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SUMMARY

We present a new method to compress and invert 3D integral operators on rectangular non-regular
grids. This method requires a small amount of memory to store the compressed matrix and in most
cases can provide a good preconditioner for the solution of linear systems with this matrix. We
demonstrate efficiency of this method for the solution of some model discrete problems associated with

Z

IR3

A(x̄, ȳ)f(x̄)dx̄ = u(ȳ), x̄, ȳ ∈ IR3

where A(x̄, ȳ) such as
1

|x̄ − ȳ|
is considered on a non-regular grid. The arithmetical complexity of

matrix-vector and preconditioner-vector multiplications are about N 4/3 operations and there are only
about N2/3 words of memory to store.
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1. INTRODUCTION

We discuss the approximation by small-rank structures of matrices generated by integral
operators on rectangular non-regular grids. The grid is a parallelepiped with different lengths
of edges as shown in Fig. 1. This problem is important because the integral operator generates
dense matrices — if we have a 3D problem on the N = n × n × n mesh, the matrix elements
need n6 words of memory. If the integral operator depends only on the distance such as

1

|x̄ − ȳ|
,

and the regular grid is used, then it is possible to use a Toeplitz structure of this matrix and
store this matrix in n3 words of memory and multiply it for n3 log2 n arithmetical operations.

Nowadays there are several well known approaches working with different types of integral
operators: the multipole method of Rokhlin [1], the mosaic-skeleton approximation method of
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2 ILGHIZ IBRAGHIMOV

Figure 1. An example of a rectangular non-regular grid.

Tyrtyshnikov [2], the panel-clustering method [3, 4] and H-matrix approach [5, 6] of Hackbusch
and some other methods [7, 8]. All these methods are based on the idea of splitting discrete
matrices generated by the integral operator to the set of blocks with a small rank, then each
block is decomposed to factors by SVD-like approximation or by special type of functions
(in the multipole method). If the rank of these blocks is small enough, SVD factors require a
smaller amount of memory to store the matrix than the original block. In addition, it is possible
to reduce the number of arithmetical operations required for one matrix-vector multiplication.

In this work we present a new idea for splitting the initial matrix. Suppose the initial matrix
is presented as follows:

A(x̄, ȳ) = A(x1, x2, x3, y1, y2, y3) ∈ IRn1n2n3×n1n2n3 ,

x̄ = (x1, x2, x3), ȳ = (y1, y2, y3) ∈ IRn1n2n3 .

We decompose this matrix in the following form:

A(x̄, ȳ) '

r
∑

l=1

bl(x1, y1)cl(x2, y2)dl(x3, y3), (1)

then we need to store only 3rn2 words of memory instead of n6. If r is small enough, it gives
us an extremely high compression rate.

Here and later we use n = n1 = n2 = n3 in some cases to demonstrate the general behavior
of arithmetical complexity.

In this article we discuss the main properties of this decomposition:

• how to create this decomposition if we know all matrix elements or only parts of them
(if we need all matrix elements stored at the same time, then this method requires n6

words of memory which is not advisable);
• how to make matrix-vector and preconditioner-vector multiplications.
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APPLICATION OF THE THREE-WAY DECOMPOSITION FOR MATRIX COMPRESSION 3

2. KRONECKER PRODUCT DECOMPOSITION

We need a well known Kronecker product technique to understand how to perform the
decomposition (1). If B ∈ IRm1×n1 and C ∈ IRm2×n2 , then their Kronecker product B ⊗C

is an m1 ×n1 block matrix whose (i, j) block is the m2 ×n2 matrix bijC. The basic properties
of the Kronecker product are well known:

(B ⊗ C)∗ = B∗ ⊗ C∗,

(B ⊗ C)−1 = B−1 ⊗ C−1,

(B ⊗ C)(D ⊗ F ) = BD ⊗ CF,

B ⊗ (C ⊗ D) = (B ⊗ C) ⊗ D

In 1992 Van Loan and Pitsianis [9] showed how to solve

min
B,C

||A − B ⊗ C||F ,

where A ∈ IRn1n2×n1n2 , B ∈ IRn1×n1 , C ∈ IRn2×n2 . This problem then becomes the following
problem:

min
B,C

||P (A) − vec(B)vec(C)∗||F ,

where P is a matrix operator which permutates entries of A, and vec(B) ∈ IRn2

1 , vec(C) ∈ IRn2

2

are vectors containing all entries of B and C respectively, so it is possible to approximate A

by

r
∑

l=1

Bl ⊗ Cl,

and if good accuracy is achieved for the sum of r Kronecker products of matrices, then the
compression factor is equal to

n2

1
n2

2

r(n2

1
+ n2

2
)
.

If we approximate our matrix by one Kronecker product matrix, we can easily invert it
within n3 arithmetical operations using the basic properties of the Kronecker product. For the
class of pairs of Kronecker products we can use the following idea:

(B1 ⊗ C1 + B2 ⊗ C2)(X1 ⊗ X2) = [B2X1(D1 + I)] ⊗ [C2X2(D2 + I)],

B1X1 = B2X1D1, C1X2 = C2X2D2,

then we should first solve a generalized eigenvalue problem twice and invert X1, X2, B2X1

and C2X2. Again, this takes about n3 arithmetical operations.
In this article we generalize this approach for the 3-dimensional case. We are searching for

the decomposition of the initial array A(x̄, ȳ) ∈ IRn1n2n3×n1n2n3 as follows:
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4 ILGHIZ IBRAGHIMOV

min
B,C,D

||A −

r
∑

l=1

Bl ⊗ Cl ⊗ Dl||F ,

Let us join all pairs of indeces of (x1, y1), (x2, y2), (x3, y3) to new 3 indeces i, j, k, then this
problem assumes the following form:

min
B,C,D

∑

i,j,k

∣

∣

∣

∣

∣

aijk −

r
∑

l=1

bilcjldkl

∣

∣

∣

∣

∣

2

. (2)

Actually, it is a three-way decomposition problem [10, 11] and it is well known in statistics.
In the next chapter we will discuss how to find this decomposition for two cases:

• All entries of A are given; r is given or should be as small as possible. This problem we
call the dense three-way decomposition.

• We have a priori information that r is small enough; we can compute any entry of
A, but we do not want to compute and store all of them because of the degree of
arithmetical complexity and memory requirements. This problem we call the sparse
three-way decomposition.

Suppose we can compute factors B, C, D in (2). Can we multiply fast A to the vector
t(y1, y2, y3) ∈ IRn1n2n3? The answer is shown in the following formula:

At =
∑

y1,y2,y3

A(x1, x2, x3, y1, y2, y3)t(y1, y2, y3) =

r
∑

l=1

∑

y1,y2,y3

bl(x1, y1)cl(x2, y2)dl(x3, y3)t(y1, y2, y3) =

r
∑

l=1

bl(x1, y1)
∑

y1

pl(y1, x2, x3), (3)

pl(y1, x2, x3) =
∑

y2

cl(x2, y2)ql(y1, y2, x3),

ql(y1, y2, x3) =
∑

y3

dl(x3, y3)t(y1, y2, y3).

Hence, the arithmetical complexity of this matrix-vector multiplication is rn1n2n3(n1+n2+n3)
operations.

Let us generalize an inverse 3D Kronecker product. We are searching for the following exact
decomposition:

∀l = 1, . . . R :

Bl ⊗ Cl ⊗ Dl = (X1 ⊗ X2 ⊗ X3)(Z1,l ⊗ Z2,l ⊗ Z3,l)(Y1 ⊗ Y2 ⊗ Y3), (4)
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APPLICATION OF THE THREE-WAY DECOMPOSITION FOR MATRIX COMPRESSION 5

If Z1,l are diagonal, we can easily invert this matrix with only n3 arithmetical operations. This
decomposition can be found the following way:

Bl ' X1Z1,lY1,
Cl ' X2Z2,lY2,
Dl ' X3Z3,lY3.

Here the sizes of matrices Bl, Cl, Dl are small enough and there is no reason to discuss the
sparse three-way decomposition.

The solution of the linear system with this preconditioner is based on the idea of multiplying
the compressed matrix by the vector shown in (3). The multiplication to this preconditioner
requires only n1n2n3(1+2(n1 +n2 +n3)) arithmetical operations, but the computation of X1,
X2, X3, Y1, Y2, Y3 requires 3 times the three-way decomposition and 6 times the computation
of the inverse matrices. Here we should remark that the matrices X and Y should be well
conditioned and we need the three-way decomposition to be restricted to the condition number
of the matrix.

Thus we have demonstrated the techniques which we are going to use to create the
compressed matrix form and the preconditioner. Now we need to discuss how to create the
three-way decomposition.

3. DENSE THREE-WAY DECOMPOSITION

In this chapter we will make a short overview of the methods and properties of the dense
three-way decomposition. Suppose the three-way array is

aijk , i = 1, . . . , m1, m1 = n2

1
,

j = 1, . . . , m2, m2 = n2

2
,

k = 1, . . . , m3, m3 = n2

3.

Suppose a triad is aijk = αbicjdk. Let

B = {bil} i = 1, . . . , m1

C = {cjl} j = 1, . . . , m2

D = {dkl} k = 1, . . . , m3

l = 1, . . . , r

E = diag(α1, . . . , αr),

||bl||2 = ||cl||2 = ||dl||2 = 1,

then

A = [B, C, D, E],

i.e.

aijk =

r
∑

l=1

αlbilcjldkl.
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6 ILGHIZ IBRAGHIMOV

In 1977 Kruskal [12] proved the following theorem:
Theorem 1. Suppose every I0 columns of B are independent, every J0 columns of C are

independent and every K0 columns of C are independent. Suppose

I0 + J0 + K0 ≥ 2r + 2.

Then

[B, C, D, E] = [BP, CP, DP, E].

where P is only a matrix of transposition.
This result is contrary to 2D decomposition — SVD:

BC∗ = (BT )(T−1C∗),

where T is any nonsingular matrix.
At present there are several approaches for computation of the three-way decomposition.

3.1. Parallel Factor method

Harshman and Lundy [13] suggested a monotonically converging algorithm called Parallel
Factors for minimizing (2). Let r be definite, freeze any two of B, C, D, and the functional is
linear in the third. For example, if we temporarily fix the matrices C and D, then we seek B̃

so

min
B̃

||Ã − B̃Q∗||2F

is minimized. Here Ã ∈ IRm1×m2m3 is constructed from the original 3D array A joining the
second and the third dimensions, Q = (c1 ⊗ d1, . . . , cr ⊗ dr) ∈ IRm2m3×r. The new B and E

are then defined by B̃ = BE, where B’s columns have unit l2 norms. This is a standard least
squares problem, which can be simplified as follows:

B̃∗ = [(C∗C) � (D∗D)]
−1

H, hli =
∑

jk

aijkcjldkl, (5)

where � means the element-wise product of matrices.

3.2. Regularization

The Parallel Factor approach has poor convergence properties. Sometimes it runs in local
minima [14] and/or it needs an extremely large amount of iterations. Usually it happens when
two |αl| become very large, and when corresponding triads are almost collinear to each others
but have different signs.

In this work we suggest a new approach to improve the convergence. We perform a
Tikhonov’s regularization [15] and instead of problem (2) we solve the following problem:

min
B,C,D,α

∑

i,j,k

∣

∣

∣

∣

∣

aijk −

r
∑

l=1

αlbilcjldkl

∣

∣

∣

∣

∣

2

+ β

r
∑

l=1

α2

l .
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APPLICATION OF THE THREE-WAY DECOMPOSITION FOR MATRIX COMPRESSION 7

where β > 0 is Tikhonov’s parameter of the regularization. Hence, the computation of each
step (see (5)) will follow the formula:

B̃∗ = [(C∗C) � (D∗D) + βI ]
−1

H.

In this method [(C∗C) � (D∗D) + βI ] is far from the singular matrix, then it prevents the
deadlocks with large |αl| during convergence. This method can considerably reduce the total
amount of iterations. Control of β is the subject of a different paper, but it should be large
enough at the beginning and decrease during iterations.

Problem (4) needs X and Y to be well conditioned. In our current notations there are C

and D, so we will consider (2) with a penalty function being definite as the sum of condF (C)
and condF (D):

min
B,C,D,α

∑

i,j,k

∣

∣

∣

∣

∣

aijk −
r
∑

l=1

αlbilcjldkl

∣

∣

∣

∣

∣

2

+ γ (condF (C) + condF (D)) . (6)

The minimization procedure for this functional is nontrivial. We suggest a new approach for
it: express D and α analytically and minimize them by only two matrices:

min
C,D

||ÃZ||2F + γ (condF (C) + condF (D)) .

where Z ∈ IRr×m2m3 contains an orthonormal subspace of the matrix Q. Now we can compute
the minimum using quasi Newton methods, but we need to compute the gradient for these
methods. It is possible to apply the Baur-Strassen algorithm for analytical computation of the
gradient [23], but it will take r times more memory than during computation of the function.

Recently the computation of gradients for similar kinds of functionals was discussed in
[25] and it was shown that it is possible to compute the gradient by all entries of B and C

analytically and that the arithmetical complexity and memory requirements will be only 3
times bigger than the computation of the function.

3.3. Tucker approach

If r is much smaller than m1, m2 or m3, then, for given r1, r2 and r3:

B = UBB′, UB ∈ IRm1×r1 , B′ ∈ IRr1×r, r ≤ r1 ≤ m1,
C = UCC ′, UC ∈ IRm2×r2 , C ′ ∈ IRr2×r, r ≤ r2 ≤ m2,
D = UDD′, UD ∈ IRm3×r3 , D′ ∈ IRr3×r, r ≤ r3 ≤ m3,

where UB, UC , UD are unitary matrices. It is possible to compute B′, C ′, D′ and UB, UC , UD

independently. This idea was originally introduced by Tucker [16] and developed by Kronenberg
and de Leeuw [17]. Consider that (2) decomposes to the following two problems:

min
G,UB ,UC ,UD

∑

i,j,k

∣

∣

∣

∣

∣

∣

aijk −

r1
∑

i′

r2
∑

j′

r3
∑

k′

gi′j′k′UBii′
UCjj′

UDkk′

∣

∣

∣

∣

∣

∣

2

. (7)

min
B′,C′,D′

∑

i′,j′,k′

∣

∣

∣

∣

∣

gi′j′k′ −

r
∑

l=1

αlbi′lcj′ldk′l

∣

∣

∣

∣

∣

2

, (8)
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8 ILGHIZ IBRAGHIMOV

If (7) is exactly zero, then the solution of (8) and (7) gives the same result as (2), otherwise
it could be a good approximation to the solution [18]. Here the array gi′j′k′ is called a core
array. The problem (8) is equal to (2) but contains smaller dimensions.

The algorithm that computes the core is similar to Parallel Factors: freeze any two of UB ,
UC , UD, and the functional is linear in the third. For example, if we temporarily fix UC and
UD matrices, then we seek ŨB and, as UC and UD are orthonormal, it leads to

min
G,UB

∑

ij′k′





∑

jk

aijkUCjj′
UDkk′

−
∑

i′

UBii′
gi′j′k′





2

.

It is easy to see that this problem is again a least squares problem, where UB contains left
singular vectors of the matrix

Wi,{j′k′} =
∑

jk

aijkUCjj′
UDkk′

,

and the core can be obtained from its right singular vectors. In the Tucker’s algorithm r1, r2

and r3 should be given. We do not need the regularization because UB , UC , UD are unitary
matrices. The main advantage of this algorithm is better convergence: during computations of
the core it is usually better than in Parallel Factors because B ′, C ′ and D′ can be chosen as
orthonormal.
Statement 1. If the initial data have no noise at all, then UB, UC, UD can be computed as
the left singular vectors of matrices created from A by joining (2nd and 3rd), (3rd and 1st),
(1st and 2nd) dimensions respectively.

This statement is evident if we remark that in the case of no noise the problem (7) is exactly
zero. In the general case, Tucker’s algorithm still has only monotonical convergence. One
iteration of the Parallel Factors algorithm depends linearly on the size of the initial problem.
If r1r2r3 is reasonably smaller than m1m2m3, then the three-way decomposition with Tucker’s
approach works much faster [18].

A very important problem in nonlinear minimization is to compute an initial approximation.
This subject was discussed by Leurgans, Ross and Abel [19]. The most popular initial
approaches are based either on one iteration of Tucker’s algorithm or on the generalized
eigenvalue decomposition of A1 and A2 [24].

3.4. Parallel Decomposition method

Recently, the author suggested a new approach [20] to solve the three-way decomposition in
the case where R is given and any pair out of B, C and D have full column rank. If A has
an exact decomposition then this algorithm has a linear convergence. This approach can be
written with the help of the following two statements [20]:
Statement 2. If an exact solution of the three-way decomposition of {aijk} with size
m1 × m2 × m3 contains at least two matrices with full column rank r, then it is possible
to transform this problem to another three-way decomposition {xijk} with size r × r ×m3 and
the corresponding factors of the solution of new problem will be quadratic nonsingular matrices.
Statement 3. Suppose {aijk} with the size r × r × m3 has an exact three-way decomposition
with two quadratic nonsingular factors B and C. Then there is an algorithm to compute
independently at least one triad.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; PRISM’01:1–16
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APPLICATION OF THE THREE-WAY DECOMPOSITION FOR MATRIX COMPRESSION 9

The main idea is to transform the problem (2) to

min
B,T,D

∑

i,l,k

∣

∣

∣

∣

∣

∣

∑

j

aijktjlα
−1

l − bildkl

∣

∣

∣

∣

∣

∣

2

, and min
S,C,D

∑

l,j,k

∣

∣

∣

∣

∣

∑

i

aijksilα
−1

l − cjldkl

∣

∣

∣

∣

∣

2

,

where S = B−∗, T = C−∗. Then we have to solve r optimization problems with 2r unknowns
instead of one minimization problem with r2 unknowns and several local minima. These
optimization problems are simple, because if we compute at least one local minima, then
we find a corresponding triad and can subtract it from the initial data using Statement 2
and finally repeating the decomposition. Another advantage of this method is the implicit
computations of B−∗ and C−∗ which are needed for the preconditioner (see (4)).

The computational complexity is r4 log2 r arithmetical operations with a big constant and
r5 with a small constant. Since the Kronecker rank of the initial problem is small enough, the
great computational complexity only affects the creation of the preconditioner.

4. SPARSE THREE-WAY DECOMPOSITION

Our main goal is to compress large n3 × n3 matrices and avoid, if possible, the storage and
computation of all n6 matrix elements. Since the rank of the three-way decomposition is small
enough, we should define only 3rn2 unknowns. Nowadays, there are some approaches described
in the review [18] where it is possible to handle three-way arrays with some elements missing.
However those methods are not suitable for our purposes because they deal with 10− 20% of
missing data. In our case we want to compute only about n2 matrix elements which can be
considerably less than 1% of the total amount.

In this work we write down the Parallel Factor algorithm and its high performance
implementation for the sparse case. In addition we suggest a new approach to deal with the
sparse three-way decomposition when the total number of triads are considerably less than n2.

4.1. Parallel Factor algorithm for sparse three-way decomposition

We assume that {aijk} array has some elements missing, so the problem is to compute:

min
B,C,D,α

∑

i,j,k

gijk

(

aijk −
r
∑

l=1

αlbilcjldkl

)2

,

where gijk = 0, 1, #{gijk = 1} = s.
Suppose A ∈ IRs, I ∈ INs, J ∈ INs, K ∈ INs are arrays containing nonzero entries and their

three-dimensional indices of aijkgijk. Then, to compute this approximation, we will use the
Parallel Factor algorithm, so freeze any two of B, C, D, and the functional is linear in the
third. For example, if we temporarily fix the matrices B and C, then we seek D and α so

Algorithm 1.

do k = 1, m3

for µ, ν = 1, . . . , r:

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; PRISM’01:1–16
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10 ILGHIZ IBRAGHIMOV

hµν =
s
∑

λ=1

δ(Kλ, k)bIλ,µcJλ,µbIλ,νcJλ,ν

for µ = 1, . . . , r:

tµ =
s
∑

λ=1

δ(Kλ, k)AλbIλ,µcJλ,µ

Solve the linear system:

r
∑

ν=1

hµν(dkναν) = tµ, µ = 1, . . . , r

enddo

where δ is a discrete δ-function.
Here we need sr2 + (m1 + m2 + m3)r

3 arithmetical operations. During most of the
computational time we should fetch data randomly from the memory sr2 times. Since this
does not produce good computational performance we suggest transforming this algorithm to
an equivalent algorithm with a better performance. Then we need additionally m1 + m2 + m3

index arrays Indi(ξ), Indj(ξ), Indk(ξ) to point to λ when δ(Iλ, i), δ(Jλ, j) and δ(Kλ, k) are
nonzero respectively. It is easy to see that the total memory requirement for them is 3s — the
same as for I , J , K arrays. Finally, the algorithm looks like the following:

Algorithm 2.

do k = 1, m3

H = 0
t = 0
do ξ = 1, Size-Of(Indk)

λ = Indk(ξ)
do µ = 1, r

wµ = bIλ,µcJλ,µ

tµ = tµ + AλbIλ,µcJλ,µ

enddo

H = H + ww∗

enddo

Solve the linear system:

r
∑

ν=1

hµν(dkναν) = tµ, µ = 1, . . . , r

enddo

Hence, all three steps for updating B, C, and D need 4sr+sr2+(m1+m2+m3)r
3 arithmetical

operations, but only 4sr arithmetical operations need random fetches from memory.
We compared both algorithms on AMD Athlon 1200 and obtained the following

computational performance (Table I). We can see that the second algorithm is almost 5-
10 times faster (when r is big enough) and reaches 400 MFlop/s which is good enough for
the real applications (the peak is 1200 MFlop/s). The same type of Tikhonov’s regularizator
can be applied, so we need to substitute the matrix in the “solution of linear system” step as
follows:

r
∑

ν=1

(hµν + β)(dkναν) = tµ, µ = 1, . . . , r.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; PRISM’01:1–16
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APPLICATION OF THE THREE-WAY DECOMPOSITION FOR MATRIX COMPRESSION 11

Table I. Computational performance (in MFlop/s) for one iteration by different algorithms for different
problem size on AMD Athlon 1200

r n s Algorithm 1 Algorithm 2

1 30 2700 0.39 0.22
1 30 270 0.27 0.14
1 100 3 × 105 4.1 2.7
1 100 3 × 104 4.0 2.6
10 100 3 × 105 23 84
10 100 3 × 104 22 81
100 100 3 × 105 53 487
100 100 3 × 104 53 483

4.2. Tucker-like reduction for sparse three-way decomposition

In this article we suggest a new approach for dealing with sparse three-way decomposition. It
contains the following steps:

1) computation of Tucker’s factors for the sparse data;
2) computation of a dense core array for the sparse data;
3) application of all methods described in the previous section to compute three-way

decomposition for this core array, and finally compute the three-way factors for the
original sparse three-way data.

We will now discuss how to perform the first and the second steps. To compute the Tucker’s
factors we can use the idea from Statement 1. Suppose we are going to compute the factor
UB , then we should compute an orthonormal subspace of the left singular values of the

matrix {Ãi,{j,k}} ∈ IRn2

1
×n2

2
n2

3 , where {j, k} means the 2nd and the 3rd indices are joined. To
compute the orthonormal subspace of the left singular values we need no more than r linearly
independent columns of Ã. The last problem is similar to problems discussed in [2, 7, 8] where
it was suggested to pick the biggest r + ε columns, so that ε is smaller than an order of r.
Hence, we can compute all factors of Tucker’s decomposition.

Since we consider that (7) is exactly zero, we can take any linearly independent r1, r2, r3

rows of UB , UC , UD and restrict the initial array {aijk} by the array {ãi′′j′′k′′} with the size
r1 × r2 × r3. Since r1, r2, r3 are the order of r we need to compute no more than r3 matrix
elements.

As U is a unitary matrix, we can suggest the following idea to compute ru linearly
independent rows: first we take a row with the biggest l2 norm; each new row should be
taken so as to be maximally far in the l2 norm from the subspace of all previously taken rows.

The total requirements for calculating the sparse three-way decomposition are summarized
in the following items:

• we need to compute r̃(r̃2 + 3n2) matrix elements;
• to make 3r̃2(r̃2 + n2) arithmetical operations;
• to store no more than r̃(r̃2 + 3n2) words of memory;

where r̃ = r + ε.
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5. NUMERICAL EXPERIMENTS

To approximate the matrix by triads we

• approximate the sparse data by Tucker’s algorithm for sparse data;
• compute three-way decomposition by the Parallel Decomposition algorithm;
• and tune the result by the Parallel Factor algorithm for sparse data with Tikhonov’s

regularization.

To create the preconditioner

• for each level we compute three-way decomposition by the Parallel Decomposition
algorithm;

• tune the result by the Parallel Factor algorithm with condF regularization;
• compute the final factors by formula (4) and invert it.

To demonstrate the efficiency of this method we take the following integral kernels:

A: K(x̄, ȳ) =
1

|x̄ − ȳ|
,

B: K(x̄, ȳ) = log(|x̄ − ȳ|),

C: K(x̄, ȳ) =
1

(x̄, ȳ)
.

We take a non-regular grid with small steps in the middle, the difference between the smallest
and biggest steps being 10 times. This type of grid for case A is desired for Hartree-Fock
equations [26]; cases B and C were taken only as examples. For cases A and B we can
take the regular grid (we refer to those experiments as A′ and B′ cases) and use Toeplitz
matrices and multilevel circulant preconditioner [21], so we can compare the quality of our
new preconditioner. We use a finite-element method with constant finite elements to remove
any singularity in matrix elements. The results are presented in Tables II-VII (computational
time was measured at AMD Athlon 1200).

6. DISCUSSION

We can summarize the main properties of this method in the following statements:

1) The memory requirements for the storage of compressed matrix or preconditioner is only
O(N2/3) words.

2) The number of arithmetical operations required for one matrix-vector and preconditioner-
vector multiplications is O(N4/3), for the generation of the compressed matrix — O(N 4/3+r5)
and the generation of the preconditioner O(N 5/3).

This method is not asymptotically optimal with regards to the arithmetical complexity,
but it is suitable for practical computations. If we compare our approach on the regular grid
with multilevel Toeplitz and Circulant methods [21], we see that those methods have the best
asymptotical estimations O(N log2 N) (i.e. H-matrix approach has O(N logk

2
N), k > 1) and

observe the following:
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• The memory requirements for the storage of a compressed matrix and the preconditioner
are very small, and this allows us to solve huge problems with non-regular grids with up
to 2003 on the PC (Tables II-III).

• On regular grids the computational time of matrix-vector and preconditioner-vector
multiplications with compressed matrices are comparable with the Toeplitz matrices
and circulant preconditioners respectively. Thus the computational time for one
preconditioned iteration with three-way compressed matrix is smaller than one
preconditioned iteration with a Toeplitz matrix (Table V).
On non-regular grids the new method retains the same arithmetical complexity, but it is
impossible to use the Toeplitz approach for this case. Other approaches such as H-matrix
approaches have worse estimations O(N logk

2
N) than the Toeplitz approach O(N log

2
N)

on the regular grid, so our new method is reasonably faster than other approaches.
• When the preconditioner is computed, the quality of the new preconditioner is very high.

It can solve most problems for few iterations (Tables VI-VII), and is considerably better
than the circulant preconditioner on regular grids. Since we did not find in the literature
any practical implementation of H-matrix preconditioners [27] where the computational
time and memory requirements are linearly dependent on the size of the matrix, we did
not compare our approach for non-regular grids with any other method.

• The main disadvantage of this method is a high level of arithmetical complexity for
creating the preconditioner (Table IV). It can be hundreds or thousands of times bigger
than for the circulant preconditioner, but if we consider the problem where we should
solve a linear system with several right-hand sides and non-regular grids where the
circulant preconditioner is not applicable, then this method can help us to solve major
problems.

The program that implements the method described in this work is freely available from the
author on http://www.ilghiz.com/.
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Table III. The average total amount of main memory required to store compressed matrix (Triads),
to compute this compressed matrix and to create the preconditioner (Work) and the average ratio
between the amount of matrix elements required for sparse three-way decomposition and the total

amount of matrix elements (Ratio)

Problem size Triads (Mb) Work (Mb) Ratio

10 × 10 × 10 0.03 0.9 3.1 × 10−2

20 × 20 × 20 0.13 2.3 7.6 × 10−3

50 × 50 × 50 0.92 23 4.8 × 10−4

100 × 100 × 100 4.58 66 6.0 × 10−5

200 × 200 × 200 19.2 201 7.5 × 10−6

Table IV. The average computational time required to approximate the initial matrix by triads
(Triad), the generation of the preconditioner (Prec.) and the generation of the circulant

preconditioner (Circulant)

Problem size Triad Prec. Circulant

10 × 10 × 10 15 ms 0.2 s 0.2 ms
20 × 20 × 20 0.1 s 5.8 s 2 ms
50 × 50 × 50 2.3 s 2.7 m 40 ms

100 × 100 × 100 18 s 19 m 0.4 s
200 × 200 × 200 71 s 2.1 h 3.5 s

Table V. The computational time required for matrix-vector multiplication with one triad (Triad),
preconditioner-vector multiplication (Prec.), Toeplitz matrix-vector multiplication (Toeplitz) and

circulant preconditioner-vector multiplication (Circulant)

Problem size Triad Prec. Toeplitz Circulant

10 × 10 × 10 0.03 ms 0.1 ms 3 ms 0.4 ms
20 × 20 × 20 0.5 ms 1.2 ms 32 ms 4 ms
50 × 50 × 50 21 ms 50 ms 0.6 s 84 ms

100 × 100 × 100 0.3 s 1 s 6 s 0.8 s
200 × 200 × 200 5 s 12 s 55 s 7 s
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Table VI. The residual in (6) for approximation of the preconditioner

Problem size A B C A′ B′

10 × 10 × 10 0.0153 0.0101 0.0096 0.0115 0.0089
20 × 20 × 20 0.0081 0.0066 0.0059 0.0054 0.0051
50 × 50 × 50 0.0058 0.0042 0.0041 0.0029 0.0040

100 × 100 × 100 0.0047 0.0039 0.0038 0.0022 0.0036
200 × 200 × 200 0.0038 0.0038 0.0037 0.0017 0.0033

Table VII. The convergence (in the total number of iterations) of GMRES for the 10−6 residual on the
l2 norm for problem A′ with three-way preconditioner (Prec.) and multilevel circulant preconditioner

(Circulant) [21]

Problem size Prec. Circulant

10 × 10 × 10 6 26
20 × 20 × 20 8 32
50 × 50 × 50 10 43

100 × 100 × 100 14 51
200 × 200 × 200 16 —∗

∗ the convergence was not achieved in 20 iterations, but the total memory requirements go above 1.5

Gb (available main memory)
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