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Abstract

Four different approaches to solving the trilinear three-way factor analysis problem are compared, and their performance
Ž .with ‘difficult’ i.e., ill-conditioned data is tested. These approaches are represented by four different computer programs:

Ž . Ž .one using a simple alternating least squares ALS algorithm with only minimal extrapolation HL-PARAFAC , one in which
Ž .the ALS is supplemented by a sophisticated extrapolation to speed convergence TPALS , one using a non-linear curve fit-

Ž . Ž .ting method PMF3 , and one using a non-iterative closed-form approximation DTDMR . The options provided by these
Ž .programs e.g., with regard to missing values, weighted least squares, non-negativity and other constraints are compared.

Criteria for choosing synthesized test data and a method for synthesizing exponential test data are described. A numerical
Ž .index is introduced to characterize the ill-conditioning of n-way arrays n)2 . Two well characterized synthetic data sets

Ž .serve as ‘difficult’ ill-conditioned test data. Intercomparisons among HL-PARAFAC, TPALS, DTDMR and PMF3 were
implemented with these test data. Consequently, their limitations and strengths are determined. In addition, these trilinear
analysis approaches are applied to a difficult set of ill-conditioned real data: a set of fluorescence spectroscopy measure-
ments that characterize the steady-state fluorescence of an amino acid in aqueous solution. When converged, the results pro-

Ž .duced by the three least-squares techniques but not DTDMR agree. However, there are large differences in convergence
speed when these difficult problems are solved: TPALS is faster than PARAFAC by a factor of ten, and PMF3 is faster than
TPALS, again by a factor of ten. The program DTDMR is the fastest, but it only solves half of the problems. q 1998 Else-
vier Science B.V. All rights reserved.
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1. Introduction

During the past 10 years, there has been an in-
creasing use of three-way factor analysis in chemo-
metrics. This growth has provided many useful
methods for chemistry applications including second
order multivariate calibration, receptor modeling for
air quality management, and fluorescence spec-
troscopy characterizing macromolecular or mem-
brane systems. There are many groups who are de-
veloping new or finding improvements to existing
methods.

Several different algorithms have been imple-
mented to fit the PARAFAC factor analysis model,
and it seems likely that they might behave in differ-

Žent ways when applied to ‘difficult’ problems e.g.,
problems where high collinearity of factors, andror
large difference in the relative sizes of factors, andror
near proportionality of factor changes across one or

.more modes cause the dataset to be ill-conditioned .
It is proposed that a standardized intercomparison
method, and well-characterized test data sets, be pro-
vided to serve as a tool for such study. This paper will

Ždiscuss a method for synthesizing sets of ill-condi-
.tioned data for intercomparison purposes, and will

use two such datasets to test the four PARAFAC al-
gorithms. In addition, the algorithms were tested by
applying them to a quite ill-conditioned set of real
data obtained via fluorescence spectroscopy.

2. The PARAFAC rrrrr CANDECOMP trilinear
model

We investigate the trilinear factor analysis model
generally referred to as either the Parallel Factor

Ž .Analysis PARAFAC model or the Canonical De-
Ž . w xcomposition CANDECOMP model 1,2 . For

brevity, it will be referred to as the PARAFAC model.
w xIn this trilinear model 1–5 , elements x of ai jk

three-way array X are expressed as sums of products
of elements from ‘factor loading’ matrices A, B, and
C, according to the equation

p

x s a b c qe 1Ž .Ýi jk i h jh k h i jk
hs1

This model is a straightforward generalization of
the two-dimensional principal component analysis or
‘factor analysis’ model. There are, of course, other
generalizations but they are not discussed in this con-
text. The unknown matrices A, B, and C are to be
determined so that a ‘best fit’ of the array X is
achieved. The original definition of best fit required
that the unweighted sum-of squares

m n o
2Q E s e 2Ž . Ž .Ý Ý Ý i jk

is1 js1 ks1

be minimized. In order to utilize information about
expected sizes of data errors, the weighted least
squares expression

m n o
2Q E s w e 3Ž . Ž .Ý Ý Ý i jk i jk

is1 js1 ks1

Ž .has sometimes been preferred to Eq. 2 . One com-
mon weighting scheme is to choose the weights as

1
w s 4Ž .i jk 2si jk

where the s are the expected standard deviationsi jk

for the observed values x , based either on theoryi jk

about the error process or on observed variability
across replications of the data array.

The two-way model may sometimes become iden-
tifiable in the presence of sufficient constraints such
as those imposed by non-negativity or orthogonality,

Žbut in general it is under-identified except when there
.is only one factor , and so is said to possess ‘rota-

tional freedom.’ In contrast, a sufficient condition for
Žthe three-way model to be fully identified up to triv-

ial differences in factor order and relative scaling
.across modes is that the factor loading matrices, A,

Žw xB, and C, obey the Kruskal conditions 5 , see The-
w x.orem 4a; 6 . These conditions can be described in

terms of the k-rank of each matrix. The k-rank of an
Ž .R-column matrix A is k a if the columns are lin-

Ž .early independent in every set of k a columns from
Ž .A, and if either k a sR or there is at least one set

Ž Ž . .of k a q1 columns of A that includes linearly de-
w xpendent columns 7 . Then if I is the k-rank of A,0

J is the k-rank of B, and K is the k-rank of C and0 0
Žif I qJ qK )s2 Rq2 where R is the number0 0 0

.of columns in each of A, B, and C , then there are
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no free rotations. The decomposition is uniquely de-
termined except for the trivial scale and factor order
differences. A useful corollary is that the solution is
unique if any two of the factor loading matrices are
of full rank and no two columns of the third matrix

w xare proportional to each other 8–10 . However, this
criterion is more restrictive than the Kruskal condi-
tions.

The uniqueness of the results obtained by three-
way factorization makes it a very useful technique. In
two-way analysis with rotational indeterminancy, it
can be difficult to identify the valid solution. When-
ever there are repeated two-way data sets so that each
one could be analyzed by the customary two-way
techniques, one should recognize the possibility of
using the three-way array that may be assembled by
stacking the two-way matrices. If this array truly fol-

Ž .lows the three-way model given in Eq. 1 and is
likely to fulfill the conditions of factor loading inde-

Ž .pendence needed for uniqueness discussed above ,
then it may be better to analyze the whole set as a
three-way array instead of performing repeated two-
way analyses.

3. Solution methods

3.1. Least squares approach

Several programs are readily available for solving
Ž .the PARAFAC model as a least squares LS prob-

lem. Here those properties of the programs that relate
to the basic model will be reviewed. Later enhance-
ments to this basic model will be presented.

The original programs were named ‘PARAFAC’
Žand ‘CANDECOMP’ as part of the MDS routine

w x.INDSCAL 1 . The estimation approach of the two
programs was very similar, so the PARAFAC pro-
gram will be used to represent both. In this article it
will be referred to as ‘HL-PARAFAC’ to distinguish
this particular program from the general PARAFAC

w xmodel. HL-PARAFAC was written by Harshman 2
w xand Harshman and Lundy 3 . The program has been

developed further in recent years. There now exist
both a FORTRAN 77 version and a MATLAB ver-

Ž .sion of the code; the latter newer version has some
added functionality, such as optional weighted least
squares andror fitting of multiple additive constants

Ž wfor fitting one kind of ‘extended PARAFAC’ see
w xx.Ref. 4 . Like many programs for fitting multilinear

models, HL-PARAFAC’s least-squares calculation is
Ž .based on the alternating least squares ALS algo-

rithm. Each substep of ALS fixes two of the factor
Ž .matrices A, B, and C , then uses linear regression to

find the third factor matrix. The algorithm cycles
among the three factor matrices, updating each in
turn. We define an ALS step as one substep for each
factor matrix. HL-PARAFAC extrapolates by a fixed

Žfraction of each ALS step to speed convergence see
w x .Ref. 2 , p. 33 .

w x w xLeurgans and Ross 8 , Leurgans et al. 9 , Ross
w x w xand Leurgans 10 , and Lee et al. 11 have devel-

oped a non-negative, weighted ALS algorithm
Ž‘TPALS’ for fitting the PARAFAC model available

.as FORTRAN code that calls IMSL subroutines . The
algorithm contains a more sophisticated and power-
ful acceleration feature. After individual increments
to all the factor matrices have been computed in two
ordinary ALS steps, the program performs an exten-
sion based on the relative magnitude of the two ALS
steps and the angle between them. When the two
successive ALS steps are nearly identical, which is
often the case, the projection can be up to 200 times
the last step.

w xPaatero 12,13 has recently described a non-nega-
tive weighted LS algorithm ‘PMF3’ for fitting the
PARAFAC model. In contrast to ALS, in this algo-
rithm there is no alternation between the modes: all
of the modes are acted upon at the same time. PMF3
is based on the well-known Gauss–Newton curve fit-
ting technique with Levenberg–Marquardt control
against exceedingly long steps. An additional im-
provement of convergence rate is achieved by a
Newton–Raphson-like correction of steps. The pro-
cess is iterative. One step only produces an approxi-
mate solution of the problem and multiple steps are
needed to obtain convergence.

3.2. EigenÕector decomposition

The original ‘direct trilinear decomposition’
Ž . w xDTD approach was developed by Wilson et al. 14

w xand Sanchez and Kowalski 15 . The technique was
w xdeveloped further by Zeng and Hopke 16 and was

Žcalled DTDMR direct trilinear decomposition fol-
.lowed by a matrix reconstruction . A more detailed
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description and discussion and the algorithms can be
w xfound in Wilson et al. 14 . For the special case in

which the three-way data block contains only two
Ž .slices in mode 3 Ks2 , a and b can be calcu-n n

lated using the generalized rank annihilation method
w x Ž15 . In general, there are more than two slices K)
.2 . In order to use the generalized rank annihilation

method, two linear combinations of all slices need to
be found. The process for developing these combina-

w xtions is provided in the literature 9,14–16 .
The DTD approach differs from the least squares

methods in that its properties are only known for
‘exact data’. If the array rank of the three-way array
is r, then the r factor DTD decomposition of the ar-
ray may be an exact representation of the array.
However, an exact representation is usually not
sought for experimental data that includes error. The
experimental array is of some high rank and a low-

Ž .rank representation describing the ‘reliable part’ is
needed. The approximating properties of DTD are not
known.

3.3. Enhancements to PARAFAC estimation

3.3.1. Multiple starting points
It is well known that the trilinear factor analysis

problem may have multiple locally optimal solutions.
One should note that this is a property of the model
and not of the algorithms used for solving it. It has

w xbeen suggested by Paatero 13 that all local solu-
tions should be inspected and considered. It may not
be safe to assume that the solution with best fit would
necessarily be the desired solution. Thus, an ap-
proach is needed for finding those local solutions.
HL-PARAFAC and PMF3 are usually run from mul-
tiple pseudo-random starting points. It is recom-
mended that 5 to 10 starts are made whenever one
wishes to explore the presence of local minima. The
local minima can provide confirmation that solutions
are all close to the global minimum and thus, it is
likely that the system has converged to the best
available fit. The results of the analysis not only must
fit the data, but must be physically interpretable in
terms of the system being analyzed. The apparent
global minimum may not necessarily be interpretable
and thus, it is often useful to carefully examine the
solutions obtained from the other starting points.

Because of its non-iterative closed-form approach,
there are no ‘starting points’ in DTD, although one
could investigate fits to different subsets of the data.
It is not known how DTD will behave in the pres-
ence of multiple local solutions. The program TPALS
obtains some efficiency boost by using a decomposi-
tion as the starting point for the LS iterations. It ob-
tains multiple starting points by performing multiple
decompositions, and then it abandons all but the start
which gives the best fit after a few steps.

3.3.2. Data point weighting and treatment of missing
Õalues

It is possible to utilize information about the ex-
pected standard deviations of data points in a
weighted least squares fit. In a two-way model, the

Ž .usual centered, standardized Principal Components
solution is implicitly based on assumptions about the
standard deviations of data points that are often unre-

Ž w x.alistic see Paatero and Tapper 17 . In the three-way
case, the eigenanalysis has been abandoned in any
case as the tool for achieving a LS fit. Thus there is
no temptation to continue this questionable practice.
It is relatively easy to configure any LS program so
that it performs a weighted least squares fit accord-

Ž .ing to Eq. 3 . It may be much harder to persuade the
end user that there would be a benefit in using the
weighted fit. The need to recompute the ALS fit ma-
trix separately for each slice of the array causes some
extra work when performing a weighted fit by the
ALS. This reweighting may increase the workload by
50 to 200% in comparison to the unweighted case.
The programs PMF3, TPALS, and HL-PARAFAC
Ž .MATLAB can perform a weighted fit if desired as

Ž . Ž .in Eqs. 3 and 4 . For the DTD approach, the con-
cept of weighting does not seem applicable, as there
is no LS fit to begin with.

HL-PARAFAC handles missing values by itera-
tive re-estimation of cells with missing data. When
performing a weighted LS fit with any of the LS pro-
grams the handling of missing values is quite
straightforward: basically one simply gives zero
weight for the missing value; then it does not matter
what is used as the data value. There may be some
advantage in specifying a non-zero small weight,
however, and using a ‘typical’ value as the data. This
weighting may prevent the appearance of unrealistic
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large values for such factor elements which are badly
defined or undefined because of the presence of many
missing values.

3.3.3. Constraints on the solutions: non-negatiÕity
and orthogonality

In different sciences, there may be different con-
straints that are appropriately applied to the factors.
In the social sciences, orthogonality or zero-correla-

Žtion of the loadings for one of the modes e.g., per-
.son weights is often preferred, either for simplicity

Ž w xor to suppress ‘degenerate solutions’ see Ref. 4 , pp.
.271–279 . Orthogonality constraints are usually used

Ž .with mean-centered data and the weaker zero-cor-
relation constraints for those cases where factors in a
given mode are expected to have all positive load-
ings. Orthogonality andror zero correlation con-
straints can be applied to one or more modes as an
option in HL-PARAFAC code. HL-PARAFAC also
includes optional routines for preprocessing one’s
data by applying various combinations of mean ad-

Ž .justments centering rows, columns, andror ‘tubes’
Žand scale adjustments size-standardization of the

.slices in a given mode or modes , including the abil-
ity to apply these adjustments iteratively until the
preprocessed data converge on values which simulta-
neously fulfill the requested requirements.

Non-negativity is often required in the physical
sciences in order that the factors be directly inter-
pretable as concentrations, densities, spectra, masses,
etc. Non-negativity is an option in PMF3, TPALS and

Ž .HL-PARAFAC MATLAB . ALS algorithms use the
w xalgorithm, NNLS, by Lawson and Hanson 18 or

newer variants. A penalty function approach is used
in PMF3 to enforce non-negativity. A new approach

w xto imposing non-negativity constraints 19 has re-
cently been proposed, but it has not been imple-
mented in any of these programs.

3.4. Other enhancements

As one might expect, most programs have fea-
tures unique to that program, which could not be used
when performing analyses for the comparisons. For
example, PMF3 can compute the matrix of covari-
ances among all parameters, and can perform itera-
tive reweighting of data points to provide a more ro-

w xbust fit 20 . Such unique features will not be pre-
sented in this article.

4. Test cases used

Previous experience had suggested that most fac-
tor analysis algorithms are likely to behave compara-
bly with ‘easy’ cases, but will show distinct strengths
and weaknesses with difficult datasets. ‘Difficult’

Ž .means datasets where a the contributions of indi-
vidual factors overlap so much that the factors are al-

Ž .most collinear, andror b factor sizes differ by two
Ž .or more orders of magnitude, andror c some sub-

set of factors will show almost proportional changes
in factor size across the levels of a mode, so that the
unique axis orientation is only weakly determined.

Ž . Ž .Conditions a and c really are the same in a strict
mathematical sense. However, it is useful to recog-
nize that the problem of collinearity can arise either
with factors that have quite similar physical proper-

Žties in one or two property-modes e.g., similar exci-
.tation andror emission spectra , or instead are tested

with samples where there is inadequate indepen-
Ž .dence of two or more factors’ variation in concen-

tration across the ‘third’ mode. This latter circum-
stance can arise much more easily than the first, and
can cause problems when the scientists doing the
analysis do not realize the difficulty.

Such ‘difficult’ datasets are not infrequent in
chemometrics, where high precision of measure-
ments makes it possible to extract information of ill-
conditioned cases. Ill-conditioned factor matrices also
occur when an algorithm has to traverse a so-called
‘swamp’, i.e., a region where positive and negative

Žcontributions partially cancel each other see Ref.
w x.22 . In order to study performance differences in the
algorithms, the test cases of the present investigation
were constructed or chosen to be more or less ill-
conditioned. The ability to handle so called ‘degener-

w xate solutions’ 3 was not studied as such. However,
fast convergence with ill-conditioned factors should
also be helpful in such cases.

The ultimate test of factor analytic software is an-
alyzing real data. However, real data contain sur-
prises and one does not always know what is the
‘correct result.’ Also, real data from one field is usu-
ally not instructive to researchers in other fields.
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Thus, relying on real-world examples forces one to
republish in different fields. For these reasons, it is
advisable to also test the techniques with well-docu-
mented simulated examples. The aim of the follow-
ing sections is to define a suite of test arrays so that
other researchers could also use them. By using the
same test blocks, the results of different groups are
more easily comparable.

4.1. Desirable properties of synthetic test data sets

4.1.1. Reasonable size
Test blocks should only be large enough so that

they contain the necessary information for support-
ing the tests. Large matrices make computations slow,
and more importantly, it is not possible to show the
results in publications if they comprise too many val-
ues. Of course, larger matrices may be needed when
one is testing how well various algorithms ‘scale
up’-how well they perform when the number of pa-
rameters to be estimated becomes large.

4.1.2. Visual quality
Test matrices should look nice when plotted, so

that the human eye may spot changes in the factors
easily. This is good for publishing test results, but it
is especially important for such matrices which are
used for algorithm development. Exponential and
Gaussian shapes have proved to make good test fac-
tors. But of course, the programs must not be al-
lowed to take advantage of these special shapes.

4.1.3. Range of Values
There should be both large and small values in the

factors. It is useful to have some cases that have only
non-negative values, in that way one may test both
general-purpose programs and programs incorporat-
ing non-negativity constraints.

4.1.4. Adjustability
It has to be easy to produce data blocks of differ-

ent sizes, consisting of factor matrices of varying
condition numbers. In this way it is possible to test
what happens when the data approach the non-iden-
tifiable case.

4.1.5. Transportability
In order that different laboratories could hope to

get identical results when comparing their tech-
niques, the data blocks should not get changed in

transport, i.e., exactly the same digits should be input
by different groups. Also, the rounding when the val-
ues are originally written should not change the sta-
tistical properties of the data. This criterion was not
obeyed in this study when originally writing the dif-
ficult four-factor test case, below, with the format
G12.5E1. Most of the values were thus written with
four decimals which is not quite enough, considering
the standard deviation of 0.001. A format of G12.6E1
should have been used. However, once this block has
been circulated with the original format, it was prob-
ably better to keep it the same throughout the studies
and not create confusion by offering versions with
different formats. An alternative to transporting the
blocks is for different laboratories to create identical
pseudorandom test blocks programmatically. How-
ever, this is only possible if they all use exactly the
same algorithms and the same portable pseudoran-
dom number generator with the same seed.

4.1.6. Appropriate Internal Structure
Data sets should be generated or selected so that

the following properties are all appropriate and well
Ž .characterized: a the amount of collinearity between

Ž . Ž .factors, b the difference in sizes of factors, c the
Ž .strength or weakness of characteristics determining

Ž .rotational uniqueness, d the amount of random er-
Ž . Ž .ror e nature of the error distribution and f the

variations, if any, in error standard deviations across
different data points. ‘Appropriate’ could mean use-
ful either as representative of real data or as extreme
and thus ‘difficult’ test cases for the algorithms un-
der study. The current article focuses mainly on
datasets that are difficult test cases with respect to

Ž .ill-conditioning to be explained below , but which
are not difficult with respect to the level of random
error.

4.2. Exponential test cases

Two test datasets were generated in which the fac-
tor loadings for each factor in each mode fell along
exponential curves. The data were generated with the

nŽ .help of the exponential test function EX r . Com-
nŽ .puting xsEX r generates a column vector x of

dimension n with the elements

ny i
x scPexp r 5Ž .i ž /ny1
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where the constant c may be chosen so that a desired
normalization is achieved. For the test cases PP1 and
PP@, c was chosen so that the sum of elements of x
equals unity. The ratio of the first and last elements

Ž .of x equals exp r . The notation is extended so that
nŽ .EX r, s, . . . , t is defined to mean the matrix con-

nŽ . nŽ .sisting of the column vectors EX r , EX s , . . . ,
nŽ . 10Ž .EX t . For example, the array, EX 0,2,5 , would

consist of three columns. All of the elements of the
first column are the same and equal 1. Column 2 has
elements with values of 1.0000, 0.8007, 0.6412,
0.5134, 0.4111, 0.3292, 0.2636, 0.2111, 0.1690,
0.1353. The elements of column 3 are 1.0000, 0.5738,
0.3292, 0.1889, 0.1084, 0.0622, 0.0357, 0.0205,
0.0117, and 0.0067. A three-factor data block X of
dimensions 10,8,6 may then be denoted symbolically
as

Xs100)EX10 0,2,5 )EX8 0,2,5 )EX6 0,2,5 ,Ž . Ž . Ž .
where the asterisk denotes the outer matrix product

Ž .according to Eq. 1 .
Two test cases ‘PP1’ and ‘PP2’ were constructed

as follows:

PP1s100)EX10 0,2,5 )EX8 0,2,5 )EX 5 0,2,5Ž . Ž . Ž .
q0.025RN 0,1 ,Ž .

PP2s100) EX 10 0,2,4,y4 ) EX 8 0,2,4,y4Ž . Ž .
=) EX 5 y4,4,2,0 q0.001 RN 0,1 ,Ž . Ž .

Ž .where RN 0,1 denotes a pseudorandom array of
normally distributed values with a mean value of 0
and a standard deviation of 1. The normalized under-
lying vectors for PP1 are shown in Fig. 1 and the
corresponding vectors for PP2 are presented in Fig.
2.

The relative accuracy of the data in the three-fac-
tor example PP1 is typically 8%, with 14 values bet-
ter than 1%. This is a typical level of accuracy for
physical sciences. On the other hand, the data in the
four-factor example PP2 have a typical relative accu-
racy of 0.5% while the best value has 0.01%. These
values are more accurate than are typically available.
Measurements of such accuracy are possible but cer-
tainly are not common. These two datasets were de-
liberately constructed to be ‘difficult’ test cases. By
generating factor loadings that fall along closely re-
lated exponential curves, a high degree of collinear-
ity in the factor loadings was assured resulting in a

Fig. 1. Plot of the vectors used to generate the error free test data
set PP1.

high overlap in the contributed variance of some fac-
tors.

4.3. Real data

For our third and perhaps most challenging test
case, an array of fluorescence spectrographic mea-
surements was employed which was known from
prior analysis to be both ill-conditioned and have
factors that were only weakly identified due to the
near proportionality of their loading profiles in at least

w xone mode 11 .
The fluorescence of any dilute specimen is sepa-

rately linear in functions of each of the independent
variables excitation wavelength, emission wave-
length, and any treatment that alter concentration of

w xfluorescence quantum yield 11 . This trilinear char-
acter of the data permits the mathematical decompo-
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Fig. 2. Plot of the vectors used to generate the error free test data
set PP2.

sition of spectra from complex specimens without
using any other information about the properties.

Hence, the fluorescence x could be separated byi jk

three-way factor analysis as follows:
N

w xx s a l b l c f 6Ž . Ž .Ž .Ž .Ý ki jk n i n j n
ns1

Ž .where a l is the relative absorbance of compo-n i
Ž .nent n at excitation wavelength l , b l is the rel-i n j

ative fluorescence intensity of component n at emis-
Žw x .sion wavelength l , and c f is the relative fluo-j n k

rescence yield of component n at proton acceptor
w xconcentration f .k

w xIn a previous study 11 , the steady-state fluores-
Ž .cence of N-acetyl-L-tyrosinamide NAYA was mea-

sured in aqueous solutions containing six different
Ž .concentrations at 0.005–2.5 M of a proton acceptor

acetate. The excitation and emission wavelengths
varied from 260 to 290 nm and from 300 to 400 nm,

respectively. A 19=20=6 three-way data block was
thereby generated. Its characterization has also been

w xstudied theoretically 10 . These studies have shown
that the emission maximum varies between that of

Ž .ground-state tyrosine 305 nm and that of the tyrosi-
Ž .nate 345 nm , depending on the proton acceptor

concentration. This data set comes with individual
standard deviation values computed for all measured
points; the data are of good precision, in which the
standard deviations are typically a few percent of the
value. There are a few missing values in one corner
of the array; they are caused by the almost-overlap-
ping wavelength ranges for excitation and emission.

This data block was used as a test dataset and
Ž .re analyzed by all four programs.

4.4. Collinearity Diagnostics

To quantitatively measure and report the ill-condi-
tioning of these datasets we will use two approaches.
The first will be to give the singular values of the
three individual factor loading matrices, and the sec-
ond will be to use a numeric index of array ill-con-
ditioning. For two-way matrices, it is common to de-
scribe how ill-conditioned a matrix is by means of a
‘matrix condition number’—a number that gets larger
as the matrix gets closer to singularity. This index is
commonly defined as the ratio of the matrix’s largest
to smallest singular value:

svd lŽ .
matrix condition numbers 7Ž .

svd rŽ .
To describe the degree of ill-conditioning in our

test data arrays, an analogous condition number based
on sums of squares attributable to the largest vs. the
smallest systematic factor is defined as follows:

(FSS 1Ž .
array condition numbers

FSS R yFSS Ry1Ž . Ž .
8Ž .

Ž .where FSS R is the Fitted Sum of Squares for the
R-dimensional solution. To understand this formula-
tion, consider that the R th singular value when
squared, represents the increment in the fitted sum of
squares obtained by adding dimension R. The Rth

Ž .FSSQ Fitted Sum of Squares represents the cumu-
lative fitted sum of squares obtained by using dimen-
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Table 1
Measures of array ill-conditioning for the test data sets

Ž .Proportion of fitted mean square Array condition number, i.e.,
1r2w Ž . Ž Ž . Ž ..xcontributed by including the least FSS 1 r FSS R yFSS Ry1

important systematic factor

PP1 0.000175 74.5
PP2 0.000258 54.8

Ž .Fluorescence data 4d 0.0000151 256.8
Ž .Fluorescence data 3d 0.0000711 118.4

sion 1 through R. To get the increment in fitted sum
of squares resulting from dimension R, the differ-

Ž . Ž .ence between FSSQ R and FSSQ Ry1 is calcu-
lated. Since the standard definition of matrix condi-
tion number uses singular values rather than squared
singular values, we take the square roots of FSSQ to
obtain an equivalent measure of ill-conditioning.

In an error free synthetic dataset, R is the rank of
Ž Ž .the array i.e., the minimum number of trilinear

.outer products needed to exactly fit the array ; for
synthetic data with error added, and for real data, R
is taken to be the rank of the systematic or fitted part
of the array. As with the conventional index of the
ill-conditioning of the matrix, this index of ill-condi-
tioning reflects both the amount of collinearity of
factors and inequality of magnitude of the factors, and
does so in terms of the relationships among the pat-
terns of factor contribution in the array as a whole,
rather than in terms of relationships among loadings
in individual modes. Such an index does not appear
to have been used previously, but it appears to be a
natural generalization from two-way methods. This
array condition number does not, however, reflect any
‘difficulty’ in the problems that arises in the three
way case from weakness of the characteristics deter-
mining rotational uniqueness. The array condition
numbers for the two synthetic datasets and for the real

fluorescence data are given in Table 1. It is apparent
that the contributions of the different ranks to the FSS
are remarkably different, demonstrating that these test
problems are indeed ill-conditioned. The ill-condi-
tioning of the real fluorescence data is particularly
severe.

The inspection of singular values confirms that
these are ‘difficult’ factorization problems. If the last
singular value is small in two of the three three-fac-
tor matrices, then these matrices are almost singular
and the problem will thus be difficult. Similarly, oc-
currence of three small singular values indicates near
non-identifiability in four-factor problems. Where

Ž .two or more of columns are nearly proportional in
any mode, then the axis orientation for that pair of
columns is only weakly determined, and it may be
difficult for the algorithm to establish the correct fac-

Žtor axes for the subspace spanned by those two or
.more factors. Table 2 shows the singular values for

all three problems. It can be seen that the ratio of
largest and smallest singular values for PP1 exceed 10
for both modes A and B and exceeds 25 in mode C.
For PP2, the condition index for mode A is 37, for
mode B is 38, and for mode C is 38. For the fluores-
cence data, the condition index for mode A is small,
but for mode B, the value is 51 and for mode C, it is

Ž .extremely large )33,000 . The singularity of the

Table 2
The singular values of factor matrices A, B, and C for the PP1, PP2, and fluorescence data sets

Singular value PP1 PP2 Fluorescence
number A B C A B C A B C

1 4.53 5.07 2.55 4.77 5.34 2.19 6.06 7.11 3.09
2 1.83 2.04 0.55 2.89 3.22 1.03 4.46 3.94 0.21
3 0.35 0.36 0.099 0.95 1.05 0.37 4.42 0.92 0.011
4 – – – 0.13 0.14 0.058 1.96 0.14 9.2Ey5
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C-mode factor matrix is not alarming. From the prior
w xstudy of these data 11 , it is clear that no two of the

columns of matrix C are proportional in at least the
three-factor solution. The reason of the singularity has
not been investigated; it may well be of ‘chemical’
origin. Inequalities in factor sizes can also cause ill-
conditioning of the array, but which loading matrices
reveal this inequality depends on the scaling conven-
tions. Two of the modes have been standardized to
have unit mean squares in each column; the third
mode then reflects the relative size of the different
factors, as well as any collinearity. This standardiza-
tion contributed to the large condition index of the C
mode of the fluorescence data. Note that since the
scale of all three modes is incorporated into the size

Ž .of the ranky1 three-way arrays of factor contribu-
tions to fitted array itself, this array conditioning in-
dex will be invariant across different scaling conven-
tions for the individual loading matrices.

5. Test results

5.1. Problems in performance comparison

It would be possible to pick one test case and ana-
lyze it with the different programs on the same com-
puter. Although such timings would give precise nu-
merical values, they may not be representative. The
interactions between the program, the data, the com-
piler, and the operating system are complex and fur-
ther complicate any attempts at precise comparisons.
In addition, the performance of any program for a
small data set may be different from the performance
for large sets of data, and this difference may be much
larger with some programs than with others.

Further problems with any attempt at precise
comparisons include the following.

Ž . Ž1 Omitting the non-negativity constraint HL-
.PARAFAC, DTDMR ‘improves’ the fit in those

cases where noise tends to generate small negative
values in some of the factors, but the positivity con-
straints can provide an important improvement in the
strength of the uniqueness for a given dataset, and
hence can greatly aid in the rate of convergence to-
ward the unique solution. Should two programs be
compared in terms of their unconstrained or con-

Žstrained performance a particularly difficult compar-

ison issue when one program allows positivity con-
.straints and another does not ?

Ž .2 The presence of missing values in the acetate
data caused two slices of the data array to be omitted

Ž .from the analysis with HL-PARAFAC FORTRAN
and with DTDMR. This put these two programs at a
disadvantage when analyzing the real data, because
they could not use information from the incomplete
levels that was included for other programs and which
made the problem easier by reducing factor
collinearity and near-proportionality.

Ž .3 It may be problematic to compare the rate of
convergence in weighted vs. unweighted fitting, since
changes in weighting patterns can, in effect, change
the degree of ill-conditioning of a dataset. The im-
portance of weighting depends strongly on the data
Ž .how the lowrhigh weight values are distributed but
it is difficult to illustrate this with a few test results.

Fig. 3. Plot of the PMF3 resolution of the test data set PP1. Fac-
tors 1, 2, and 3 are drawn with a triangle, square, and circle.
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Fig. 4. Plot of the DTDMR resolution of the test data set PP1.
Factors 1, 2, and 3 are drawn with a triangle, square, and circle.

Perhaps the most important difficulty in compari-
son of performance of different algorithms is that the
numerical values used for convergence criteria have
a strong influence both on the time taken and on the
goodness-of-fit achieved. A fair comparison should
report on the balance of these two properties, andror
systematically compare iteration counts at equivalent

Ž .levels of fit and vice versa .
Our main objectives in this article are more

Ž .straightforward. They are: 1 determine how well the
algorithms work in the presence of ill-conditioning,
and to assess the extent to which the results obtained

Žby different algorithms are equivalent i.e., do the al-
gorithms solve all, or only some. of these ‘difficult’
test cases, and if only some, do all the algorithms fail

. Ž .on the same test cases and 2 because speed of the
algorithms varied greatly, we can also give rough or-
der-of-magnitude comparisons of the number of iter-
ations that the programs required to solve these diffi-
cult cases.

5.2. Results for the synthetic data sets

All of the least-squares algorithms managed to
solve these test problems from at least some starting
positions, when they were pushed to full conÕer-
gence, but this sometimes required many hundreds or
even thousands of iterations, and could only be ac-
complished for some programs by resetting the con-
vergence criteria to be much more strict than the de-
fault values provided in the program. At conver-
gence, all the least squares solutions were identical,
as would be expected. The closed-form algorithm
DTDMR successfully recovered the factors for PP2,
and for the fluorescence data when four factors were
extracted, but did not give a reasonable three-factor
approximation, and did not recover all of the factors
built into PP1.

Figs. 3 and 4 present the three-factor resolution of
the data set PP1. Fig. 3 gives the PMF3 solution

Fig. 5. Plot of the resolution of the test data set PP2 by either of
the programs PMF3 or TPALS.
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which represents the very similar solutions obtained
with PMF3, HL-PARAFAC, and TPALS. Fig. 4
shows the DTDMR solution. It is clear that the direct

Ž .decomposition solution DTDMR is different from
Ž .that obtained by the other approaches Fig. 4 . Ap-

parently, DTDMR has failed in this case; the MSE
Ž .mean squared error value for the three-factor fit by
DTDMR is larger than the MSE-value obtained by
DTDMR with only two factors.

The four-factor test case PP2 was solved by all
four techniques. Initial results showed that PMF3 and

Ž .TPALS solutions were identical see Fig. 5 but the
HL-PARAFAC solution was not quite as good. It was
necessary to tighten the convergence criteria to pre-
vent premature convergence and over 2000 iterations
were needed for even approximate convergence. The

Ž .result Fig. 6 was still not fully converged, and only
becomes identical to Fig. 5 after setting the conver-
gence criterion even more tightly and running addi-
tional iterations. This demonstrates the importance of

Fig. 6. Plot of the HL-PARAFAC resolution of the test data set
PP2.

Fig. 7. Plot of the DTDMR resolution of the test data set PP2.

Ž .full convergence. The solution for DTDMR Fig. 7
was approximately correct, but not as close to the true
loadings as the least squares solutions. The differ-
ences are most observable in the C mode. In a practi-
cal problem where the solution was not known a pri-
ori, one would probably accept all four results. The

Ždifficulty of the problem which may result from
weakly determined uniqueness in addition to array

.ill-conditioning caused the differences in running
times to be large. Typically, the timings were spaced
with a factor of 10.

5.3. Results for the fluorescence data

w xIt was known from earlier work 11 that this data
contained three components. It was then initially ana-
lyzed with three factors. TPALS and PMF3 produced
results essentially identical to those reported previ-

w x Ž .ously 11 shown in Fig. 8 . The main component has
an excitation l at 302 nm and an emission l atmax max
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Fig. 8. Three factor solution for fluorescence data of dimensions
20=19=6 from NAYA in acetate obtained by either program
PMF3 or TPALS. Factors corresponding to the normal NAYA,
NAYA acetate, and an impurity are plotted with a triangle, circle
and square, respectively.

274 nm. The second component is observed with an
excitation l at 320 nm and an emission l at 275max max

nm. These two components are assigned as the nor-
mally solvated side chain and side chain hydrogen-
bonded to the added proton acceptor. The weak third
component has a broad excitation spectrum peaking
near 290 nm and a broad emission maximum peak-
ing near 400 nm; it increases with increasing concen-
tration of acetate. These characteristics of the third
component suggest that it is impurity, primarily with
the concentration of acetate.

The program DTDMR needed a different set-up
for this problem because it does not have missing-data
capability. Thus, because of the presence of some
missing values at the two longest excitation wave-
lengths, all data for these two excitation wavelengths

had to be omitted. It is worth noting that reduction
in the data may have placed DTDMR at a slight
disadvantage, since two of the factors are more simi-
larrcollinear in the reduced dataset. Due to an over-
sight, this handicap was also imposed on HL-
PARAFAC. Although HL-PARAFAC can handle
missing values, this option was overlooked and con-
sequently the reduced dataset used for DTDMR was
also used to test HL-PARAFAC. In addition, a non-
negativity constraint was also omitted and constant
weighting was applied to all points.

Fig. 9 gives the three-factor solution obtained with
DTDMR. Note that the third component of the three
factor resolution is clearly different from that of
PMF3 and TPALS. DTDMR has missed the low-in-

Fig. 9. The three factor DTDMR solution to the fluorescence data
of dimensions 20=17=6 from NAYA in acetate. Factors corre-
sponding approximately to the normal NAYA, NAYA–acetate
complex, are plotted with a triangle and a circle; the third factor
which is not interpretable, is plotted with a hexagon, respectively.
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tensity impurity component. Since DTDMR is not it-
erative, there is no question of a ‘bad starting point’.

Fig. 10 gives the three-factor solution originally
found by HL-PARAFAC. The loadings oscillate from
point-to-point in the modes A and B. From this re-
sult, one would be tempted to say that this program
has also failed to recover the solution. However, this
is not, in fact, the case. One run by PMF3 on the
complete data set had resulted in a strange-looking

Žsolution which was diagnosed as a local optimum its
.MSE value was three times the optimal MSE . The

result by HL-PARAFAC resembled this local opti-
mum. However, upon further investigation it was
found that unweighted PMF also always finds the os-
cillatory solution when applied to the reduced data
set. Thus, this is not a case of finding a local mini-

Fig. 10. The three factor HL-PARAFAC solution to fluorescence
data of dimensions 20=17=6 from NAYA in acetate. Factors
corresponding to the normal NAYA, NAYA–acetate complex, and
an oscillatory noise in the data are plotted with an up-pointing tri-
angle, circle and down-pointing triangle, respectively.

Fig. 11. Resolution of 20=19=6 dimensioned fluorescence data
of NAYA in acetate into four components by either program PMF3
or TPALS. The normal NAYA, NAYA–acetate complex, impu-
rity, and oscillatory noise have been plotted with up-pointing tri-
angle, circle, square, and down-pointing triangle, respectively.

mum, but rather reflects the change in the problem
when two slices are removed from the data set. It ap-
pears that there is no local unweighted 20=17=6
solution corresponding to the weighted full-array so-
lution.

These results suggested that perhaps there would
be a fourth factor in this data set. With four factors
in the data but only three being extracted, different

Žoptimum solutions can be found from some starting
.positions in which factors 1, 2, and 4 are recovered,

but factor 3 is not when slightly different data sets
Žwere employed. Four-factor runs without the non-

.negativity constraints produced the results shown in
Figs. 11 and 12. The four-factor results obtained with
PMF3 and TPALS were again identical; they are
shown in Fig. 11. The programs HL-PARAFAC and
DTDMR also succeeded, producing almost identical
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Fig. 12. Resolution of fluorescence of NAYA in acetate into four
components by the program HL-PARAFAC when using the par-
tial array of dimensions 20= 17= 6. The normal NAYA,
NAYA–acetate complex, impurity, and oscillatory noise have been
plotted with up-pointing triangle, circle, square, and down-point-
ing triangle, respectively.

results. The HL-PARAFAC results are shown in Fig.
12. The small variations of the HL-PARAFAC re-
sults from the PMF3rTPALS solution is again at-
tributable to omitting two slices from the data array.

In all these solutions, the fourth factor shows an
oscillating behavior in the A and B modes. In practi-
cal work such a result could be easily dismissed as
‘numerical instability.’ However, in these data, this
result is ‘real’. Once it had been found by the pro-
grams, it could also be spotted visually in the data
array. In the affected regions, there was a checker-
board pattern in which the values in the ‘white’ cells
were larger than the values in the ‘black’ cells. The
differences were a few percent of the affected data
values. This result is a nice demonstration of the

power of three-way factor analysis. It may reveal un-
expected features from a data set without preconcep-
tions or operator decisions. The reason behind factor
four’s oscillatory behavior is not known. Since the

Žoscillation is periodic in data points not in wave-
.length , it suggests that the reason might be the com-

putations performed during data preprocessing.
Our initial runs with HL-PARAFAC did not find

the best-fitting three-factor solution because we hap-
pened to use the reduced data set. This was not ini-
tially diagnosed until further study was made to de-
termined if this was a local minima problem. It was
found that the problem was really the loss of the in-
formation in the portion of the spectra containing
missing values. Thus, the ultimate solution was the
same as those obtained with the other least-squares
approaches. However, the three-factor DTDMR solu-
tion differed from the three-factor LS solutions in a
more fundamental fashion: its third factor did not re-
semble either the impurity or the oscillatory compo-
nent.

6. Discussion

The foremost result of this study is that the three
programs based on the least squares approach seem
to agree well. However, this agreement was only ob-
tained by adjusting the convergence criteria so that a
sufficient number of iterations was guaranteed with
all programs. An unwary user might easily obtain
distorted results if not paying attention to the conver-
gence. One may be certain that the minimum has been
reached with the desired precision if one runs a few
representative test cases with a very strict conver-
gence criterion, so that the total iteration count is
several times larger that the value which was first
obtained. If these added iterations produce virtually
no change of the solution, then the convergence may
be assumed.

Multiple solutions may lead to surprises and to
false conclusions. Thus, one lesson from this study is
that it is essential to routinely use multiple starting
points. In the tests in this study, the ‘correct’ solution
also was the global minimum. However, this should
not be assumed. It seems possible that the ‘correct’
solution need not be the one with the lowest mini-
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Žmum. If error values for the data points and result-
.ing weights are correct, then the lowest minimum

would be expected to be the ‘correct’ one. However,
Žif these error estimates are not correct or the data are

something different than they should be, for exam-
.ple, include some systematically biased values , then

problems may arise. Such situations are not uncom-
mon. As an example, assume that a non-robust anal-
ysis is performed and there is an outlier or a few out-

Ž .liers without proper error values . Then there may be
Ž .two competing solutions: 1 one with a bad fit for the

outliers, and one factor representing a weak but true
Ž . Ž .physical component, or 2 good fit of the outlier s ,

using up one factor, and thus no factor available for
representing the weak true component. Either alter-

Ž . Ž .native 1 or 2 may have the lower Q value. It is
expected that one could construct an example, but that
is really part of a further study.

The performance of the DTDMR program was
different from the others. Although DTDMR was
clearly the fastest algorithm, it did not solve all the
test problems. Also, this program does not have the
analysis options that the least-squares based pro-
grams have. For example, it is impossible to include
individual weighting of data points or constraints on
the solutions to be non-negative. Most seriously, one
does not know what are the mathematical properties
of the DTD solution for a model which contains noise
or distortions from the ideal error-free model.

One important aspect of these programs is speed
of execution. As described earlier, we are not in-
clined to present precise quantitative speed compar-
isons because they could easily be misleading. Dur-
ing this work it was confirmed that all three LS-based
programs are equally fast when solving ‘easy’ cases
where no collinearity is present, all factors are of
similar weight or importance and uniqueness is

Žstrongly determined all columns of factor loadings
.are far from proportionality . Typically, 20 or 30

steps were needed in such cases. Regarding our diffi-
cult test cases, which take much longer to solve with
any of the programs, one may roughly summarize the
differences among the LS programs as follows: HL-
PARAFAC is the slowest in terms of the number of
iterations needed. The TPALS program is faster by
perhaps one order-of-magnitude. Finally, PMF3 is the
fastest of the three and again there can be a margin
of up to a factor of 10 or even more. The differences

in computing time are similar but slightly smaller.
Although each of the more sophisticated steps in
PMF3 take longer to compute than the simpler ALS
steps, it appears that the increased efficiency by far
outweighs the increased workload per step, at least
with moderate sized data arrays such as used here
Žproblems with less than 300 unknown values to be

.determined . On a 486 PC computer, the running
times for the test problems were typically as follows:
PMF3—tens of seconds, TPALS—minutes, and

Ž .HL-PARAFAC F77 —tens of minutes.
The question then arises as to why PMF3 is so

much faster than HL-PARAFAC in some tasks? It
appears there are two main reasons and they may
have different importance in different applications.
The reasons are that PMF changes all variables si-
multaneously, and PMF sometimes avoids algorith-
mic ‘swamps’ because of its regularization features.

w xRecently, Paatero 13 discussed the question of
changing all variables simultaneously as compared
with changing discrete groups of variables one at a
time. From the theory of optimization algorithms, it
is well known that not changing all variables simul-
taneously may lead to slow algorithms whenever the

Žeigenvalues of the fit matrix the matrix of the ‘nor-
mal equations’ or the ‘information matrix’ of the

.variables differ widely in their order of magnitude.
Preliminary results suggest that the ratio of largest to

Žthe smallest significant eigenvalues can range in
.chemometrics problems from less than 10 to more

than 10 000. The resulting number of steps may range
from tens to tens of thousands if all variables are not

w xevaluated together. Paatero 13 presents a weighted
two-way example in which PMF converged in four
steps where ALS needed more than 50 steps. This
example is a one factor problem so degeneracy can-
not play a role.

w xDegenerate solutions 21 and algorithmic
w x‘swamps’ 22 can severely lengthen the convergence

time and an approach that avoids or reduces such
problems will as a result have a speed advantage with
some datasets. In degenerate solutions, positive and
negative contributions from different factors almost
cancel each other so that arrays of factor contribu-
tions arising from a single factor can have much
larger norms than the original array X. ‘Swamps’ are
quasi-degenerate intermediate stages on the way to
convergence, and may severely slow progress until



( )P.K. Hopke et al.rChemometrics and Intelligent Laboratory Systems 43 1998 25–42 41

the program finds its way out. Such problems were
not systematically investigated in this study; they did
not belong to the original study plan. However, they
may provide added reasons why some approaches
were faster than others. Degeneracy and swamps are
not a problem when all three loadings matrices are
constrained to be non-negative since then there can-
not be cancellations. The avoidance of ‘swamps’ may
be one of the ways non-negative algorithms speed
convergence. Another way of avoiding ‘swamps’ may
be the use of some kind of regularization. It has been
reported that applying regularization in the form of
‘ridge regression’ in ALS fits tends to prevent

w x‘swamps’ in the middle stage of iteration 22 . Regu-
larization could have a similar effect. Since the sum-
of-squares of factor elements is large in a degenerate
solution, the penalty function involved with regular-

Žization implicit in ridge regression and more explicit
.in the object function used in PMF3 imposes a sub-

stantial penalty on such solutions. In this way, regu-
larization guides successive iterations in directions

w xthat tend to avoid ‘swamps’ 22 .
However, if the true solution is non-degenerate,

then the factors must be non-degenerate at least dur-
ing the final stage of convergence. Nonetheless, it
was found that the final convergence of the ALS-
based techniques was still slow in our test cases. It
seems that the speed advantage of PMF3 in these test
cases may be due more to the fact that all variables
are changed together. Of course, there may be some
degeneracy and related slowness in mid-iteration in
these test cases when negative values were allowed.

The performance of the TPALS algorithm may be
understood as follows: during part of each iteration,
this algorithm also changes all variables simultane-
ously. Hence, it uses more powerful tools than HL-
PARAFAC and is expected to perform better. How-
ever, the movements of different factor elements are
not entirely free because they are computed within a
framework that builds on ALS substeps. A step by
TPALS is not expected to be optimal whereas PMF3
computes a step that is optimal in first order approxi-
mation. Thus, TPALS may be slower than PMF3.

6.1. AÕailability of the programs

The program PMF3 was written in FORTRAN90.
Normally it is only distributed in compiled form,

Žas .exe files. Contact Pentti Paatero pentti.paatero
.@helsinki.fi about the availability of the program for

Žvarious platforms. For PC computers 486 or Pen-
.tium , free evaluation licenses are available for test-

ing the program for a period of 6 months.
The PARAFAC programs are available from

Ž .Richard Harshman harshman@uwo.ca at a nominal
Ž .cost, or free by FTP internet File Transfer Protocal .

The TPALS program is available from Robert Ross
Ž .rtrq@osu.edu . Note, however, that the IMSL li-
brary must be available in order that the TPALS code
can be used without modification.

Acknowledgements

This work was supported in part by the US Envi-
ronmental Protection Agency under grant R822482.
The report has not been reviewed by the Agency, and
the views and ideas expressed in this report are those
of the authors and do not necessary reflect the views
and policies of the Environmental Protection Agency
nor does the mention of trade names or commercial
products constitute an endorsement for use. Financial
support to Pentti Paatero from the Vilho, Yrjo, and¨
Kalle Vaisala Foundation and to Richard Harshman¨ ¨ ¨
from the Natural Science and Engineering Research
Council of Canada are gratefully acknowledged.

References

w x1 J.D. Carroll, J.J. Chang, Analysis of individual differences in
multidimensional scaling via N-way generalization of

Ž .‘Eckart–Young’ decomposition, Psychometrika 35 1970
283–319.

w x2 R.A. Harshman, Foundations of the PARAFAC procedure:
models and conditions for an ‘explanatory’ multi-mode fac-

Ž .tor analysis, UCLA Working Papers in Phonetics 16 1970
1–84.

w x3 R.A. Harshman, M.E. Lundy, The PARAFAC Model for
Three-way Factor Analysis and Multidimensional Scaling,
Research Methods for Multimode Data Analysis, Praeger,
New York, NY, 1984, pp. 122–215.

w x4 R.A. Harshman, M.E. Lundy, Data preprocessing and the ex-
tended PARAFAC model, Research methods for multimode
data analysis, Praeger, New York, NY, 1984, pp. 216–284.



( )P.K. Hopke et al.rChemometrics and Intelligent Laboratory Systems 43 1998 25–4242

w x5 R.A. Harshman, M.E. Lundy, PARAFAC: Parallel Factor
Analysis, Computational Statistics and Data Analysis 18
Ž .1994 39–72.

w x6 J.B. Kruskal, Three-way arrays: rank and uniqueness of tri-
linear decompositions, with applications to arithmetic com-
plexity and statistics, Linear Algebra and Its Applications 18
Ž .1977 95–138.

w x7 Law et al., Research Methods for Multimode Data Analysis,
Chap. 6, Praeger, New York, NY, 1984, pp. 161–162.

w x8 S.E. Leurgans, R.T. Ross, Multilinear models: applications in
Ž .spectroscopy, Stat. Sci. 2 1992 289–319.

w x9 S.E. Leurgans, R.T. Ross, R.B. Abel, A decomposition for
Ž .three-way arrays, SIAM. J. Matrix Anal. Appl. 14 1993

1064–1083.
w x10 R.T. Ross, S. Leurgans, Component resolution using multi-

Ž .linear models, Methods in Enzymology 246 1995 679–700.
w x11 J.K. Lee, R.T. Ross, S. Thampi, S. Leurgans, Resolution of

the properties of hydrogen-bonded tyrosine using a trilinear
Ž .model of fluorescence, J. Phys. Chem. 96 1992 9158–9162.

w x12 P. Paatero, Least squares formulation of robust non-negative
Ž .factor analysis, Chemom. Intell. Lab. Syst. 37 1997 15–35.

w x13 P. Paatero, A weighted non-negative least squares algorithm
for three-way ‘PARAFAC’ factor analysis, Chemom. Intell.

Ž .Lab. Syst. 38 1997 223–242.

w x14 B.E. Wilson, E. Sanchez, B.R. Kowalski, An improved algo-
rithm for the generalized rank annihilation method, J.

Ž .Chemom 3 1989 493–498.
w x15 E. Sanchez, B.R. Kowalski, Tensorial resolution: a direct tri-

Ž .linear decomposition, J. Chemom. 4 1990 29–45.
w x16 Y. Zeng, P.K. Hopke, A new receptor model: a direct trilin-

ear decomposition followed by a matrix reconstruction, J.
Ž .Chemom. 6 1992 65–83.

w x17 P. Paatero, U. Tapper, Analysis of different modes of factor
analysis as least squares fit problems, Chemom. Intell. Lab.

Ž .Syst. 18 1993 183–194.
w x18 C.L. Lawson, R.J. Hanson, Solving least squares problems,

Prentice-Hall, Englewood Cliffs, NJ, 1974.
w x19 R. Bro, S. De John, A fast non-negativity constrained least-

Ž .squares algorithm, J. Chemom. 11 1997 395–401.
w x20 P. Paatero, User’s guide for the programs PMF2 and PMF3

Ž . Ž .1997 Unpublished .
w x21 J.B. Kruskal, R.A. Harshman, M.E. Lundy, How 3-MFA Data

Can Cause Degenerate PARAFAC Solutions, Among Other
Relationships, Multiway Data Analysis, North-Holland, 1989,
pp. 115–122.

w x22 W. Rayens, W. Mitchell, Two-factor degeneracies and a sta-
bilization of PARAFAC, Chemom. Intell. Lab. Syst. 38
Ž .1997 173–181.


