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1. Introduction

The classification of items into groups such that items within a group
are similar to each other is an activity carried out since early times. A wide
variety of approaches and techniques exist for performing this task. This paper
is concerned with one approach to clustering, the mixture likelihood approach
which has been described by many authors, including McILachlan (1982) and
McLachlan and Basford (1988).

As the data to be clustered come in many different forms, we clarify our
terminology for their description. We use the taxonomy for measurement data
given by Carroll and Arabie (1980) where a mode is defined as a particular class
of items and an N-way array is defined as the Cartesian product of a number of
modes, some of which may be repeated. When the data consist of the measure-
ment of certain attributes of the items, they would be described as two-mode
two-way data. However, when the data are in the form of proximities between
all distinct pairs of the items, they would be described as one-mode two-way
data. If the data consist of the measurement of certain attributes of the items
in different locations, they would be described as three-mode three-way data.
An example would be the data collected in a large plant experiment where var-
ious attributes are measured on genotypes grown in several environments. We
want to cluster the genotypes (one of the modes) by explicitly taking into ac-
count the information on both of the other modes (attributes and environments)
simultaneously.

One difficulty that frustrates all applications of cluster analysis is the
missing values that occur in data sets. A common problem with the example
quoted above is that certain results cannot be measured on all genotypes. For ex-
ample, the yield of a plant may be unobserved as the plant had been destroyed,
or a particular attribute may be measured on a random sample of the genotypes.
In such situations, measurements of other attributes may have been made on
the genotypes in that particular environment and all attributes may have been
observed in another environment. The missing values have no particular pattern
of occurrence, and can be regarded as accidental missing values.

The methods proposed in the literature for analyzing partially missing
data can be broadly classified as a) procedures based on the complete cases
where observations that have any missing information are deleted from further
analysis, b) imputation procedures where the missing value is filled in with
some plausible value, and c) model-based procedures where a model is de-
fined for the partially missing data, inferences are based on the likelihood un-
der that model, and the parameters are estimated by maximum likelihood. Re-
view papers in the literature on partially missing data include those by Afifi and
Elashoff (1966), Hartley and Hocking (1971), Orchard and Woodbury (1972),
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Dempster, Laird, and Rubin (1977) and Little (1982), and monographs on par-
tially missing data by Little and Rubin (1987) and Schafer (1997).

Knowledge of the mechanisms that led to a certain value being missing
is important in choosing an appropriate methodology and in interpretation of
the results from its application (Little and Rubin 1987). In many analyses,
the mechanism that led to the missing data is not considered explicitly, and
an assumption is made that it is ignorable. The performance of all procedures
depends on the underlying missing data mechanism, even ad hoc procedures
created without thinking of this mechanism (Little and Rubin 1987, and Rubin
1994).

Rubin (1976) showed that the missing data mechanism can be ignored
for likelihood based inferences if the data are ‘Missing at Random’ and the
parameter of the missing data process is ‘distinct’ from the parameter of the
data. ‘Missing at Random’ allows the probability that a variable is missing for
a particular item to depend on the values of the observed variables for that item,
but not on the values of the missing variables. As we assume that the data are
thus missing, the correct likelihood is simply the density of the observed data,
regarded as a function of the parameters. This conclusion does not suggest that
the missing data values are a simple random sample from all the data values, a
more restrictive case called ‘Missing Completely at Random’.

The EM algorithm of Dempster, Laird, and Rubin (1977) is a general it-
erative procedure for maximum likelihood estimation in incomplete data prob-
lems (McLachlan and Krishnan 1996). It handles both the conceptual missing
data formulation used in finite mixture models and the unintended or acciden-
tal missing data discussed above. The E step requires the calculation of the
expectation of the complete data log-likelihood, conditional on the observed
data and the current values of the parameters. The M step determines the new
estimates of the parameters from the complete data sufficient statistics. Given
starting values of the parameters, these steps are alternated until the sequence
of likelihood values converges.

Little and Schluchter (1985) present maximum likelihood procedures us-
ing the EM algorithm for mixed continuous and categorical data with missing
values. Those authors point out (p. 509) that in the absence of categorical
variables, their algorithm reduces to the multivariate normal EM algorithm pro-
posed by Orchard and Woodbury (1972). They also state that their algorithm
reduces to that of Day (1969) for K multivariate normal mixtures when there is
one K level categorical variable that is completely missing and the continuous
variables are completely observed. As Little and Schluchter’s (1985) algorithm
still works with incompletely recorded continuous variables, it provides an ex-
tension of Day’s algorithm to incomplete data.

Little and Rubin (1987, pp. 142-146) use the EM algorithm to com-
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pute the maximum likelihood estimates of the parameters for incomplete mul-
tivariate normal samples. The E step imputes the best linear predictors of the
missing values given the observed data and the current estimated parameters.
Hunt (1996) and Hunt and Jorgensen (2001) implemented the mixture likeli-
hood approach for clustering two-mode two-way data where data are missing
at random. We take advantage of their approach to produce a methodology that
enables the clustering of data using a mixture likelihood approach with incom-
plete three-mode three-way data.

In Section 2, we define the mixture model for three-mode three-way data
where we assume the component distributions to be multivariate normal (after
Basford and McLachlan 1985). We then specify how this approach can be mod-
ified to include situations where the three-way data sets have attributes that are
not measured on all individuals. The soybean data set chosen to illustrate this
methodology in Section 3 has been well discussed in the literature and the adap-
tation of the genotypes is well known (Mungomery, Shorter, and Byth 1974;
Shorter, Byth, and Mungomery 1977; Basford 1982; Basford and McLachlan
1985; McLachlan and Basford 1988; Basford and Tukey 1999). This famil-
iarity permits some judgment to be made on the usefulness of this method of
clustering. Although the problem has been cast in the framework of multiat-
tribute genotype responses across environments, this technique is applicable to
other three-way data sets.

2. Mixture Approach for Three-way Data

Suppose that the response on each of p attributes was recorded on n geno-
types, each of which was grown in R environments. Let x;, be the p x 1 vector
giving the response for each of the p measured attributes of genotype 7 in envi-
ronment 7, fori = 1,...,n; r = 1,..., R. Let the observation vector x; (of
size Rp x 1) be given by

! ! ! !
X; = (X1, Xj2, -+, XiR)'s (1)

where x; contains the multiattribute responses of the i genotype in all R en-
vironments. Suppose that the vectors x;, are independently distributed, i.e., the
genotype responses are independent of one another in each environment, and
the response in one environment is independent of the response in another envi-
ronment. Note that this assumption does not rule out the existence of genotype
X environment interactions.

Suppose that each genotype belongs to one of K possible groups Gy, ... .,
Gk in proportions 1, ...,k respectively, where 37, = 1, and 7, > 0 for
k =1,...,K. Let fi(x;0) be the density function for the k" group Gy,
where 6y, is the vector which contains the parameters for group Gj. Then the
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density function of a genotype can be represented as the finite mixture

K
F8) = mfu(x;0k), )
k=1

where ¢ = (', 8') gives the vector of unknown parameters with = = (71,. ..,
nx) and @ = (@), ...,60%) .

The EM algorithm of Dempster, Laird, and Rubin (1977) is applied to
the finite mixture model by viewing the data as incomplete. In the case of
mixtures of distributions, the ‘missing’ data are the unobserved indicators of

group membership. Let z; = (21,...,2k)’, the vector of indicator variables,
be defined by
[ 1 if genotype € group Gy; 3)

Zik =10 if genotype i ¢ group Gy,
where z;,1 = 1,...,n, are independently and identically distributed accord-
ing to a multinomial distribution generated by one draw on a population of K
categories in proportions 7y, . .., Tx. We write

Z1,...,%n ~ Multg(1;m,...,TK). @

Let ¢ denote the maximum likelihood estimate of ¢. The estimated pos-
terior probability that genotype  belongs to group G, is given by

Zik = pr(genotypei € group G, I Xi; &)
7o fro (%15 Ox)

K .
Elfrkfk(xi;ok)

&)

for k = 1,..., K. Each genotype can be allocated to a group on the basis of
the estimated posterior probabilities. Hence genotype i is assigned to group G
if

s> s fork=1,... K; k#K. (©)

Under the mixture model proposed by Basford and McLachlan (1985), it
is assumed that the response of genotype ¢ in environment 7 has a multivariate
normal distribution if genotype i belongs to group Gy, i.e., Xir ~ N (g, L)
Note that with this assumption, the within group covariance matrix 5, does not
depend on the environment, however the mean in group G may differ across
environments.
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The maximum likelihood estimates of the unknown parameters can be
expressed as

1 n
e == %, )
n:
1=1
1 >
ier = — 3 ZyXsr , and 8
iy n'ﬁ'k gzzkxl’r y al ( )
R 1 & R
Y = E,;_; Z Z zzk (Xir — fugey ) (Xir — Pkr) ] ) 9)

i=1r=1
forr=1,...,R;andk =1,...,K.

This model covers the general situation where there may be some in-
teraction between genotypes and environments, an important characteristic of
the type of example considered here. Further details on this model can also be
found in McLachlan and Basford (1988, p. 176). Unfortunately this model does
not cope explicitly with data sets where not all attributes have been observed on
all genotypes.

2.1 The Model with Missing Data

We now extend the mixture model for three-mode three-way data to in-
clude explicitly data sets where data are missing at random. This model reduces
to the model described earlier when the data set has no missing entries.

Suppose we write x;, the response vector of genotype i in environment
7, in the form (X, ;> Xiniss i)’ Where Xops ; denotes the observed attributes
for genotype 4, and X5 i denotes the missing attributes for genotype i, both
in environment . This is a formal notation only and does not imply that the data
are rearranged to achieve this form. As the data are missing at random, we may
have different patterns of observed and missing data across the R environments
for each genotype.

In fitting the mixture model described under Equation (2), there are now
two types of missing data that have to be considered; one is the conceptual
‘missing’ data, i.e., the unobserved indicators of group membership {z;;}, and
the other is the unintended or accidental missing data values. In the hypothetical
‘complete data’, we would know both the group each genotype came from, and
the actual values of the missing attributes.

To apply the EM algorithm we first consider the complete data log-
likelihood, as given by

Lo(9) =1og | IT T1 = {fe(oc; 00}

i=1k=1
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1

K n K
=3 > zixlogme— %3 3 2 [Iog{(zﬂ)plgﬂ}
=1 k=1 <1521

R

3= {6 — ) B i — )} (10

r=1

DN[—

Let z;,; be the response for attribute j on genotype ¢ in environment r. It
can be seen from inspection of Equation (10) that the complete data sufficient
statistics for each group Gy, are

® Zn: Zik»
i=1

n
(i) Y zxxirj for each attribute j in each environment r, and
=1

n
(iil) . ZikTirj Tirj for each pair of attributes j and j " in each environment 7.
i=1

The EM algorithm alternates between the two calculations, the E and the

M step until convergence. At the ¢ iteration, let 05:) (containing the elements

of the component means ufctl) e ufctl){ and the distinct elements of the common

covariance matrix cht)) denote the current estimates of the parameters for group
Gy. The EM algorithm for the complete data requires the calculation of the ex-
pected values of the sufficient statistics, given the data and the current estimates
of the parameters. The maximum likelihood estimates for the complete data are
given by Equations (7), (8) and (9). However, the present data for genotype ¢
in environment 7 consist of X,p,, ;. We now describe the modifications needed
to calculate the maximum likelihood estimates of the parameters when data are
missing at random. The E step of the EM algorithm requires the calculation of

Q(¢, M) = E{Lc(9) | Xobs; 6™}, (11)

the expectation of the complete data log-likelihood, conditional on the observed
data and the current value of the parameters. We calculate Q(¢, ¢() by replac-
ing z;x with

B = 2,(,? = E(zi1, | Xobs,ir ; 99)

_ Kﬂ'kfk(xobs,ir 0) . (12)
Z kak(xoba,ir ;0)(:))

k=1

That is, z; is replaced by 2;;, the estimate of the posterior probability that
genotype 1 belongs to group G.
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The remaining calculations in the E step require the calculation of the
expected value of the complete data sufficient statistics conditional on the ob-
served data and the current values of the parameters. Depending on the at-
tributes observed for genotype ¢ in environment r, these expectations may re-
quire the use of the sweep operator described originally by Beaton (1964). The
version of sweep we use is the one defined by Dempster (1969); for other ac-
cessible references see Goodnight (1979) and Little and Rubin (1987, pp. 112-
119). Little and Rubin (1987) and Schafer (1997) demonstrate the usefulness of
sweep in maximum likelihood estimation for multivariate missing—data prob-
lems. Hunt (1996) and Hunt and Jorgensen (2001) implemented this approach
with mixtures of multivariate normal distributions for two-mode two-way data.
This latter approach is adapted in the following manner:

Suppose that we form the augmented covariance matrix Ag,, using the
current estimates of the parameters for the r** environment in group G such
that Ag, is given by

-1 Herl  Hkr2  ---  Hirp
Hkr1 Ok11 Ok12 ... Oklp

A, = | Hkr2 Ok21 -+ oo Ok2p | (13)
Hkrp Okpl Ces «-+ Okpp

fork=1,...,Kandr=1,...,R.

Suppose we index the rows and columns of A, from 0 to p. Then sweep-
ing A, on row and column j corresponds to sweeping on z;,;, and sweeping
on both row and column j and row and column 5’ corresponds to sweeping on
both z;; and x;,;. For further details on the properties of the sweep opera-
tor, see for example, Little and Rubin (1987). The sweep operator is closely
related to regression. Sweeping on the observed attributes x,,, ;- yields the
maximum likelihood estimates for the multivariate regression of the missing
attributes X5, 4 ON the observed attributes x5 ;» for genotype ¢ in environ-
ment r. Note that sweeping on a variable converts that variable from an output
variable into a predictor variable. Thus, we can find the predicted value of miss-
ing attributes for genotype 4 in environment 7 from the regression of X,is5, ir
on the attributes in X, i, €valuated at the current estimates of the parameters.

The remaining calculations in the E step are as follows:

E(2ixTirj | Xobs,ir; 9;(:)) = flkxw () Tirg ob.se.rved, (14)
26 E(Zirj | Xobs,ir; 0,’)  Tirj missing.
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t
E(zikxt; | Xobs irs O)
t

=FE (zik \ xobs,ir;gl(c)> E (mzzrj | Xobs,ir ;el(ct))

éz'kﬂ??”- ;rj observed, and
s (B (z; )
= { ik Tirjg | Xobs,ir 1 Uk (15)
g L
+Var (ac,-rj | Xobs,ir ; 0}, Tir;j Missing.
.,
For j # j',
E 2 Timi T . .g(t)
(zzkmzrszr]’ ixobs,zrv k )
( ZikTirjTij' z;rj and 4,5 observed,
~ t ..
ZikTir; E(@irj | Xobs,irs 9;(c )) T;r; observed, z;,; missing,
A t « .
2 E(Tirj | Xobs,ir; Oy ) Tiry: Tirj Missing, T observed,

Zik [E(l‘irj | Xobs,ir; 9;(ct))><
E(Iirj’ I Xobs,ir) 0](:))
\ + Cov (a:irj, Tirj' | Xobs,ir ;91(:))] Tr;j and T;;;+ missing.
(16)

It can be seen from the above expectations, that when there is only one fac-
tor z;-; missing, the missing T;r; are replaced by the conditional mean of
Zirj, given the set of values X,ps - Observed for that genotype in environ-
ment 7, and the current estimates of the parameters. However, for the con-
ditional expectations to be used in the calculation of the covariance matrix, Le.,

E(zixzi,; | xobs,ir;ei(ct)) and E(zikTirjTirj | xobs,ir§9}(ct))’ then respectively if
Tir; is missing, or if ;r; and z;,; are missing, the conditional mean of z;;
is adjusted by the conditional covariances as shown above. These conditional
means and the nonzero conditional covariances are found by using the sweep
operator on the augmented covariance matrix created using the current esti-
mates of the parameters. The augmented covariance matrix is swept on the
observed attributes Xps i such that these attributes are the predictors in the
regression equation and the remaining attributes are the outcome variables.

In the M step of the algorithm, the new estimates 6(t+1) of the parameters
are estimated from the complete data sufficient statistics:

. 1 &N,
ﬂ_l(ct—{-l) — E Z zz(l? ’ (17
i=1

L (t+1 1 LI ’
s = s (; 550 Tirj | Xobsyirs 9,(c)> , and (18)
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n

Egct;;rl) = %E ( ggjtc)mirjxirj’ | Xobs,irs 0](:)) - ﬂ;;;l)ﬂggt;/l) (19)
k i=1

Because of the adjustment required for the conditional means when both x;;;

and z;-;; are missing, it is convenient to use similar notation to that of Little

and Rubin (1987, p. 144). The conditional covariance between attributes j and

4! for genotype ¢ in environment r, given that genotype ¢ belongs in group Gy,

is defined as

C(t) B 0 if z;,; or ;- is observed,
kirjj' =

- .
Cov(Zirj, Tirj' | Xobs,irs 49,(c )) if z;r; and z;,j: are missing,
(20)
and the imputed value for attribute 5 of genotype ¢ in environment r, given the

current value of the parameters and that the genotype belongs in group Gk, is
defined as

1)

RO s if z;,; is observed,
Tirjk =

t . . .
E(Tirj | Xobs,irs 0,(c )) if z;-; is missing.

The parameter estimates for the mean and the variance or covariance
terms can be written in the form

n

cny 1 NORC
'u'k’l‘j ) = n—frk;zik xi’l‘_)j,k’ and (22)

R 1 &
t+1 (T ~(t ~(t+1 ~ (1 ~(t+1 t
chjj') = nhr ;zzgk) [(a"gr.)jk - ugc'rj ))(xz('r)j',k - Nscrj' )) + Cl(ci)r,jj'] (23)

forj,j’ =1,...,pand k = 1,..., K. These estimates are analogous to those
put forward by Hunt (1996) and Hunt and Jorgensen (2001) for the two-mode
two-way situation.

2.2 Evaluation of the Missing Data Model

As we are primarily interested in clustering three-mode three-way data
where data are missing at random, the model with missing data will need to
be evaluated. It can be seen from inspection of Equation (21) that there are
K estimates for each missing value z;;, as the estimated value for attribute
j of genotype 7 in environment r is conditional on the attributes observed for
that genotype in that environment and the current estimates of the parameters
for group Gy, (k = 1,...,K). Each genotype 7 has an estimated posterior
probability Z;; of belonging to each group G. These K estimates are thus
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combined to produce a single estimate Limpute, irj Where
K
ﬁimpute,irj = Z 2ik£irj,k . (24)
k=1

This formulation is analogous to the multiple imputation described by
Rubin (1987) in the context of sample surveys where the unknown missing
data are replaced by a certain number, say m, simulated values, and each of
the corresponding completed data sets is analyzed by complete data methods.
See Rubin (1987) and Schafer (1997, pp. 104-119) for a discussion of the
properties the simulated values must possess for multiple imputation to yield
valid inferences, and on choosing the value of m. The m point estimates of
the parameters from the m completed data sets are then combined to produce
an overall point estimate of the parameters. Rubin (1987, Chapter 3) gives the
multiple imputation point estimate for the mean to be the average of the m
complete data point estimates.

We will evaluate the model with missing data by comparing the clus-
ter assignment of the genotypes in the complete data set with those from the
data set with missing values. The FORTRAN program! written for this anal-
ysis, outputs an ‘imputed value complete’ data set that may be used in further
analysis where each missing attribute value is replaced by an imputed value
calculated according to Equation (24). The cluster assignment of this ‘imputed
value complete’ data set will also be investigated as further evaluation of the
model. Note that these evaluations can be made here as missing values were
artificially introduced into a complete data set.

3. Application

The three-way soybean data set first reported by Mungomery, Shorter,
and Byth (1974) and analyzed in Basford and Tukey (1999) was chosen to il-
lustrate this approach to clustering data. The data originated from an experi-
ment in which fifty-eight soybean genotypes were evaluated at four locations,
Redland Bay, Lawes, Brookstead, and Nambour, in south-eastern Queensland
in Australia in 1970 and 1971. The experiment was a randomized complete
block design with two replications in each location. We will refer to the eight
location-year combinations as environments. Several chemical and agronomic
attributes were measured on the genotypes, including seed yield (kg/ha), height
(cm), lodging (rating scale), seed size (g/100 seeds), seed protein percentage,
and seed oil percentage. Basford and McLachlan (1985) analyzed only two at-

IThe FORTRAN code for this program is available by e-mail to the first author.
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tributes, yield and protein, whereas McLachlan and Basford (1988) analyzed
all six, assuming a mixture of multivariate normal distributions.

The data values analyzed in this paper are the mean response over the two
replicates in each environment for these six attributes: yield, height, lodging,
seed size, protein percentage, and oil percentage. However, four of the replicate
values were replaced by conservative estimates obtained by a data laundry, as
detailed in Basford and Tukey (1999, p. 288). The attribute of lodging was orig-
inally recorded on a rating scale from one (plant upright) to five (plant prone).
This attribute can be taken as either a continuous or a categorical variable (see
Hunt and Basford 1999). For the current analysis, we shall consider it to be
continuous.

As all six attributes are observed for all genotypes in each environment,
missing data were created, where the probability of an observation on a attribute
being missing was taken independently of all other data values. Note that miss-
ing values thus generated are missing completely at random, and the missing
data mechanism is ignorable for likelihood based inferences (Little and Rubin
1987; Schafer 1997).

Missing values were created by assigning each attribute of each genotype
in each environment a random digit generated from the discrete [0, 1] distribu-
tion, where the probability of a zero was taken respectively as 0.10, 0.15, 0.20,
and 0.25. Attributes on a genotype in an environment were recorded as missing
when the assigned random digit was zero. This process was repeated twelve
times for each of the probabilities chosen. In this paper, we report fully the
results taken from one pattern of missing data where the probability of an ob-
servation on an attribute being missing was 0.15. This approach illustrates the
proposed methods on a fairly realistic case of real data that would be analyzed
using these techniques.

The data set reported in detail here had 403 values recorded as miss-
ing. These missing values were such that no genotype had all six attributes
missing in any environment, while over all environments the genotypes had all
attributes observed 181 times. The percentage of missing values recorded for
each attribute ranged from 11.64% to 16.59%. The data set has a moderate
amount of missing information, and clustering the data was considered to be a
good test of the model’s ability to recover the distributional structure known to
be present.

The mixture method of clustering requires the underlying number of
groups to be fitted to the model to be specified. Determination of the appro-
priate number of underlying groups is still an unresolved problem, and there
does not appear to be a universally superior method of determining the group
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Table 1
Cluster Composition for the Soybean Genotypes

Group Genotypes Number

within group in Group
G, 51,52,58 3
Gs 44,46, 54 3
Gs 45,47, 48, 49, 50, 53, 55,56, 57 9
Gy 3, 4,5 6, 7, 8 9,10, 8
Gs 1, 2,14,15,16,24,25,28,31, 32, 34, 35, 38 13
Ge 26,27,33,39,40,41, 42 7

Gy 11,12,13,17, 18, 19, 20, 21, 22, 23, 29, 30, 36, 37, 43 15

number (see for example, Celeux and Soromenho (1996) and the references
therein). The problem of determining the group number is peripheral to the
theory presented in this paper, and we shall consider fitting seven clusters to the
model. This decision was based on previous investigations into appropriately
summarizing the information in this data set (Basford and McLachlan 1985, p.
116; McLachlan and Basford 1988, p. 180).

We regard the data as a random sample from the distribution

7 8

Flxisd) =Y mp [T fr(xir; Ok), (25)

k=1 r=1

where fi,(Xir; 0x) is the Ng(py,, Li) distribution.

This model was fitted iteratively using the EM algorithm with an initial
grouping based on the cluster assignments from the model fitted by Basford and
McLachlan (1985). To search for other maxima, the model was also fitted from
other classifications generated by splitting the observations into seven groups
using various criteria. Several local maxima were obtained, and the solution of
the likelihood was taken to be the one corresponding to the largest of these and
corresponded to a log-likelihood of —1620.898 (calculated to base e).

Each genotype was assigned to the group to which it had the highest
estimated posterior probability of belonging (Table 1). In comparison with the
result reported in McLachlan and Basford (p. 181, 1988), five genotypes were
assigned to different groups. Whilst groups G1, G2, and G3 are identical, G5
now has genotype 25 (instead of its belonging to G4) and genotypes 24, 32, and
38 (instead of their being in Gg), and G contains genotype 40 (instead of it
being in G7). The smallest value of the maximum of the estimated posterior
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Figure 1. Mean Days to Flowering for each of the Soybean genotypes within each Group

probabilities over the seven groups is 0.999995, indicating that the genotypes
are clustered into the seven groups with a high degree of certainty.

During the experiment, the number of days from planting to the day on
which 50% of the plants had at least one open flower was recorded on four of
the eight environments - Lawes in 1970, Nambour in 1971, Redland Bay in
1970 and 1971. As the usual maturity group classifications (see Basford and
McLachlan 1985; Basford and Tukey p. 6, 1999) are based on days to flow-
ering, the differences in the group composition between the model described
above and that reported in Basford and McLachlan (1985) will be investigated
by looking at the mean over the four environments of the number of days to
flowering for each genotype. Figure 1 displays the mean days to flowering for
the genotype assignment reported in Basford and McLachlan (1985) with the
change in the assignment of a genotype to a group under the model reported
in this paper being shown in the direction of the arrow. We see from Figure 1
that the groups consist of two basic subsets that could always be distinguished.
One subset contains groups G'1, G2, and G'3, which are comprised of the early
maturing varieties, and the other subset contains groups G4 to Gz which are
comprised of the mid to late maturing varieties. We see that all five changes in
genotype assignment when fitting the model described in Equation (25) to the
data with missing attributes are reasonable changes with respect to the mean
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days to flowering.

The model given in Equation (25) was fitted to the ‘imputed value com-
plete’ data set from various initial groupings. Several local maxima were ob-
tained, and the solution of the likelihood was taken to be the one corresponding
to the largest of the maxima. Each genotype was then assigned to the group to
which it had highest estimated posterior probability of belonging. An examina-
tion of the cluster assignments for the genotypes found that these were identical
to those reported for the incomplete data.

As we increased the probability of an observation on an attribute being
missing, we found that the program frequently halted because of the observed
data covariance matrix not being of full rank and having a zero determinant.
This difficulty was not observed for data sets where the probability of an obser-
vation on an attribute being missing was 0.10, but occurred in two of the twelve
data sets where the probability was 0.15. When fitting models to data sets cre-
ated using the probability of an attribute being missing of 0.20 and 0.25, this
problem increased greatly, indicating that the clustering was very dependent on
the amount of missing data. This problem is associated with small samples,
high rates of absence, and models that are clearly over-parameterized relative
to the amount of information in x5 (Schafer 1997, p. 54). In fitting the model
given by Equation (25) , we are estimating a total of 195 parameters which have
been calculated by imputing the conditional expectations of z;j, given the at-
tributes observed for observation x;, and that X;, is in group G. The complete
data set is a 58 x 6 x 8 array, and for the data set reported in this paper, we have
a total of 403 missing values. The model is clearly overparameterized.

Basford and Tukey (1999, pp. 30 - 33) report a grouping of the soybean
data into three maturity classes based on the days to flowering. This grouping
is where basically the genotypes in groups G1, G2 and G3 comprise one group
G?, while the other two groups G and G consist of the genotypes in groups
G4 to G7. In fitting a mixture model with three groups, 74 parameters need to
be estimated for the soybean data. The data sets created with approximately
25% of the attributes missing included sets where all attributes were missing in
at least one environment. We found that the techniques proposed in this paper
could detect the structure in the data whilst coping with this extreme amount
of missing data. The model was always able to distinguish between the well
separated clusters G} and G or Gj for the data sets fitted and was able to
distinguish fairly well between the two overlapping clusters G and G3.

4. Discussion

The finite mixture model approach to clustering has been well devel-
oped and much used, especially for mixtures where the component distributions
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are multivariate normal (Titterington, Smith, and Makov 1985; McLachlan and
Basford 1988). There has been much interest recently in the analysis of in-
complete data (see for example Rubin 1996, and the monographs by Little and
Rubin 1987; Schafer 1997 and the references therein).

The mixture model was specified for three-mode three-way data for con-
tinuous attributes (Basford and McLachlan 1985; McLachlan and Basford 1988,
pp. 173 - 189), and mixed categorical and continuous attributes (Hunt and Bas-
ford 1999). Little and Schiuchter (1985) presented maximum likelihood proce-
dures for analyzing mixed continuous and categorical data with missing values.
Those authors pointed out that their algorithm provides an extension of the mix-
ture model approach to incomplete data. Hunt (1996) and Hunt and Jorgensen
(2001) demonstrated this approach for mixtures where the component densities
are multivariate normal. This paper extends the approach to cope explicitly with
incomplete three-mode three-way data where the attributes are continuous.

Schafer (1997, p. 163) pointed out that rows of the data that are com-
pletely missing make no contribution to the observed data log-likelihood, and
they slow convergence of the algorithm by increasing the fraction of missing
information. He recommended that the individual with all attributes recorded
as missing should be deleted from further analysis. For three-way data, deleting
a genotype that has all attributes recorded as missing in environment r would
mean that the information collected on that genotype in the remaining R — 1
environments would have to be deleted. This would result in an analysis of
only those genotypes that had some attributes measured in all environments and
would appear to introduce bias. Consequently in three-way data, a genotype
that has all attributes missing in one particular environment and has attributes
partially recorded in the remaining environments, should remain in the analysis
when the data are missing at random.

As with fitting mixture models to two-mode two-way data, the likelihood
equation for three-mode three-way data may have multiple roots, and thus the
algorithm needs starting from a range of parameter values. Since each iter-
ation of the EM algorithm is guaranteed never to decrease the observed data
log-likelihood (Dempster, Laird, and Rubin 1977), convergence of the algo-
rithm was accomplished by monitoring changes in both the observed data log-
likelihood and the determinants of the group covariance matrices. This strategy
detected multiple modes, likelihood ridges, and estimates on the boundary of
the parameter space. Schafer (1997, pp. 51 - 55) pointed out that these traits are
an inherent feature of the observed data log-likelihood that would impact any
optimization method and are not a shortcoming of the EM algorithm.

We conclude from our investigations that the approach implemented in
this paper works quite well for three-mode three-way data where attributes are
missing at random. The investigation has shown that meaningful structure can
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be detected using these techniques. However as with all problems involving
missing data, the mechanism that leads to the missing values does need careful
investigation.
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