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Abstract

This paper gives an overview of multi-way methods in image analysis, termed N-way image analysis. Both weak and strong

multi-way methods are applied in order to decompose and characterize image data, and obtain insight into their abilities to

capture and model the interpretable data structure. Multivariate Image Analysis (MIA) is a typical example based on weak

multi-way methods like unfold-PCA/PLS. Strong multi-way methods such as PARAFAC, Tucker3, N-PLS are also introduced

and applied to image analysis in this work. Which method to use is problem-dependent. Through macroscopic satellite images,

virtual fluorescence images and microscopic functional property image examples, the performance of each alternative method is

presented, as well as comparisons between weak and strong multi-way models. It is demonstrated that efficient handling of

multiple images requires a clear a priori overview of the relationship between problem formulation and data array configuration.

Appropriate preprocessing techniques, such as 2-D FFT and Wavelet transform, may also be needed in order to transform and

configure some special types of image data to forms specifically suited for multi-way modeling. Application I shows the

possibility for application of strong multi-way methods on multispectral images, otherwise conventionally analyzed by MIA.

By contrast, application II attempts to investigate the feasibility of applying MIA models on typical three-way data, normally

handled by the strong multi-way methods and provides a new perspective of dealing with fluorescence spectra as images. In

application III, attempts have been made to predict rheological parameters from microscopic cheese images by multi-way

methods. The present didactic exposition allows to draw some tentative first conclusions as to the dominant relationships

between strong and weak multi-way data decompositions, their pros and cons and their relative merits.
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1. Introduction

Many chemometric methods have been employed

in dealing with more complex images, especially in

spectroscopic imaging [1–10]. In this work, attempts
s reserved.
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have been made to apply multi-way methods to image

analysis, defined as N-way image analysis. It handles

multiple images simultaneously using information

from different dimensions as opposed to just of one

single image. In multispectral imaging, for instance,

both spatial and spectral information could be used to

extract information.

Multivariate Image Analysis (MIA) is one particular

approach to N-way image analysis. Principles and

applications of MIA have been developed in full detail

in the past decade. Typical examples are related to

multispectral images such as satellite images, micro-

scopic images, etc. [1–10]. Below we have tried to

apply strong multi-way methods on multispectral

images which are otherwise conventionally analyzed

by the MIA approach as well as to apply MIA on three-

way (fluorescence) data usually handled by strong

multi-way methods. Another focus of this work is

concerned with serial images that are more easily

obtainable than multispectral images, which possess

certain common properties and interrelationships. Thus

microscopic cheese images, to be introduced in appli-

cation III, were made from a factorial experiment by

varying coagulation temperature and the amount of

rennet enzyme at a number of levels. They are of quite

similar appearance and also possess similar rheological

characteristics, but they do not fit any of the two above

conventional three-way array formats. They can never-

theless be juxtaposed, by transforming and reorganiz-

ing them so as also to comply with the form of a three-

way data array suitable for multivariate data modeling.

Attempts have been made to derive functional proper-

ties predictionmodels to predict the rheological proper-

ties from images by N-way image analysis.

The objective of this survey is to review the gamut

of multi-way methods from the perspective of proper

(i.e. problem-dependent) data array organization and

the many multi-way methodological methods pre-

sented in the literature. Within three-way/multivariate

image analysis, there has been a rather bewildering

ad hoc modus operandi concerning how to organize

the pertinent object-way(s), variable way(s), time

way, etc., and what particular method to use. We

here focus on the systematic correspondence between

the specific multi-way problem formulation and their

matching data array setups, from which follows

which methods are at all possible—or not. We want

to show that exploitation of multi-way methods is not
a free optional matter, but rather that it is in many

ways more logically restricted by the problem/data

array prerequisites. Therefore, our survey is also

composed of ‘‘cross-over’’ methodological experi-

ments in order to present a fairly complete catalogue

of representative usages of the many multi-way

methods.
2. Terminology and nomenclature in N-way image

analysis

2.1. Terminology

Some confusion and misunderstandings may arise

when dealing with multivariate analysis on images

and other types of N-way arrays. It is therefore

necessary to give a clear explanation of the terminol-

ogy and nomenclature to be used in the following. An

intensity/gray-level image can be 2-D, 3-D or N-D.

The images discussed in the present context are in 2-D

form. The term N-way image analysis is characterized

by multivariate analysis of a stack of images in

general. N-way image data consist of a stack of

images which usually have similar properties, i.e.

chemical, biological characteristics or inherent corre-

lations, or intrinsic variations, etc. A multivariate

image is a stack of congruent images on the same

field-of-view measured for a series of different ‘var-

iables’, e.g. wavelength, frequency, etc. [3]. Multi-

way methods can be categorized into weak and strong

multi-way methods [11]. Unfold-PCA/PLS are con-

sidered weak multi-way methods because they

actually unfold three-way data array into two-way,

followed by ordinary two-way analysis, instead of

utilizing the intact multi-way structure during the

modeling. It should be noted that the term multi-

way PCA (MPCA) has been used in chemometrics

for unfolding and doing ordinary PCA (hence

Tucker1) modeling. Bro pointed out that it is improper

to use this term since it is easily confused with multi-

mode PCA, which is the term accepted for the Tucker

models in general [10,11]. Thus, we use here the term

unfold-PCA/PLS instead of multi-way PCA/PLS to

avoid further confusion. Strong multi-way methods

usually refer to the trilinear PARAFAC model,

Tucker3 model, and the more advanced PARAFAC2

and PARATUCK models, which distinguish them-
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selves from unfold-PCA by explicitly using the multi-

mode structure in the data in general, and they also

offer different attractive features. Multilinear calibra-

tion is a strong multi-way regression approach,

together with which PARAFAC and Tucker3 models

will be used in our first forays at N-way image

analysis below.

2.2. Nomenclature

In the following, digitized images are denoted by

bold capitals, and three-way (image) array by under-

lined bold capitals. Lower-case italics are used for

scalars, and bold lower-case characters for vectors.

The letters, I, J and K are reserved for indicating the

dimension of different modes. The ijkth element of X

is called xijk and is the element in the ith row, jth

column and kth tube of X. The name way is defined as

geometrical dimension, and the name order indicates

number of ways. Object modes are denoted by bold

capital letter O, and variable modes by V, following

Esbensen et al. [2].
3. Data configuration in multivariate data analysis

on images

3.1. Data array categorization in N-way image

analysis

Choosing an optimal data analytical methodology

requires an appropriate data configuration pertaining

to specific problem formulations in multivariate data

analysis. N-way image analysis is no exception. The

proper arrangement of a large amount of image data is

intimately connected with the scientific goal or the

pertinent problem formulation. A matrix, in ordinary

two-way analysis, is conventionally arranged in a way

such that the rows of a matrix represent samples

(observations), and the column variables. We use O

to represent samples (observations), viz. the object

mode, and V the variable mode. Arrays of three-way

data thus can be characterized by a categorical object/

variable (O/V) mode convention, which was intro-

duced in Refs. [9,14]. The entire class of all possible

four different three-way configurations are repre-

sented by the codes (OOO), (OOV), (OVV) and

(VVV), of which the last extreme is usually of lesser
practical consequence for multivariate data analysis;

we do however treat the OOO case extensively below.

A three-way data array composed as a multivariate

image, for instance, may be characterized as OOV,

while the well archetype three-way data array corre-

sponds to the OVV form.

The O/V definition may serve as a guide to

properly arrange the complex data arrays of higher-

order and choose the appropriate preprocessing and

multi-way methods. In two-way analysis, convention-

ally, centering is usually performed across the object

mode (the rows of a matrix), while scaling is per-

formed within the variable mode (the columns of a

matrix). Centering across the object mode means that

the data are centered by subtracting the column-

average from every element in the column. When

scaling within the variable mode, every column is

multiplied by a specific number, e.g. 1/STD. Prepro-

cessing of a higher-order array is more complicated

than in two-way analysis. Centering is normally

performed across the object mode(s). Given an

OVV array of I� J�K matrix with I representing

object mode, centering can be done by unfolding the

array to an I� JK matrix, and then center this matrix

as in ordinary two-way analysis:

X cent
ijk ¼ Xijk �

XI

i¼1

Xijk

�
I

Centering, however, is different when it applies to an

OOV array of I� J�K matrix with I, J as object

modes. The OOV array is unfolded to an IJ�K

matrix and then center this matrix. It is not, as for

scaling, appropriate to scale the unfolded array col-

umn-wise, but rather whole slabs or sub-matrices of

the array should be scaled within variable modes. For

a complete delineation of centering and scaling, see

Bro and Smilde [20].

3.2. Data analytical problem formulations

A significant part of multivariate data analysis can

be covered by the following three alternative objec-

tives/problem formulations:

(1) data description (exploratory data analysis);

(2) classification and discrimination;

(3) correlation and regression.



Fig. 1. A three-way array is unfolded to a two-way array, on which the PCA is then performed. U denotes the unfolding operator.
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This partitioning is not complete, but can serve as a

systematic basis also for carrying out higher-order

data analysis, see more detail in [Ref. 2].

3.3. Relationship between data configuration and

problem formulation in three-way image analysis

Major types of data modeling in N-way image

analysis are described in the following with focus

on the OOV and OVV data arrays.

3.3.1. Data description

A multivariate image is a two-way array (OO) with

a third way as the variable mode (OOV). The standard

MIA way of doing multivariate image analysis is to

reorganize/unfold the three-way data array to two-way

first, and then to perform ordinary two-way analysis

on unfolded 2D array. The approach is usually termed

unfold-PCA/PLS if used in conjunction with PCA/

PLS. Due to its original three-way arrangement and

inherent unfolding, unfold-PCA/PLS can be catego-

rized as a weak multi-way method. See the graphical

presentation in Fig. 1.

For an image array with OOO structure, domain

transformations may occasionally be implemented to

obtain an OVV or OOV array which is trilinear and

thus suited for strong multi-way analysis. We give one

such example in application III later (Fig. 2).
Fig. 2. An OOO three-way data array has to be transformed to an OVV

multi-way modeling.
3.3.2. Classification and discrimination

One of most important demands on image analysis

is to extract information pertaining to classification or

discrimination of pixels in one or more classes, or of

one or more entire images, depending on the specific

problem to be solved. There are two principal types of

classifications in terms of OOV and OVV data array

configurations. For OOV data array, classification is

performed simultaneously within OO planes. For

OVV data array, however, classification is performed

along the object mode. One single plane here repre-

sents one object only.

3.3.3. Regression

When regression modeling is applied to three-way

image data, it is called three-way image regression.

There are three basic types of regression in three-

way image regression. Image regression can be

established not only between images, but also

between image data and physical or chemical proper-

ties of what has been imaged. The latter will be

focused in application III, which is concerned with

regression between microscopic images and rheolog-

ical properties of cheeses. Multivariate Image

Regression (MIR) based on unfold-PLS has recently

been reformulated with details to be found in Lied et

al. [10]. MIR deals with OOV data arrays exclu-

sively.
(or the OOV alternative) data array, which is suited for subsequent
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4. Theory on multi-way decomposition methods

4.1. Weak multi-way methods

As discussed in Section 3, unfold-PCA/PLS is

categorized into the family of weak multi-way

methods. Unfolding the higher-order arrays may

break the correlations in either (OO) or (VV)

modes.

4.1.1. OOV three-way image data array

The typical OOV three-way image data array

consists of K images of size I� J measured, e.g. at

K wavelengths. The three-way matrix X (I� J�K)

is unfolded into a two-way array so that each image

pixel works as an object while each wavelength (or

frequency, energy, etc.) is maintained as a variable.

Then PCA is performed on the two-way data set

(IJ�K). With unfold-PCA, in each component the

data are decomposed into a long score vector (IJ)

which can be rearranged to a two-way score image

(I� J). The loading vectors pf (K� 1) describe the

variations in variable space for each component. The

model can be written

X ¼
XF
f¼1

Tf pf þ E

The index f denotes a component, and E residual

images from unfold-PCA. The components are

orthogonal and can be calculated sequentially.

4.1.2. OVV three-way image data array

Decomposition of the OVV three-way image

array is different from OOV. The distinction is that

unfolding is now performed on the two-way varia-

ble mode instead of object mode. As compared to

OOV (e.g. MIA) data decomposition, the three-way

OVV array matrix X (I� J�K) is unfolded into a

two-way array (I� JK) where the object direction

of the images is maintained intact (the sample

mode). Likewise, in each component the data are

decomposed into a score vector (I� 1) in sample

image mode, tf, and a long loading vector (JK)

which can subsequently be backfolded to a two-way

loading matrix Pf (J�K) (or loading image). Pf

describes the variation in the 2-D variable domain
space for each component. The structure model with

residuals is

X ¼
XF
f¼1

tf Pf þ E

4.2. Strong multi-way methods in N-way image

analysis

Some strong multi-way methods such as PAR-

AFAC and Tucker3 can be adapted to image analysis.

PARAFAC is a direct trilinear decomposition method,

conceptually comparable to bilinear PCA, while the

Tucker3 decomposition is another generalization of

PCA to higher orders [12,13,16,17]. A detailed tuto-

rial on PARAFAC is given by Bro [13]. A PARAFAC

model of a three-way array is expressed by three-

loading matrices, A, B and C with elements aif, bjf,

ckf, and the residuals. It can be written

xijk ¼
XF
f¼1

aijbjf ckf þ eijk

where F is the number of components, eijk denotes the

residual elements.

Both PARAFAC and Tucker3 are simpler than the

alternative approach, unfold-PCA, due to fewer

parameters in the models. A Tucker3 model is a

weighted sum of all possible outer products between

the factors stored as columns in A, B and C with the

weight of the outer products determined by a core

array G (w1, w2, w3). It can be written in a same

manner to PARAFAC

xijk ¼
XD
d¼1

XE
e¼1

XF
f¼1

aidbjeckf gdef þ eijk

where the index D, E, F denotes the number of

components in each mode, and gdef the elements of

the core array G.

4.3. Multi-way calibration

There are many possible multi-way calibration

methods, among which unfold-PLS and N-PLS asso-

ciated with a trilinear (PARAFAC-like) model are

introduced here. Unfold-PLS is characterized by per-
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forming ordinary PLS on a two-way array unfolded

from a three-way array and y variable(s), while keep-

ing the object mode of X in common with the

dependent y intact, see e.g. Lied et al. [10].

Details on multilinear calibration are given by Bro

[14] and Smilde [15]. Bro pointed out that the

advantages of N-PLS (including tri-PLS) over

unfold-PLS can be highlighted by the following two

points: (1) the trilinear model is more parsimonious,

simpler and thus easier to interpret; and (2) less prone

to noise due to decomposition across all modes [12].

However, there is no general rule in choosing which

method to use. The knowledge of data sets under

investigation and a priori knowledge of calibration

methods, proper problem formulation, is always an

important guideline. For instance, we have often

found that unfold-PLS works very well in multivariate

image regression (MIR) [10], by virtue of inherent

weak correlations between the singular variable way
Fig. 3. The 512� 512 satellite image record
and the two object ways, which internally of course

display strong, contextural correlations, etc. Con-

versely, there may a priori exist possibilities for

applying N-PLS in multivariate image regression,

i.e. finding regions of interest.

In the following sections, three application exam-

ples on multispectral images, virtual fluorescence

images and microscopic image-functional property

correlation using above methods will be given.

Both weak and strong multi-way methods are

applied in order to decompose and characterize image

data, and obtain some insight into their abilities to

capture data structure. Applications I and II use both

MIA and strong multi-way methods on typically MIA

data and strong three-way data in order to evaluate

their scientific playgrounds. Application III in addi-

tion attempts to investigate the relationships between

transformations of original images and their corre-

sponding functional properties. Comparisons of the
ed at four different wavelength bands.
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ability of these methods are given. The goal of

comparison is not to verify one method over another,

but rather to explore alternative approaches to N-way

image analysis.
5. Application I: Multi-way analysis of OOV image

array (multispectral image example)

5.1. Data

This data set, Fig. 3, is a multispectral satellite

image of Mobile Bay, Alabama, which has been

described in the chemometric literature (Geladi and

Esbensen). It is made up of four variables (‘‘chan-

nels’’), the wavelength bands. In each wavelength

band, the reflected intensities of the earth surface are
Fig. 4. The four score images of the 4� 512� 512 satellite image: T1, T2, T

contains very nearly only residual noise and artifacts. The score images are

orthogonality of the scores.
digitized in the range 0–127. One pixel is about

80� 80 m.

This is a typicalOOV image array (512 pixels� 512

pixels� 4 wavelengths) where the two spatial direc-

tions form the object modes and the wavelengths form a

variable mode. In the following, both weak (unfold-

PCA/Tucker1) and strong methods (PARAFAC and

Tucker3) are applied to this OOV image array. Mean-

centering was performed across the object mode (pix-

els). Scaling by standard deviation was carried out

within the variable mode (wavelength bands).

5.2. Multi-way analysis of multispectral images

5.2.1. Unfold-PCA model (Tucker1 model)

This type of multispectral image is an archetype for

MIA. MIA’s objective is to conduct unfold-PCA
3, T4. The first three contain most information, while the last image

in maximum contrast with each other as a result of the inherent MIA



J. Huang et al. / Chemometrics and Intelligent Laboratory Systems 66 (2003) 141–158148
analysis on the multivariate image, i.e. to conduct an

interactive study of scene (raw images/score images)

and feature space (score and loading plots). The score

images are obtained after the PCA calculations on

these four raw images (four variables). Score images

are in maximum contrast to each other due to ortho-

gonality of the PC scores (Fig. 4). Residual images are

not shown here, which contain mostly the noise

largely from electro-optic instrument artifacts, already

appearing in T4.

5.2.2. PARAFAC model

A three-component PARAFAC model is now fitted

to the same image array for direct comparison. Fig. 5

shows a set of four reconstructed images from the

structure model in the order of number of compo-

nents. The reconstructed image has the same size as

raw image array. Notice the extreme difference with
Fig. 5. Reconstructed structure parts from a three-component PARAFA
respect to Fig. 4. These four images appear extremely

blurred (but the profiles of bay in images (b), (c), (d)

are perhaps faintly discernable). It is apparent that

PARAFAC failed in modeling the multivariate image

variance efficiently in this case. The reason is that

three components are not enough to account for the

most variation as PARAFAC modeling requires equal

components in all modes. There are only 4 wave-

lengths in variable mode, and as many as 512 pixels in

two object modes. Few variables make it impossible

to choose enough components for a well-fitted model.

As clearly seen from modeling results, three compo-

nents are not capable of explaining major variations

along three modes.

5.2.3. Tucker3 model

ATucker3 model offers more flexibility than PAR-

AFAC in that it allows for a choice of different number
C model. Notice the extreme difference with respect to Fig. 4.



Table 1

Cumulative variations captured by unfold-PCA, Tucker3 and

PARAFAC models

Number of

components/

factors

Unfold-PCA

(%)

Tucker3 (%) PARAFAC

(%)

1 86.55 91.41 (1, 64, 64) 89.57

2 99.13 97.86 (2, 64, 64) 94.28

3 99.66 98.93 (3, 64, 64) 94.76

For Tucker3 model, 64 components are chosen in each object

direction, while the components in the variable mode vary from 1 to

3.
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of components in the different modes. Therefore, we

can choose more components precisely in the two

object modes unlike for the PARAFAC model. Differ-

ent component options have been tried out. After trial

and error, 3 components are chosen in the variable

mode, and 64 components in each object mode, as this

model captures 98.93% of the total variance. The

reconstructed images from structure part are shown

in Fig. 6. This structural model is calculated from

X_structure=AG (CT�BT), where A, B, C are load-

ing arrays, andG core array, and the symbol� denotes

Kronecker multiplication, see [Refs.16,17].

In the order of number of components, the recon-

structed images (by proper image analysis scaling in

the structural model) appear quite clear and optimally

contrasted. They are complementary to each other, but

it should be noted that reconstructed images here are

not exactly orthogonal to each other, which is differ-
Fig. 6. Reconstructed structure parts from a Tucker3 model with (3, 64

differences with respect to Fig. 4.
ent from score images derived from unfold-PCA

model. Clearly, a Tucker3 modeling provides a differ-

ent approach to describe the image data from a new

perspective. Tucker3 modeling of multispectral

images may be useful for, e.g. de-noising, data com-

pression, visualization, etc. Residual images are not
, 64) components in each of the three mode (VOO). Notice the
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shown here. They are mostly random noise due to

possible illumination, nonlinear optical behavior, etc.

The Tucker3 model successfully captures most of the

image variance with this (3, 64, 64) setup of compo-

nents.

It is interesting to compare these three different

methods on this type of OOV image data array.
Fig. 7. Loading plots (p1 vs. p2) in the variable mode from different

PARAFAC model.
Table 1 gives the percentage of variations explained

after 1, 2, 3 components (in first mode for Tucker3).

With three components, unfold-PCA explains the

largest variation, 99.66%, followed by Tucker3,

98.93% and PARAFAC, 94.76%. This is understand-

able since PARAFAC is most parsimonious. Further-

more, both unfold-PCA and strong three-way models
models. (a) Unfold-PCA/Tucker1 model; (b) Tucker3 model; (c)
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maximize the fit of model to the data in the bilinear

and trilinear sense respectively. It is not difficult to

see that unfold-PCA is just Tucker1 in the specific

sense that the model is fitted. Therefore, MIA and

other three-way/N-way modeling of images form

different cases of N-way image analysis. In the

above unfold-PCA/Tucker1 model, two object modes

are left uncompressed, and only the variable mode is

compressed. The object modes and variable mode

are compressed with different number of components

in Tucker3 model, whereas the PARAFAC model

compresses all modes with an equal number of

components. It is also of interest to compare the

respective loading plots from the three models as

shown in Fig. 7. Loadings from the unfold-PCA and

Tucker3 models show very small differences only,

but differ somewhat from the PARAFAC model. The

reason is that the Tucker model compresses three

modes separately, and establish a relationship

between factors in the three modes spanned by the

core array. Here both Tucker1 and Tucker3 use 3

factors in the variable mode. As compared to Tucker

models, PARAFAC does not have a core array to

allow this flexibility in choosing different factors.

The three factors here are directly interrelated to each

other. However, on the general level all three models

show almost the same interrelationships in this

particular example.

Which model to use is problem dependent. The

MIA approach is based on unfold-PCA, for

instance, which offers the tools for data decompo-

sition and interactive study of scene and feature

space for segmentation and classification, etc. The

latter is largely due to the fact that pixels in two-

object modes are kept uncompressed, and thus

pixels in the score plot correspond to those in

score images backfolded from scores after unfold-

PCA. Therefore, MIA is probably better suited for

explorative data analysis and classification purpose,

etc., while the Tucker3 model could be used for

image data compression, exploration of three-way

structure, de-noising, etc. The PARAFAC model

may only be considered when there are approxi-

mately as many variables as comparable to objects

present.

A significant amount of practical work still needs

to be done in this area before a more satisfactory body

of experience is at hand.
6. Application II: Decomposition of fluorescence

data with MIA (virtual spectroscopic image

example)

6.1. Data set

This data set was obtained from Rasmus Bro,

KVL, Copenhagen. It has analogously to the Mobile

Bay data array been used in many three-way data

decomposition expositions. Five samples were meas-

ured on a PE LS50B spectrofluorometer with excita-

tion 250–300 nm, emission 250–450 nm in 1-nm

intervals. Two samples contain different amounts of

tyrosine, tryptophane and phenylalanine [13] (see Fig.

8a and b). Three other samples are pure components

of these three analytes, respectively (see Fig. 9a–c).

This is an archetype trilinear three-way data (OVV). It

has been demonstrated that the three pure spectra can

be estimated almost perfectly by the unique PAR-

AFAC decomposition of the fluorescence spectra of

two samples containing different amounts of Try, Trp,

and Phe, see details in [Ref. 13].

In the present context, it is not our intention to

seriously pit the MIA approach against the strong

three-way methods (PARAFAC), but rather to analyze

such spectroscopic data from an imaging point of

view only—in order to investigate the possibilities

and limitations of applying MIA on three-way (OVV)

spectroscopic data. The reason is that virtually every

spectroscopic technique can be used to generate

chemical images. Fluorescence data is a very good

example of this since each sample is a ‘‘landscape’’

composed of the excitation and emission spectra.

Intuitively, such a landscape may well also be con-

sidered as an image with appropriate conversion/

scaling (see Figs. 8c,d and 9d–f).

6.2. Results and discussion

Fluorescence spectra of the two samples with a

mixture of three analytes were first converted into

appropriately scaled images, and then put into a MIA

model. Auto-scaling was applied to data. The score

image (printed in grayscale) shown in Fig. 10 is in

reality a pseudo-color composite formed by assigning

score image 1, 2, 2 into R, G, B channel for a visual-

ization purpose. As seen in Fig. 10, the three analytes

can be seen clearly with different colors (shown by



Fig. 9. (a) The pure fluorescence spectra of a sample containing only Trp. (b) Pure fluorescence spectra of a sample containing only Phe. (c)

Pure fluorescence spectra of a sample containing only Tyr. (d) Converted image representing Trp. (e) Converted image representing Phe. (f)

Converted image representing Tyr.

Fig. 8. (a) Fluorescence spectra of a sample containing different amounts of Trp, Tyr and Phe. (b) Fluorescence spectra of another sample

containing different amounts of Trp, Tyr and Phe. (c) Image converted from the spectra corresponding to (a). (d) Image converted from the

spectra corresponding to (b).
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Fig. 10. Pseudo-color composite (printed in grayscale) obtained by assigning score image 1, 2, 2 into R, G, B channel. Note the regions of

interest are represented by different colors: Red (Trp); Pink (Phe); White (Tyr). Cyan (Rayleigh scatter).
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approximately enclosing markings). Notice the Ray-

leigh scatter (the triangular part in the upper left

corner), which is easily distinguished in the image.

This is, however, very obscure in the original images

shown in Fig. 8. The shape of each analyte is similar to

the corresponding pure component image in Fig. 9d–f.

An interactive study of score plots (feature space)

and score image (scene space) is conducted in a

conventional MIA fashion shown in Figs. 11 and

12. Four groups, which correspond to three analytes

and the Rayleigh scatter effect, respectively, can be

classified easily by mapping typical MIA masks in

score plots (t1– t2). These selected areas are then
Fig. 11. Score plots (t1– t2) by plotting two score images against each ot

different groups in the image plane, see Fig. 12.
projected so as to be compared to the corresponding

chemical analytes in scene space (score image, Fig.

10). See details about this feature of MIA operations

in [Refs.3–9].

As is easily seen, MIA does not provide precise

results quantitatively as compared to the PARAFAC

model, and neither is MIA aimed at such an objective.

However, it does offer a simple way of direct visual-

ization of spectroscopic/image data which may be

useful in more complex situations, e.g. forensic anal-

ysis, etc. It may be helpful to look at the data visually

and study the spatial chemical data interactively in

appropriate situations.
her. Clusters indicated by different polygonal MIA masks represent



Fig. 12. Regions of interest here marked in white color in the image plane originate from the corresponding pixel masks delineated in the score

plots in Fig. 11.
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In conclusion, applying a MIA model on the

fluorescence three-way data (OVV) of course does

not seem to be a natural idea for the purpose of

quantitative decomposition of the data. The reason is

that the MIA approach is specially designed for OOV

multivariate image data. However, our objective here

only is to propose imaging as a complementary way of

‘‘qualitative spectroscopy’’, which may change one’s

perspective to recognize some spectroscopic problems

in a possibly fruitful new light.
7. Application III: Multi-way analysis of OVV

image arrays (microscopic image example)

7.1. Data set and problem formulation—‘‘incongruent

multiple images’’

Images in many areas such as biochemistry have

largely been analyzed by traditional image analysis.

These methods tend to be restricted for use in one

single image at a time. There is a lack of good

methods which can be used to characterize series of

images efficiently. With multivariate data analysis on

images, many serial images can potentially be ana-

lyzed simultaneously.

Fourteen types of cheeses were made from a

factorial experiment where coagulation temperature

with rennet enzyme, the amount of rennet enzyme and

the length of time at coagulation temperature before

cooling were varied, i.e. a three-factor experiment. For

each of these cheeses, four transmission electron

micrographs were recorded on four different parts of

the cheeses. Each set of four images therefore con-

stitutes four replicates of the same cheese. As seen
from selected images shown in Fig. 13, such cheese

images appear relatively homogenous and very sim-

ilar at first glance. The objective is to relate these

global images to selected functional properties to the

cheeses by N-way image analysis.

Uniaxial compression, a rheological testing method,

has been used to obtain the rheological properties of

these cheeses, such as fracture stress, strain, work and

modulus. From a biotechnological point of view, it

would obviously be of interest to look for the relations

between the ‘image’ results and the ‘rheological’

results. Therefore, unfold-PLS and N-PLS are used to

achieve this goal below and to be compared.

7.1.1. Necessary transformations

As inspected from the raw cheese images in Fig.

13, at a certain scale they appear relatively homo-

geneous and quite ‘‘similar’’. This is manifestly not

a multivariate image, not even a congruent image

field-of-view, but a series of one-channel images

for which there does not exist any preexisting N-

way method. There is currently a lack of efficient

methods to characterize and discriminate such mul-

tiple images in traditional image analysis. Some

image analysis combined with chemometric meth-

ods have been initiated on this problem especially

concerning the interesting new AMT-transformation,

but this is deferred to a later occasion [18,19].

Here we focus on the familiar 2-D FFT trans-

formation.

The 14� 4 serial images of size 512� 512 are

stacked on top of each other to form a three-way array,

which will be of the OOO category. This type of data

array is obviously not trilinear, and thus cannot be

used for multi-way analysis directly. Different trans-



Fig. 13. Microscopic images of cheeses (1–9), originating from a factorial experiment by varying coagulation temperature and the amount of

rennet enzyme, each on three levels. Note the quite similar appearance.

J. Huang et al. / Chemometrics and Intelligent Laboratory Systems 66 (2003) 141–158 155
formation techniques such as FFT, Wavelet Transform

(WT), have been applied to this OOO data array in

order to obtain a trilinear OVV data array. Such a

transform is necessary to bridge the gap between each

image through the new domain. FFT-transformed data

(power spectra) are used for illustration here since

these give the most illustrative models (see Fig. 14).

As appreciated, these 64 images of size 512� 512

comprise a large amount of data, and will cause a long
Fig. 14. Data configuration of cheese image data for subsequent modelin

subsequently transformed by 2-D FFT to a three-way OVV array, in which

Vector y represents a rheological property which corresponds to the indiv
calculation time when applying three-way methods.

All 64 images were therefore resized to 64� 128�
128 and transformed to 2-D FFT array of size

64� 128� 128 so that the time spent on actual model-

ing could be decreased significantly. All modeling was

carried out with the N-way toolbox for Matlab by

Andersson and Bro [16,17]. Image processing and

transform were conducted with the signal processing

and image processing toolbox in Matlab 5.3.
g. Raw images are organized as a three-way OOO data array, and

the 2-D frequency domain forms the two new variable modes (VV).

idual original images in the O-direction.



Table 3

Comparative percent variance captured in both X and Y by using

both N-PLS and unfold-PLS in predicting the rheological

property—fracture work

Calibration X-block Y-block

methods
LV # Fitted Xval Fitted Yval RMSEP

N-PLS 1 27.28 14.63 67.02 57.65 5060

2 29.05 16.45 91.06 84.75 3036

3 29.33 16.54 98.93 83.59 3149

4 29.61 16.56 99.90 83.46 3161

5 29.84 16.58 99.99 83.21 3186

6 30.08 16.61 100.00 83.15 3191

Unfold-PLS 1 29.98 18.11 79.60 64.53 4987

2 37.37 18.47 99.06 67.38 4783

3 44.24 18.52 99.98 67.05 4807

4 50.19 18.55 99.99 67.09 4804

5 56.97 18.65 100.00 67.10 4803

6 62.76 18.79 100.00 67.10 4803

Both calibration and validation variations are shown in terms of full

cross-validation. LV denotes the number of latent variables, number

of factors. Also shown are RMSEP values. Two components are

found to be optimal in both cases.
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7.2. Prediction of rheological properties of cheeses

For each cheese, a rheological testing was applied

independently, and thus the rheological properties are

known, e.g. fracture stress, strain, work and modulus.

These are used as reference values in the following

regression models. Prior to modeling all four repli-

cates are averaged across the sample/object mode, and

thus the 64� 128� 128 FFT data array is reduced to a

14� 128� 128 array. It is interesting to look at

relations between FFT-feature arrays derived from

these images and the corresponding rheological prop-

erties. To predict these properties, two kinds of

calibration models are tried out: strong N-PLS on

the 14� 128� 128 three-way array, and weak unfold-

PLS on the appropriate 14� 16384 two-way array.

Mean centering was performed, but no scaling was

used as it was found to down-weigh the influences of

important frequency components.

Calibration results using unfold-PLS and N-PLS

are shown in Table 2. It is gratifying that the rheo-

logical properties can be well related to the micro-

scopic images by means of multi-way modeling. Both

unfold-PLS and N-PLS models can be established for

predicting fracture stress, strain, work and modulus.

Unfortunately, facture strain seems difficult to predict

in this way. As can be seen from the comparative

modeling results, N-PLS models are distinctly supe-

rior to unfold-PLS in predictions of all these rheo-

logical properties. For instance, unfold-PLS gives

a model in predicting fracture stress with Corr.
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Table 2

Comparative modeling results for rheological properties, using

unfold-PLS and N-PLS

Calibration

methods

Rheological

properties

Corr.Coeff. RMSEP No. of

factors

Unfold-PLS Fracture stress 0.7750 13,921 2

Fracture strain � � �
Fracture work 0.8149 4783 2

Modulus 0.6916 47,499 2

N-PLS Fracture stress 0.9125 8321 4

Fracture strain � � �
Fracture work 0.9141 3036 2

Modulus 0.9138 21,584 3

Fracture strain cannot be predicted. All samples are kept in

modeling with no outliers. Modeling parameters: Correlation

Coefficient (Corr.Coeff.), Root Mean Square Error of Prediction

(RMSEP) and number of factors are shown.
Coeff. = 0.78, RMSEP= 13921, while N-PLS pro-

vides a much better model with Corr.Coeff. = 0.91,

RMSEP= 8321.

We now try to delve into the interpretation of these

N-PLS and unfold-PLS models by illustrating the

calibration and full cross-validation process in predic-

tion of one of rheological parameters. Table 3 shows

percentages of variation explained in both X and Y

during the calibration and full cross-validation in

prediction of the property—fracture work. Both N-

PLS and unfold-PLS give reasonably good models, but

with distinctly different efforts. N-PLS fits 29.05% X-

calibration variance, and explains 16.45% X-validation

variance, 91.06% Y-calibration variance and 84.75% Y-

validation variance with RMSEP= 3036 using two

PLS-components. By contrast, unfold-PLS fits

37.37% X-calibration variance, and explains 18.47%

X-validation variance, and 99.06% Y-calibration var-

iance and 67.38% Y-validation variance with

RMSEP= 4783, also by using two PLS-components.

Clearly, unfold-PLS gives lower predictability and

tends to overfit themodels in bothX and Y. For instance,

it fits 37.37% X variation but explains only 18.47% in

terms of full cross validation. The same phenomenon

occurs for y variation, e.g. it fits 99.06% y variation but

explains only 67.38% in terms of full cross validation.
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Such overfits most likely give rise to misleading model

parameters and hence to an overly optimistic interpre-

tation of the model. On the contrary, the N-PLS model

appears more parsimonious and sensible though it also

displays a minor degree of overfit of X and y. It

describes a little less X variation but more y variation

than unfold-PLS as shown in Table 3, and gives lower

RMSEP indicating higher predictability.

7.3. Evaluation

In this application (domain-transformed ‘‘multiple

imagery’’), the strong multi-way methods show sev-

eral distinct advantages over the weak multi-way

methods–unfolding methods. This is essentially

because strong multi-way methods are more parsimo-

nious, with specific use of the three-way structure in

the modeling. The trilinear models are more restricted

than unfolding models [12]. This leads to the fact that

the fit of a trilinear model is lower than the fit of a

corresponding bilinear model. Conversely, unfolding

may risk taking away some three-way information and

fitting more noise to the structural model. N-PLS

gives better prediction results of rheological properties

than unfold-PLS.
8. Discussion and conclusions

It should be underlined that a priori knowledge of

the data problem (and the data background) and the

appropriate problem formulation is imperative. Strong

multi-way methods have many advantages over unfold

methods in many senses. But it may not be universally

true that they will work better than unfold methods on

any and all three-way data arrays. For instance, MIA

based on unfold-PCA is very suited for exploration

and classification purposes as shown in application I.

Applying different multi-way methods is intimately

connected with proper data configuration and pertinent

problem formulation. We have particularly focused on

applying strong multi-way methods on both conven-

tional OOV and transformed OVV image data array,

since MIA/MIR has proven successful on OOV three-

way image array. We have also tried to apply multi-

way methods directly on raw OOO image arrays. As

expected, no models could be obtained directly in this

latter case. It is possible that for some purposes strong
multi-way methods (e.g. PARAFAC) might not work

well on OOV three-way image array, i.e. multispectral

images in our application I. Esbensen [10] has pointed

out that there is a phenomenological barrier between

strong three-way data analysis and multivariate image

analysis using unfold methods. At the moment, it may

be stated very generally that strong multi-way methods

are more suitable for OVV data array, and unfold

methods (e.g. MIA) better suited for OOV data array

in image analysis.

In applications I, II and III, we have deliberately

crossed over this demarcation, that is to say, both

unfold-PCA and strong three-way methods have been

applied to OOV/OVV image arrays. Whether and

when to apply MIA or strong three-way analysis on

OOV/OVV image data array varies from example to

example. Many points still remain open to further

discourse however, but we hope that some insight into

the proper problem-specific use of these two dichot-

omous approaches has been gained. Follow-up expo-

sitions and synthesizing discussions on these issues

will also be presented in a sequel paper.
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