iterations by skipping this (by far the

most time consuming) part of the estimation procedure.

We adopted a more stringent stopping criterion of 10 000

iterations or maximum parameter change less than 10�10%

and resumed the tests. This time we were able to obtain

perfect recovery (to four decimals). These results confirm

that independent shifting by itself can (at least sometimes)

Figure 3. Recoveredsequentialfactorsfromerror-free (left) andfallible (right) 75-levelshifteddata.
Loadingsarenormalizedso thateach factorhasunitmeansquare.
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provide sufficient information to determine the model

parameters.

4. DISCUSSION

The first and most fundamental finding of this paper is that

factor shifting can be ‘undone’. Position shifting of sequen-

tial factors per se does not irretrievably destroy or degrade

otherwise strongly imbedded (bi)linearity. The second is that

the two-way SFA model, which incorporates added struc-

ture to account for and describe the shifting is able to extract

additional information from the data, and so can fully

identify its parameter values, whereas the non-shifted bi-

linear equivalent is under-identified. The third point is that

the quasi-ALS procedures presented here provide one way

to fit the SFA model and are robust against high levels of

error, probably because of the added information due to the

shifting variation.

Estimation of SFA parameters has a few novel properties

that do not occur with the standard bilinear (PCA) model.

The shift parameters (collected in S), which determine the

position of the sequential factors, have an unusual kind of

linkage with the corresponding mode B weights. The mag-

nitude of each mode B weight moderates the effect of the

corresponding shift on the data. Thus it is important to

interpret an estimated shift in conjunction with the corre-

sponding mode B weight, as we did when using the

‘weighted’ shifts (S � B) in assessing the recovery of shifts.

The shape of the sequential factors is another aspect to take

into account. The overall impact of a given factor’s shifts on

the data also depends on the steepness and irregularity of its

profile in the sequential factors; the steeper or more irregular

a sequential factor, the stronger impact its shift has on the

data [5].

It is the independent shifting that makes two-way SFA an

‘intrinsic axis’ [10] or rotationally unique model. In certain

cases, however, independent shape of sequential factors can

also become critical for a unique identification of shifted

factors by the quasi-ALS procedure. For example, when two

sequential factors are similar in shape and close to one

another in position, they may get easily confused with one

another in the SFA fitting process; this happens if they

become aligned or cross over one another in position. (Of

course, this requires that the distance between the two

sequential events is less than the maximum shift prescribed

in the fitting.)

For various reasons, sequential factors might change

shape, as well as position, across levels of mode B. Since

SFA requires sequential factors to be invariant in shape, it

will fail if the shapes change substantially. Sequential factors

might sometimes change shape because of measurement

artifacts, but at other times because of a systematic and

meaningful process. As noted in Part I [1], when the source

of the shape change is not arbitrary, it would be useful to

incorporate it into the model by introducing a few more

parameters. For example, in the simplest form a parameter

might control the width of events in the sequential mode.

Such a generalized model might be, however, less stable than

the SFA model, since the shift and shape parameters might

be confounded with each other as well as with the normal

factor weights. Another kind of provision for the shape

change problem is the use of external knowledge about the

data, as in the transformation of discrete PDS calibration into

a CPDS model by means of known temperature variation

[11]. Our understanding of the shape change problem is too

limited, so it is premature for us to provide concrete discus-

sion at this time.

We discovered a few interesting algorithmic properties of

the quasi-ALS procedure. One might naturally think that

FLS would be advantageous primarily when the true shifts

have fractional values or, equivalently, when the measure-

ment unit of the sequential mode is not refined enough to

accurately estimate shifts and, consequently, factor weights

as well. However, if the data are fallible, FLS has been found

to consistently improve the parameter estimates (as well as

the model fit) even when the true shifts are integers. This is

probably because the fractional shifting allowed in FLS

always results in better-optimized least squares estimates

than does the integer shifting in EIS. Consequently, FLS

tends to provide a better chance to avoid local minima,

which may be more likely to occur in the quasi-ALS than

in the standard ALS procedure. FLS is particularly essential

when the two-stage EIS (see the Appendix) is used, which

tries much fewer shift combinations in order to save time,

and hence the solution is more likely to converge at a local

minimum than it is in the single-stage EIS.

The imperfect variance isolation procedure in the sequen-

tial mode estimation makes the quasi-ALS procedure not true

least squares. This undesirable property tends to make the

resulting solution less reliable, more prone to local optima

and slower to converge than the least squares solution, say,

for Parafac1 or Parafac2. However, the worsening fit, if any,

usually occurs in the middle phase of iteration, but hardly at

all as the solution gets close to the global optimum. In most

cases a more stringent criterion for convergence and a few

more starting positions may be enough to ensure that the best

quasi-ALS solution is as reliable as the standard ALS solution.
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APPENDIX. ACCELERATION OF THE
QUASI-ALS ALGORITHM

The exhaustive trials in EIS for the estimation of S and B are a

bottleneck in the computing speed of the quasi-ALS algo-

rithm as the data become large (e.g. the two-way 75-level

shifted data used for the pure shift case and the chromato-

graphic data analyzed in Part III [8]). For multiway cases it is

usual that more than 95% of the total computation time is

spent in inverting an unfolded version of the fixed parameter

part in the mode B estimation (e.g. Khatri–Rao product [12]

of A and C in a three-way case). For example, for the

60� 15� 10 synthetic data set analyzed in Part III [8] (with

three factors and 11 allowed shift positions), one iteration

takes about 2 min in EIS and about 3 s in FLS. If 300 iterations
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are needed for convergence, the EIS and FLS runs for this

data set need respectively 10 h and 15 min per random

start. With two speed-up provisions, the two-stage EIS and

periodic shift search every 10th iteration, time of the 10 h EIS

run was reduced to about 23 min.

In general, the increase in the computation time is approxi-

mately exponential to the number of factors and multiplica-

tive to the maximum allowed shift and the number of levels

in all modes. The number of levels in the data and the

maximum shift are controllable to some degree with prudent

consideration, but not the number of factors, in the sense that

it is independent of a particular measurement situation or an

analytic method for a given type of data. It is also noted that

the number of iterations needed for convergence is a struc-

tural question. That is, it depends on many conditions in the

latent level, such as error level, sequential profiles’ shape,

independence in shifting pattern (as well as in factor

weights), etc., which largely vary from a certain type of

data to another. In the following subsections a few provi-

sions have been introduced so that EIS becomes practical

even for large data sets.

A.1. Two stage EIS
EIS has been split into two successive stages: a less refined

first stage and a further refining second stage. Stage 1 (EIS1)

tries all combinations of only even-numbered shifts. Then

stage 2 (EIS2) further refines the final shift estimates from

EIS1 by allowing odd-numbered shifts.

For example, when three factors are allowed to be shifted

at maximum by an absolute value of 5, EIS1 tries 53 combi-

nations, using �4, �2, 0, 2 and 4 as shift values. Once all

factor loadings have converged with the even-numbered

shifts, EIS2 tries 33 combinations, using three successive

integers around the final shift estimate from EIS1. For

example, when the final estimate from EIS1 for sjr is 2, EIS2

tries 1, 2 and 3.

Although the time gain by the two-stage EIS estimation

becomes substantial when there are more than two factors, it

tends to hit local minima slightly more often than does the

single-stage EIS. This is because EIS2 and FLS cannot com-

pensate for a shift estimate in EIS1 that misses its true shift

value by more than 2 in absolute value. Let us suppose EIS1

estimates sjr to be 2 when its true value is 5. The best

approximation is then 3 in EIS2, since it allows only 1, 2

and 3 during all iterations. FLS can further approximate

toward the true value by 1 at most, since the bracketing

procedure described above cannot change a shift by more

than 1 in either direction. Hence the final approximation is 4.

It has been consistently observed with synthetic shifted data

that FLS tends to compensate for such poor estimation of

shifts by EIS1 even when the true shifts are integers.

A.2. Periodic application of shift search
Another provision for time saving is to apply the exhaustive

trials only every few iterations, say 5 or 10, in both EIS1 and

EIS2. Since the exhaustive trials are computationally very

expensive, it suffices to apply the actual EIS procedure every

10th iteration. During all intermediate iterations, one updates

only factor loadings, given a set of fixed shifts from the last

actual EIS trials. This periodic application of the actual

exhaustive trials has been confirmed to be useful with two-,

three- and four-way error-free shifted data. It is strongly

recommended that one applies the actual EIS procedure every

iteration at least during the first 10 in both EIS1 and EIS2, in

order to avoid any bad model search path arising from poor

initial shift values. It is also noted that SFA becomes equiva-

lent to Parafac1 until the EIS procedure has actually been

applied, when all initial shift values are set to be zero.

A.3. Shift search termination
Our current quasi-ALS algorithm successively applies three

stages: EIS1, EIS2 and then FLS. In our experience the shift

value estimates do not change after a number of iterations in

each of the three stages, usually the first third of the total

iterations. Thus the shift combinations other than the best fitt-

ing one do not actually contribute to parameter improvement.

That is, ð2smax þ 1ÞR � 1 trials in the EIS stages and 3R � 1

trials in FLS are in vain. One way to avoid these presumably

unnecessary trials is simply to stop the search once the shift

value estimates have not changed for, say, 50 successive

iterations. Since the shift change in FLS is a fractional value

and hence can be as small as a computation routine allows,

one may set a non-zero criterion value in FLS, for example, to

stop when the sum of squared shift changes is less than 10�5.

It is possible that sometimes a few shift estimates change

after 50 (or even 100) non-changing iterations. If so, the

converged solution resulting from applying the stopping

criterion can be considered as a type of local minimum.

This termination strategy can result in three or four times as

many solutions from different random starts as one might

get without it. Thus we suggest trying a few more starting

positions when one adopts a stopping criterion, in order to

maximize the likelihood of finding the global minimum.

A.4. Rational shift starts
Sometimes one can get a reasonable approximation of shifts

by using some data analytic techniques (e.g. cross-correla-

tion maximization [13], time warping [14], etc.). Such shift

estimates can be used as rational start values in order to

reduce the computation time for the exhaustive trials in EIS.

This involves a two-stage SFA, first optimizing the factor

weights with shift values constrained at the rational start

values, and then optimizing both factor weights and shifts,

starting from the final estimates for factor weights given

from the first stage. In this way the number of iterations

needed in the second stage will be significantly smaller than

in a single-stage SFA, so that one can save the computation

time to be spent for the exhaustive shift trials in the early

stage of iterations in the normal EIS.

In addition to time saving, the rational start for shift values

might provide a better chance to avoid getting a locally

optimal final solution. An example of the SFA with such

shift value constraint is shown in Part III [8] as an assessment

for local optimality of the SFA solution for four-way chro-

matographic data.

A.5. Mode reduction
In cases where one analyzes a four (or higher)-way shifted

data array, it may be possible to save time in the SFA by

Shifted factor analysis—Part II 387

Copyright # 2003 John Wiley & Sons, Ltd. J. Chemometrics 2003; 17: 379–388



reducing the number of data modes. This mode reduction

procedure requires that multilinearity is well imbedded and

reliably estimable in those modes that are not affected by the

independent shifting (e.g. the emission and excitation modes

in the four-way chromatographic data analyzed in Part III

[8]). Suppose we have an I� J�K� L four-way data set in

which sequential factors (mode A) are shifted independently

across levels of mode B. Multilinearity holds almost perfectly

for modes C and D. Then one can obtain a good estimate of

the mode C and D loadings by fitting Parafac1 to an

IJ�K� L unfolded three-way version of the data set in

which the original modes A and B are confounded in the

first mode. Up to the validity of the mode C and D loading

estimates, one can reconstruct an idealized three-way shifted

data set where the factor variation of either mode C or D is

removed. The time gain by the mode reduction procedure is

dramatic (at least proportional to the number of levels in the

removed mode), but one must be careful in interpreting a

solution from such reconstructed data, since all estimates are

conditional on the validity of the factor loading estimates in

the removed mode(s).
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