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This paper presents a new stochastic multidimensional scaling procedure for the analysis of 
three-mode, three-way pick any/J data. The method provides either a vector or ideal-point 
model to represent the structure in such data, as well as "floating" model specifications (e.g., 
different vectors or ideal points for different choice settings), and various reparameterization 
options that allow the coordinates of ideal points, vectors, or stimuli to be functions of specified 
background variables. A maximum likelihood procedure is utilized to estimate a joint space of 
row and column objects, as well as a set of weights depicting the third mode of the data. An 
algorithm using a conjugate gradient method with automatic restarts is developed to estimate 
the parameters of the models. A series of Monte Carlo analyses are carried out to investigate 
the performance of the algorithm under diverse data and model specification conditions, ex- 
amine the statistical properties of the associated test statistic, and test the robustness of the 
procedure to departures from the independence assumptions. Finally, a consumer psychology 
application assessing the impact of situational influences on consumers' choice behavior is 
discussed. 
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1. Introduction 

The collection of three-mode, three-way binary data is frequently encountered in 
the social sciences. In consumer psychology, for example, each subject may be pre- 
sented with a set of consumption situations and a set of J brands and asked to indicate 
the r (or any) brands in a specified product class that he or she would most likely 
buy/use under each of the specified situations (see Belk, 1974). If r is specified, then we 
have what Coombs (1964, p. 33) calls "pick r/J" data. In the case where the subject is 
not constrained as to how many products to select, the data is classified as "pick 
any/J"  (Coombs, 1964, p. 295). Another area where three-mode, three-way binary data 
can be collected is in repeated measures experiments, where the subject's choice be- 
havior is measured before and after a given treatment. The objective is to examine the 
treatment effect on some relevant behavior measured by a binary variable (e.g., pres- 
ence/absence of some characteristics, yes/no, buy/no buy, etc.). Still another example 
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occurs when subjects are asked to select the best objects or stimuli (e.g., universities) 
on each of some specified attributes (e.g., prestige). Coombs labels this as "pick any" 
data since neither the list of objects to choose from nor how many to choose are 
provided to the respondent. For analysis purposes, one can convert the pick any data 
into pick any/J format by simply considering all the objects revealed by the respond- 
ents. Note that such types of binary data (i.e., pick any/J and pick r/J) collected across 
subjects can be represented by a three-mode, three-way array (subject x stimulus x 
situation). The word "situation" is utilized hereafter to designate the third mode of the 
data and can represent various aspects such as use occasion, time, place, scenario, 
treatment, etc.. 

The development of various methods for the representation of two-way binary data 
has received much attention from psychometricians in a number of different research 
areas. Item response methods (see Lord, 1980; Takane, 1983), factor analysis of binary 
data (see Bartholomew, 1980; Bock & Lieberman, 1970; Christoffersson, 1975; Kruskal 
& Shepard, 1974; Muthrn, 1978), correspondence analysis and its variants (see de 
Leeuw, 1973; Girl, 1990; Greenacre, 1984; Heiser, 1981; Lebart, Morineau, & War- 
wick, 1984; Levine, 1979; Nishisato, 1980), and recent methods for stochastic multidi- 
mensional scaling (see DeSarbo & Cho, 1989; DeSarbo & Hoffman, 1986, 1987) are 
among the major procedures for representing the structure in such two-way binary 
data. 

In contrast to this ample and growing methodological development for the analysis 
of two-way binary data, few researchers have attempted to generalize these two-way 
binary procedures or to develop new procedures that can accommodate the analysis of 
three-way, three-mode binary data (see DeSarbo, Lehmann, Gupta, Holbrook, & Hav- 
lena, 1987, for one approach). Existing MDS procedures cannot satisfactorily accom- 
modate the spatial analysis of three-way, three-mode binary data. The stochastic mul- 
tidimensional scaling threshold method proposed in this paper has been purposely 
designed to accommodate the spatial analysis of three-way, three-mode pick any/J 
data. It is basically a generalization of the DeSarbo and Hoffman (1986), DeSarbo and 
Cho (1989), and DeSarbo et al. (1987) approaches to the analysis of pick any/J data. 
This new procedure fits both vector and ideal-point models, and characterizes the effect 
of situations by a set of dimension weights reflecting the importance of each of the 
extracted dimensions in each situation. In cases where such an effect is subject specific 
(i.e., large subject x situation interactions), the procedure allows the ideal points or the 
vector directions to be different (floating) from one situation to another (DeSarbo, 
1978). With the stochastic formulation of this method, one could (theoretically) utilize 
asymptotic statistical tests for dimensionality identification and model selection. Fi- 
nally, the new procedure provides reparameterization options (see Carroll, Pruzansky, 
& Kruskal, 1980) for the coordinates of individuals and/or stimuli; these options can be 
utilized for prediction and aid in the interpretation of the derived dimensions. 

2. The Models 

Let 

i = I, . . . ,  I subjects; 
j = 1, . . . ,  J stimuli; 
k = 1 . . . .  , K situations; 
n = I , . . . ,  N attributes of the subjects (e.g., demographic and/or psycho- 

graphic background variables); 
m = 1, . . . ,  M attributes of the stimuli; 
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P ijk : 
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bjm : 
Olnt : 
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1 if 
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. . ,  T dimensions; 
t-th coordinate (ideal point or vector terminus) for subject i; 
t-th coordinate (ideal point or vector terminus) for subject i in situation 

t-th coordinate for stimulus j ;  
weight for dimension t in situation k; 
probability that subject i chooses stimulus j in situation k; 
subject i chooses stimulus j in situation k, 0 otherwise; 
value of characteristic n for subject i; 
value of attribute m for stimulus j ;  
coefficient of the n-th attribute describing subjects on dimension t; 
coefficient of the m-th attribute describing stimuli on dimension t. 

We assume that the choice process of subject i choosing stimulusj in situation k is 
Bernoulli (independence is assumed across subjects, stimuli, and situations), with prob- 
ability of choice given by Prk. As a consequence of this assumption, EjPijk need not be 
equal to one. This allows for the consideration of pick any/J choice data where a choice 
of multiple stimuli in a given situation is possible. However, the independence assump- 
tion over stimuli is questionable if the data are pick I/J or pick r/J since, for a specific 
situation, knowing which r stimuli are chosen implies that all the other (J-r)  stimuli are 
not selected in that particular situation. The independence assumption over situations 
is less problematic when situations are independent of each other and stimulus choice 
is highly affected by situational variations. We examine these independence assump- 
tions later in the paper. 

Here, situations are assumed to affect the importance of the dimensions (DeSarbo, 
1978; Miller & Ginter, 1979) and/or the ideal points or the vector directions (DeSarbo, 
1978; Dickson, 1982). The "fixed" models assume that subjects are homogeneous in 
terms of their situational perceptions. This is in contrast to the "floating" models where 
the effect of situation interacts with the subject. These models are described below. 

The Fixed-Vector Model 

We define a latent, unobservable utility variable Fijk as 

Fuk = U6~ + eqk, 

where 

(1) 

and 

T 

Uuk = E WktXj tYi t ,  ( 2 )  

t = l  

eijk is error distributed as iid N(0, o~2k). (3) 

Here, Uijk refers to a true, latent utility score for subject i concerning stimulus j in 
situation k. It is modeled as the weighted scalar product of the stimulus' coordinates 
(xjt) and a subject's vector (Yit). The weights (w k t) reflect the salience or importance 
of each derived dimension in each situation. This CANDECOMP (Carroll & Chang, 
1970), specification in (2) assumes a common (situation-free) stimulus/subject space 
with differential weighting of dimensions for each situation. We can derive a situation- 
specific joint space of stimuli and subjects here in a number of ways. One way is to 
embed the situations' weights in the subject vectors 
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y}~) = w k , y i t .  (4) 

Alternatively, one could apply the situations' weights to both stimulusj 's and subject 
i's coordinates via 

4 ' =  (5) 

y}kt) = ~/--~ktYi t ,  (6)  

where x:t k) (y/~t k/) represents stimulus j ' s  (subject i's) coordinate on dimension t in the 
space defined by situation k. This alternative is appropriate if wkt  >- O, for all k, t. 
Under this vector model specification, the magnitude of utility of the different stimuli to 
a particular subject in a particular situation is assumed to be given by the projection of 
these different stimuli onto that particular subject's vector in the space corresponding 
to that particular situation. The higher the projection of a stimulus, the higher is the 
utility of that stimulus to that subject in that particular situation. Here, utility is as- 
sumed to change monotonically with all dimensions. 

We define Fijk such that if Fijk < Vi  (some individual threshold level), then we 
observe AUk = 0 (no choice), and if Fijk > V i ,  we observe Aijk = 1 (a choice). This 
simply means that stimulus j is selected or chosen by subject i in situation k if its 
projection onto subject i's vector in situation k lies above his or her threshold level 
( V i ) .  This general specification is quite common in the econometrics literature (see 
McFadden, 1976) where discrete choice models are tied into latent, indirect utility 
scores and threshold values (also, see DeSarbo & Cho, 1989). 

Thus, 

P(Ai jk  = O) = 1 - Pijk 

= P(Fi j~  <-- V i )  

= P WktXjtYit + eijk ~ Vi 
t 1 

= P eijk <- -- Z WktXjtYit + Vi : - -  qb(o), (7 )  
t= l  

where ~(°) represents the standard normal distribution function evaluated at: 

and 

T 

V i -  Z WktxjtYit  
t = l  

o'6k 

P(Ai jk  = 1) = P(F i j k  > V i )  = Pij~ 

(8) 

= P eijk > - Z WktXjtYit + Vi = 1 - cTp(o). (9)  
t= l  
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Hence, with Pijk expressed in terms of the wkt, Xjt, Vi, OVijk, and Yit parameters, we 
can write the likelihood function as follows: 

I J K 

L =  YI I~ I-I (Pijk)z'~(1--Pijk) 1-A°k, (lO) 
i = l j = I k = l  

and the corresponding log likelihood as 

I J K 

l n L = E  E E 
i = l j = l  k = [  

[AOk In (Pijk) + (1 - Aqk) In (1 - Pok)]" (11) 

Finally, by substituting (7) and (9) in (I 1), we obtain: 

I J K 

lnL=E E E 
i = l j = l  k = l  

[Aijg in (1 - ~I,(.)) + (1 - A0k) In (O(°))]. (12) 

Under this model specification, the procedure estimates W = (wkt), X = (xjt), Y = 
(Yit), V, and trij k in maximizing (12), provided that A = (Aijk) and T are given. Note, 
however, that one cannot estimate all the IJK tr,~ parameters in addition to W, X, Y, 
and V. There would not be sufficient degrees of freedom for such estimation. Hence, we 
need to set oij ~ = 1 for all i, j ,  k, or for the subsequent ideal-point models, estimate 
a subject specific o-0k = or i for all j ,  k (¢ri is not estimable in the vector model given (8) 
above). Also, note that the solution produced by this fixed-vector model analysis is 
determined up to a scale transformation. (One can multiply, say, xlt (across all j )  and 
Yit (across all i) by any arbitrary nonzero constants, ct (1) and ct (2)~, respectively, and 
compensate by dividing wkt (across all k) by (ctO)ct (2)) and not alter the right side of 
(2).) Therefore, for the fixed-vector model, there are T scalar indeterminacies. 

The Floating-Vector Model 

This model generalizes the fixed-vector model presented above by treating sub- 
jects'  vectors as freely varying over situations. More specifically, Uijk is now modeled 
a s  

T 

Uijk = ~ wktxjtY!kt ). (13) 
t = l  

Unlike the fixed-vector model, the floating-vector model assumes a common space for 
stimuli and subjects' vectors which vary by situation, both weighted to obtain a situ- 
ation-specific space. However, in (13), the Wkt'S can be embedded in the yff) ' s ,  so 
without loss of generality, the wkt's can all be set equal to 1. The interpretation of the 
results should be similar to the fixed-vector model case; however, we should note that 
the vectors are not fixed over the different situations. To derive the log likelihood 
function corresponding to the floating-vector model, we substitute Uijk in (13) for Uok 
in (2) and follow the same steps described by (7) to (12). Thus, we obtain a log likelihood 
function identical in form to (12), but with 
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I T 1 WktXjtY t t= 
e#(o) = ~ . (14) 

OV ijk t¢ 
The log likelihood function is to be maximized with respect to X = (x jr), Y (k) = (y if)), 
for k = I . . . . .  K, and V(trij k = 1), given A = (Ai) k) and T. As discussed, this model 
is characterized by KT indeterminacies in the solution concerning W, which can be set 
equal to the unit matrix of one's. In addition, there are T 2 indeterminacies with respect 
to X and y(k). 

It is worthwhile to note the behavioral difference between the fixed-vector and 
floating-vector models. In the fixed-vector model, the change in subjects' utility for 
various stimuli across different situations is affected only by the situations' weights for 
the derived dimensions. Here, all subjects' vectors vary uniformly as a result of a 
multiplication of the dimensions across situations, and these vectors cannot vary freely 
by situation over the derived MDS space. Each subject's vector is modeled to receive 
the same wkt for a specific situation and dimension. This is in direct contrast to the 
floating-vector model where the change in subjects' utility across situations is a result 
of a subject by situation interaction, where situational factors may not affect all sub- 
jects '  utility in the same manner; here, the effect varies by subject. Thus, in this latter 
case, subjects' vectors can vary freely over the derived space. The use of either model 
depends on how homogeneous subjects' choices are in each situation. If there is such 
commonality in situational effects among subjects, then the fixed-vector model is more 
appropriate. 

The Fixed Ideal-Point Model 
We define a latent unobservable disutility variable F~j k as 

F~k = U~k + eijk, 

where e ijk is as defined in (3) and 

T 
U~I~ = ~ wkt(xj, - yi,) 2. 

t = l  

(15) 

(16) 

Here, U~k refers to a true, latent disutility score for subject i concerning stimulusj  in 
situation k. Unlike the vector model, U*jk is represented by the weighted unfolding 
model (see DeSarbo & Carroll, 1985), where the weighted distance between the stim- 
ulus' point (xjt) and a subject's ideal point (Yit) corresponds to the respective utility of 
the stimulus to the subject in a particular situation. In other words, in a situation- 
specific space, the closer the stimulus point is to a subject's ideal point, the higher the 
utility of that stimulus is for that subject in that situation. As in the vector model, the 
weights (wkt) reflect the importance of each derived dimension for each situation. Also, 
this fixed ideal-point model assumes a common joint space for subjects and stimuli with 
differential weighting of dimensions for each situation. The situation-specific spaces are 
derived by applying the situation specific weights (wkt) to the derived stimulus' points 
(x jr) and subjects' ideal-point coordinates (Yit), a s  described in (5) and (6), assuming 
Wkt ~ O. 

F~jk is defined such that if F*jk <-- V* (some individual threshold level), then one 
observes AUk = 1 (a choice); ifF*jk > V*, then one observes AUk = 0 (no choice). This 
simply means that stimulusj is chosen by subject i in situation k if its weighted distance 
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from subject i's ideal point in situation k is less than or equal to that subject's threshold 
value V*. Thus, 

P(Aijk = 1) = P ( F ~ k  <-- V~) = Pijk 

= P ( U ~ k  + eijk ~ V~) 

= P eijk ~- - ~ wk t (x j t  - Yit) 2 +  V~ = ~ ( , ) ,  
t=l 

where ~(°) represents the standard normal distribution function evaluated at 

(17) 

T 

V ~ -  ~ Wkt(Xjt -- yi , )  2 
t = l  

O'qk 
(18) 

Similarly, 

P(A0k = 0) = P ( F } k  > V*~) = 1 - Pijk 

= P ( U ~ k  + eij~ > V~) 

t T = P  e6~> - ~] 
t = l  

w k , ( x j ,  - y~,)z + v,*) = 1 - ~(-). 

Therefore, one can write the log likelihood function for this model as 

(19) 

l J K 

l n L * - - Z  E E 
i = l j = l  k= l  

[Aijk In (~(-)) + (t - Aijk) In (1 - q~(.))], (20) 

where ~(.) is as expressed in (18). 
Thus, for the fixed ideal-point model, the method will estimate the weights for the 

situations W = (wt,), the coordinates for the stimuli X = ( x  jr) ,  the ideal points Y = 
(Yit), V*, and ~ijk (= 1 or tri) by maximizing (20), given A = (Aij k) and T. Also, for 
the fixed ideal-point model, there are T indeterminacies because of the fact that we can 
multiply wkt > 0 by a positive constant c t ,  and divide xjt  (across all j) and Yit (across 
all i) by W~c t and still obtain the same Ut~k. In addition, there are T additional inde- 
terminacies because one can center the concatenated matrix 

by dimension and not alter the distance between the two sets of points (for subjects and 
stimuli). 

The Floa t ing  Ideal -Poin t  M o d e l  

This model is a generalization of the fixed ideal-point model. Ideal points are no 
longer fixed, but assumed to vary over situations. Thus, we can re-express U,~k in (16) 
as 
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T 

U~k = ~'~ Wkt(Xj, -- y~)),  (21) 
t = l  

to accommodate the analysis of such ideal points that vary across situations. As a 
consequence, we need to estimate a common space for stimuli represented by the 
coordinates X, a set of K situation-specific ideal-point coordinates for subjects repre- 
sented by y ( l ) , . . .  , y ( K ) ,  and the weights for situations represented by W. The situ- 
ation-specific spaces are determined similarly, as in the fixed ideal-point model, except 
for the fact that the ideal points now float or vary by situation. Here, the distance 
between a stimulus' location and a subject's ideal point reflects the magnitude of the 
probability of choice of that stimulus by that particular individual in that particular 
situation. The smaller this distance, the higher the probability of choice. The likelihood 
function is determined similarly, as in the fixed ideal-point model, but with U*jk in (16) 
replaced by U~'k in (21). Thus, we obtain a log likelihood function identical in form to 
(20), but with ( T ) 

W -  X w ,(xi, _y k))2 
t = l  

0( ' )  = • . (22) 
o'ijk 

This log likelihood function is to be maximized with respect to W, X, Yk, for k = 
I . . . . .  K, V*, and crij k (= I or o-i), given A and T. Also, note that the floating 
ideal-point model is characterized by thE"same types of indeterminacies as the fixed 
ideal-point model. 

Model Degrees o f  Freedom 

The model degrees of freedom (df) are defined as the number of independent 
parameters to be estimated. The number of indeterminacies of a particular model is to 
be subtracted from the total number of parameters to be estimated to obtain that 
particular model's degrees of freedom. The various models' (those without reparame- 
terizations) degrees of freedom are summarized in Table t (assuming crij k = I, for all 
i, j ,  k, and Vi = V* = V, for all i). 

Program Options 

The new procedure can accommodate both external and internal analyses. In an 
external analysis, the procedure solves for the set of nonfixed parameters. For exam- 
ple, if the user supplies X (which might be derived from another MDS analysis), then 
one would solve for W, V, ~r, and Y. In an internal analysis, one solves for all of the 
designated parameters of the particular model specified (i.e., W, X, Y, or, V). 

As indicated previously, this method provides reparameterization options (Carroll, 
et al., 1980; DeSarbo & Rao, 1984; 1986; DeSarbo, Carroll, Lehmann, & O'Shaugh- 
nessy, 1982) whereby users can reparameterize or constrain the subjects' coordinates 
as linear functions of subjects' background variables. This can also be done for the 
coordinates of the stimuli. For example, if data are available on attributes for the 
stimuli, then one can reparameterize the coordinate, xjt (regardless of the utility model 
specified), as: 

M 

Xjt = E bjm ]trot, ( 2 3 )  

m = l  
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TABLE 1 

Model Degrees of Freedom 

, ,  L ,  J "'"' 

Number of 
Parameters Indeterminaneies 

Model Degrees 
of Freedom 

479 

Fixed-Vector Model 

Floating-Vector Model 

Fixed Ideal-Point Model 

Floating Ideal-Point Model 

xjt,Yit,Wkt,V T 

x (k) , T('K+T) jt,Yit ,Wkt,V 

xjt,Yit,Wkt,V 2T 

x - (k) w V jt'Yit ' kt' 2T 

[(I+J+K)T+I]-T 

[(IK+J+K)T+I ]-T(K+T) 

[(I+J+K)T+ll-2T 

[(IK+J+K)T+I]-2T 

Note: This assumes an internal analysis without reparameterizations, t~ijk=I, and a constant 
threshold V across subjects. 

where bjm is the value of attribute m for stimulus j ,  and Ymt measures the contribution 
of attribute m to dimension t. These coefficients (3trnt) a r e  assumed to be constant over 
situations. As a result of this reparameterization, one obtains an MDS space where 
locations of the stimuli are expressed as linear functions of their respective attributes. 
The Trnt coefficients can also aid in interpreting the resulting dimensions as well as 
delineating the contribution of these attributes on each of the derived dimensions. 
Similarly, if data on subjects' background variables (e.g., demographics or psycho- 
graphics) are available, then a subject's coordinates (Yit) c a n  be reparameterized as 

N 

Yit = E 
" - - n  = 1 

ain ct nt, (24) 

where ain is the value of characteristic n for subject i, A = (ain) ,  and Otnt is the 
contribution of  characteristic n on dimension t. Note, however, that this way of  rep- 
arameterizing subjects' coordinates is appropriate only for the fixed vector and ideal- 
point models where a common subjects' space with differential weighting for each 
situation is assumed. In the floating vector and ideal-point models, the subjects' coor- 
dinate reparameterizations can be specified in a number of  ways. For  example, 

N 

y~t k)= ~ '7-~'(~) (25) 
n = l  

in those cases where one can assume that the subjects' characteristics are constant,  but 
their effects are varying across situations. Alternatively, they can be specified as 

N 

Y!~) = Z a}kn)a.t • (26) 
n = l  
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Here, the subjects' characteristics are changing (across situations), but their effects are 
constant across situations. However, when both subjects' characteristics and their 
effects change across situations, we can specify 

N 

Y}t k)= Z a}~)a (k~,~, . (27) 
n = l  

Also, in the vector model(s), to avoid problems that might result from constraining 
subjects' vectors to be linear function of individuals' background variables (see Carroll 
et al. 1980), an option of estimating a stretching/shrinking parameter, Oi, by subject is 
available. This parameter, Oi, would appear as a multiplicative term on the right sides 
of (24) through (27). Finally, one can reparameterize both sets of coordinates if the 
appropriate background data are available. Also, it should be noted that in all the 
reparameterized models, the number of stimulus' attributes, M (subject's characteris- 
tics, N), can not exceed the number of stimuli, J (subjects, I), since we can identify at 
most JT (IT or IKT) coordinates. 

The new method also allows for both constrained (i.e., nonnegative wkt) and 
unconstrained W for the fixed and floating ideal-point models. Note that in the vector 
models, one does not need to constrain the sign of these weights. If a particular di- 
mension has a negative weight in a particular situation, then the direction of the sub- 
jects '  vectors with respect to that particular dimension in that particular situation would 
be opposite to the corresponding directions in the situation-specific space. 

V* in the fixed and floating ideal-point models plays the role of an individual 
threshold parameter. If W is constrained to be nonnegative, then we also need to 
constrain V* to be nonnegative. Concretely, assume that eij  k = 0 and rewrite (17) as 

T 

P(Aijk = 1 ) = P ( 0 - < - ~  wkt(xjt - Yit) 2+ V~f) 
t = l  

= P W k t ( X j t  - -  Y i t )  2 ~ V . 

t 1 

Thus, if wkt -> 0, then the V*'s need to be constrained to be nonnegative to avoid 
negative Euclidean distances. This special case also produces an additional scale in- 
determinacy between these weights and thresholds since one can compensate for larger 
weights by making the thresholds larger, and thus not change A. The final option entails 
modeling the threshold parameters as constant or as varying by subjects, situations, or 
stimuli. 

The Algorithm 
As noted previously, the estimation of the parameters X (or ~,), Y (or or), W, tr, and 

V of a particular model entails maximizing (minimizing) its log likelihood function (-In 
L). Among the many methods available for such a nonlinear optimization problem, the 
method of conjugate gradient with automatic restarts (Powell, 1977) is utilized. This 
method has very attractive properties. In particular, the method does not require the 
storage of any matrices as is necessary in quasi-Newton and second derivative meth- 
ods, which is important here given the large number of parameters to be estimated. 
Also, it has been shown that it can avoid the typical cycling often encountered with 
steepest descent algorithms, and has quadratic termination properties (Himmelblau, 
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1972)----that is, the method will typically find the global optimum for a quadratic loss 
function in H steps, where H is the number of parameters to solve for. Also, as shown 
by Powell (1977), the conjugate gradient method with restarts requires fewer iterations 
than the conjugate gradient without restarts in finding the optimum solution for a 
general nonlinear function. Finally, we should note that this method has been success- 
fully used by De Soete, DeSarbo, and Carroll (1985) in their tree-fitting procedures. We 
briefly summarize the major phases of the algorithm for the fixed-vector model below. 

Phase I: Starting Estimates 

Starting estimates can either be provided by the user or generated from the pro- 
cedure. One can obtain "rational" starting estimates by performing a CANDECOMP 
(Carroll & Chang, 1970) metric analysis (in the case of the fixed-vector model) or a 
three-way unfolding (DeSarbo & Carroll, 1985) metric analysis (in the case of a fixed or 
floating ideal-point model) on the three-way, three-mode binary data A. Random start- 
ing values are generated for W, X (or 30, Y (or y(k)) (or o0, and V from different uniform 
distributions. In the cases of the fixed and floating ideal-point model, the values of W 
and V must be feasible (e.g., W -> 0 if W is constrained to be nonnegative, and V needs 
to also be nonnegative as a result). Set IC = O. 

Phase H: Estimate X, Y, W, and V 

Set IC = IC + 1. This phase of the algorithm estimates X (or ~,), Y (or a), W and 
V (or V if the threshold is to be constant over subjects). Estimates of these parameters 
are sought to minimize the minus of the log of the likelihood function in (12). The partial 
derivatives are 

O(ln L) [ - Aek ] 
OXj'---'-~ = - - E  E WktYi,~(') .1 Aij k 

k a , ( - )  1 - , I , ( - )  ' 
(28) 

1 - a,j  ] 
O(lnoTmtL_~)= _ Ei Ej Ek wktYitbjmq~(') dp(o) I -- O ( ° ) J '  (29) 

a(ln L) [ -  AOk ] 
Oyi-----'-~ = - ~  Z WktXjtqb(') .1 Aij k 

s k co(.) 1 - ~ ( . )  ' 
(30) 

O(ln L) 
- E E E  

OOl nt i j k 

1 - Aqk Aijk j 
WktYitainq~(*) -~("~) 1 -- d#(.) ' (31) 

O(ln L) 

OWkt - ~ ~ YitXjtCb( ) eb(.) 1 -dp(.)" ' 
i j 

(32) 

O ( l n L ) = ~  ~b(-) ~ 1 -~ ( - )  ' 
c3 Vi j k 

(33) 

or, for a constant threshold over subjects, 

don L) 1 -- Aij k Aij k ] 
= ~ ~ ~ ( ' )  ,~( . )  1 - a,(.) OV j k 

(34) 
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where ~ - )  represents the standard normal density function evaluated at (8) with tr/j k = 
1. For external analyses, the appropriate set of partial derivatives are set equal to zero. 
With these partial derivatives specified, we can now briefly describe the conjugate 
gradient procedure with automatic restarts. 

(i) Start with initial parameter estimates ~(1), and set the iteration counter I C  = 1. 
here denotes a vector, stacking all the parameters to be estimated (i.e., X, Y (or y(k)), 

W, V). 
(ii) Set the first search direction S 0) = - V  (In L) 0), where V (In L) O) denotes the 

gradient vector of the log-likelihood function evaluated at 60) .  
(iii) Find ~(2) using the relationship 

~(2) = 0(~) + A O)S(~), (35) 

where X O) is the optimal step-size in the gradient direction S 0). A quadratic interpo- 
lation method is used for estimating the optimal step-size. Set I C  = 2. 

(iv) Calculate V (In L)(lC) and set the (new) search direction 

S (tc) = -V( ln  L) (Ic) + ~ S  ( lC-  l), (36) 

i f l C  = 2 or i fa  restart is needed. In this algorithm, restarts are made every H iterations 
(H is the number of parameters to be estimated) or when the search direction is not 
"sufficiently downhill". If this is the case, then set R = I C  and go to Step (vi). R holds 
the number of the iteration where a restart is made. Otherwise, set 

where 

S (m) = -V( ln  L) qc) + / 3 S  q c -  ~) + ~/S (m, (37) 

V(ln L) (tc)'v(ln L) (m) 

/3 = V(ln L) (IC- 1)'V(ln L)  (1c- l) , (38) 

(V(ln L) ec) _ V(ln L) (R)),V(In L)  (ic) 

Y = (V(ln L) (tc) _ V(ln L) (R))'S(R) ' (39) 

S(R): search direction when a restart is made. 

(v) Check if S (lc) is "sufficiently downhill" using the following condition 

-A( ln  L)qC)'s (re) >__ p IlS qc/llllV(ln L)(Ic)ll, (40) 

where p is a positive constant. Powell (1977) suggests setting p = 0.2. If this condition 
is satisfied then go to step (vi), otherwise return to step (iv). This phase is performed 
only when S (1c) is computed via (37). 

(vi) Compute the optimal step-size at iteration IC  in the direction S ac) and then 
compute 

III(IC + 1).:. I]j(IC) + }[ (IC)s(IC) (41) 

(IC+ I) (viii) If 0 is optimal, stop. Otherwise set I C  = I C  + 1 and return to step 
(iv). The optimality of 0 qc+ 1) is determined using the following convergence criteria. 

a. The amount of improvement of the log likelihood function between the last 
and before last iteration (i:e., lln L qc-1)  - In LqC) I <-- TOL) .  

b. The length of the gradient (i.e., tlV In L(IC)II <- TOL) .  



KAMEL JEDIDI AND WAYNE S. DESARBO 483 

c. The maximum number of iterations set by the user (i.e., IC >- IC*). 

Phase III: Normalization and Output 

In the case of the fixed-vector model, we normalize the dimensions of X and Y to 
unit sums of squares and then redefine the matrix of situations' weights (W) to com- 
pensate for these transformations. Various goodness-of-fit measures (described below) 
are computed over the entire data, as well as by subject, stimulus, and situation, to 
examine possible outliers in the data. 

These goodness-of-fit measures, computed for a particular solution, are 

1. The log likelihood function; 
2. A deviance measure (Nelder & Weddenburn, 1972): 

D =- - 2  
I 1 J K 

E E E  
i = l j = !  k = l  

[Aijk In (~ijk) + (I - Aijk) In (1 -P iyk) ] ]  

= - 2  In L(f~ij~). (42) 

This is basically (11) with Pqk replaced by its estimated value, P0"k- The difference 
between two deviance measures corresponding to two nested models is asymptotically 
X 2 distributed with degrees of freedom equal to the difference in the models' degrees of 
freedom. This difference can be used (theoretically) to test for dimensionality as well as 
for various model specifications because of the obvious nesting. However, one poten- 
tial problem with using such a X z test concerns the presence of incidental parameters 
in the likelihood function. In other words, the number of parameters to be estimated 
varies with the number of individuals, stimuli, and situations considered. In such a 
case, the MLEs are not consistent (Anderson, 1980), and thus the X 2 test is not ap- 
propriate. In the next section, a Monte Carlo analysis investigating the use of such a X 2 
test will demonstrate its inappropriateness. 

3. The Akaike information criterion (Akaike, 1974): 

AIC = - 2  In L(~ijk) + 2 (number of  independent parameters in the model). (43) 

This AIC measure can be utilized to test for dimensionality and model selection. Ac- 
cording to Akaike (1974), the model with minimum AIC should be selected. However,  
as noted by Bozdogan (1987), the use of this AIC criterion tends to result in over-fitting 
certain models. 

4. A simple matching coefficient (Match) calculated between A and the predicted 
A, according to the threshold rule of the model being estimated (Sneath& Sokal, 1973). 

5. The point biserial correlation (Pbc) between lb = (Pqk) and A. 
6. The phi coefficient (Phi) calculated between z~ and A. 

All of these goodness-of-fit measures need to be inspected in determining the dimen- 
sionality of the space and testing for nested models, given the problems and difficulties 
in using the X 2 test and the AIC. 

3. Monte Carlo Simulations 

Algorithm Performance 
A Monte Carlo analysis was performed to examine the performance of the algo- 

rithm as a number of model, data, and error factors were experimentally varied. Ten 
factors were initially hypothesized to affect the performance of the algorithm. These 
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TABLE 2 

Independent Variables for Monte Carlo Analysis 

Designation Levels 

Number of Subjects 20 
35 
50 

II Number of Stimuli 

11I Number of Situations 

IV Number of Dimensions 

7 
14 
21 

2 
4 
6 

2 
3 
4 

V Amount of Error .1 x Var(Uij k) 
(variance) .2 x Var(Uiik) 

.3 x Var(U~j k) 

VI Error Distribution Normal 
Exponential 

Uniform 

VII Type of Model Vector 
Ideal Point 

VIII Fixed/Floating Analysis Fixed 
Floating 

IX Type of Analysis Internal 
External (X fixed) 

X Type of Threshold Varying 
Constant 

factors, along with their various levels, are listed in Table 2. These ten factors were 
combined via an asymmetric fractional factorial (3624) design (Addleman, 1962) for 
main-effects only estimation as used for such testing in DeSarbo (1982), DeSarbo and 
Carroll (1985), and DeSoete, DeSarbo, Furnas, and Carroll (1984). Twenty-seven ex- 
perimental trials were devised according to the constructed design. For each experi- 
mental trial, W, X, Y, and V were generated randomly from different uniform distri- 
butions according to the stipulated factor levels of the particular trial. Then, U = (Uij k) 
was created corresponding to the particular model of the experimental trial. Error was 
generated randomly from the corresponding distribution of the experimental trial and 
added to U. Finally, A was created using the threshold rule of the particular model. 
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With A and other input control parameters determined according to the particular trial 
in the design, the method was then executed. 

Some five items were used as dependent (performance) measures for the algorithm: 
the CPU time (in seconds on an IBM AT (286) clone-12Mhz with a math co-processor) 
required for convergence, the overall simple matching coefficient between z~ and 2t, the 
root-mean-square error (RMSE) between the actual W and the recovered "W, the RMSE 
between X and ~, and the RMSE between Y and ~'. The last three dependent measures 
were calculated after appropriate permutation and normalization (depending on the 
model estimated and its respective indeterminacies). Thus, the first measure (CPU 
time) is a measure of computational expense, the second (simple matching coefficient) 
is a measure of overall goodness-of-fit of the solution, and the last three measures are 
measures of the goodness-of-recovery of the known configurations. 

Given the values of the five dependent variables for each of the 27 trials, multiple 
regression analyses were conducted using the columns of the experimental design 
matrix as the independent variables. (Note that since the matching coefficient is re- 
stricted in values between 0 and 1, a logit [log Y/(1 - Y)] transformation (as recom- 
mended in Cox and Snell, 1989, p. 16, as a transformation to normality) was applied to 
this dependent variable (arc sine transformations were also applied with similar re- 
suits), and the regression was performed using this transformed variable.) The regres- 
sion results for the five dependent measures (the experimental design was converted to 
dummy variables and regressed on each dependent measure as in conjoint analysis) are 
summarized below. 

From the regression analyses, it appears that the CPU time is affected significantly 
by the number of parameters to be estimated. Here, increasing the number of subjects 
to 50 significantly increases the amount of CPU time. The significant effect of type of  
model suggests that the ideal-point model requires more CPU time than the vector 
model. An unexpected result is that floating analyses require less CPU time than fixed 
analyses. 

The matching coefficient, though having an overall insignificant F statistic, appears 
to be affected by the amount of error in the data and the type of model. The ideal-point 
model produces a slightly (p < 0.05) better fit to the generated data than the vector 
model. 

Concerning the recovery of W, X, and Y, the regression results suggest that ex- 
ternal analysis has a positive effect on the recovery of the three spaces. This is an 
obvious result given the smaller number of parameters to be estimated in an external 
analysis as compared to an internal analysis performed on the same data set. Note, 
however, that such an effect is not significant in the case of W recovery at the p < 0.05 
level. Also, the recovery of both X and Y is significantly affected by the number of 
stimuli and subjects. Here, larger I and J levels significantly improve the recovery of 
these spaces. Generally, the recovery of the three spaces is affected positively by the 
gain in degrees of freedom as we increase the number of situations, stimuli, and sub- 
jects. Finally, note that among these last three regressions, only RMSE (X, X) has an 
overall significant F statistic (p  < 0.01). The RMSE (W, W) and RMSE (Y, Y) 
regressions are insignificant at the p < 0.05 level. 

The results of this Monte Carlo analysis appear to demonstrate the adequate per- 
formance of the procedure. These findings show that the method is somewhat robust to 
nonnormality. Number of dimensions and type of threshold have no effect on the 
performance of the algorithm. Better parameter recovery appears to be associated with 
larger data sets and external (versus internal) analysis. Better overall fit is obtained with 
smaller amount of error and additional CPU is generally required for larger data sets. 
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The Validity of  the X 2 Test 

As noted earlier, one potential problem with the g 2 test concerns the presence of 
incidental parameters in the likelihood function (i.e., the number of parameters to be 
estimated varies with the order of the data). In such a case, the MLE's are not con- 
sistent (Anderson, 1980), and thus the X 2 test is not appropriate. This is particularly 
relevant in our case since, typically, no replications are typically collected. In the face 
of this problem, we performed a Monte Carlo analysis for vector and ideal-point models 
to test whether the difference of deviance scores is truly asymptotically distributed as 
X 2 with the difference in the degrees of freedom as the appropriate degrees of freedom. 

One hundred synthetic data sets corresponding to I --- 30 subjects, J = 10 stimuli, 
and K = 3 situations were generated in T = 2 dimensions according to the fixed-vector 
model in (3) with an internal analysis, a constant threshold V across subjects, and no 
reparameterization options. Error from N(0, 1) was added to the true utilities (Uuk), 
and the synthetic choice data A were created according to the fixed-vector model 
threshold rule. Each of these 100 data sets were subjected to a fixed-vector model 
analysis in T = 2 and T = 3 dimensions. For each pair of 100 runs (corresponding to 
T = 2 and T = 3), the difference in deviance scores was computed. Theoretically, for 
this particular case, this difference is X 2 distributed with 42 degrees of freedom. The 
same procedures were adopted for the fixed ideal-point model case. One hundred 
synthetic data sets with the same input parameters and options as in the fixed-vector 
model case were generated according to the fixed ideal-point model in (16). Error from 
a N(0, 1) distribution was added and the choice data A were created. A fixed ideal-point 
model analysis was performed in T = 2 and T = 3 dimensions with the difference in 
corresponding deviance scores (here with 41 degrees of freedom) calculated for each 
pair of 100 runs. 

One hundred sample values from a X 2 distribution with 42 degrees of freedom were 
generated for the fixed-vector model. These values and the one hundred values result- 
ing from the fixed-vector model analyses were ordered, and a Q-Q plot (Wilk & Gnan- 
adesikan, 1968) was performed on the resulting quntiles. Similarly, in the case of the 
fixed ideal-point model, one hundred sample values of a X 2 distribution with 41 degrees 
of freedom were generated, ordered, and plotted against the ordered one hundred 
differences in deviance score values resulting from the ideal-point model Monte Carlo 
runs. If the difference in deviance scores is X 2 distributed, then we should expect these 
plots (assuming equivalent scaling of the axes) to make a 45 ° line. The results do not 
indicate this in either case, especially in the tails of the distribution. 

In addition to the Q-Q plots, the X 2 distribution with 42 df was fitted to the fixed 
vector model difference in deviance score data. The X 2 goodness-of-fit test is significant 
at the 0.05 level suggesting a significant lack of fit. Similarly, the X 2 distribution with 41 
df were fitted to the fixed ideal-point model difference in deviance score data. Here 
also, the X2 goodness-of-fit test is significant at the 0.05 level. It, therefore, does appear 
that there would be difficulties in using the X z test for model selection and dimension- 
ality identification. Similar difficulties in using the X 2 test were also reported by Takane 
(1983) in his unfolding-type item response model and by DeSarbo and Hoffman (1986) 
and DeSarbo and Cho (1989) in their two-way unfolding and vector models, respec- 
tively. These results suggest the simultaneous examination of all the goodness-of-fit 
measures for model selection (as well as interpretability of the results). 

Testing the Independence Assumptions 
As noted, the procedure utilizes assumptions of independence across all modes of 

the data. In an attempt to check the robustness of this method to violations of inde- 
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pendence, several synthetic data sets characterized by dependence patterns across 
rows, columns, slices, and all combinations of these were constructed. For example, 
for testing independence across columns, structural patterns of relationships were cre- 
ated in the binary data (e.g., stimulus A is never chosen if stimulus B is chosen). In all 
seven series of tests (rows, columns, slices, rows and columns, rows and slices, col- 
umns and slices, rows and columns and slices), the procedure recovers the true X, ¥ ,  
W, and V parameters extremely well in the appropriate dimensionality (as ascertained 
by the inspection of the various goodness-of-fit indices previously discussed.) 

4. Application 

Situational Factors in Consumer Psychology 

In consumer psychology research, the effect of situational factors on consumers' 
choices has received growing recognition from many scholars (see Engel, Blackwell, & 
Kollat, 1969). Besides this recognition, empirical evidence is accumulating to support 
the explicit consideration of situational factors. Green and Rao (1972) found that con- 
sumer perceptions of and preferences for various bread and pastry items change mark- 
edly over different meal and menu situations. Sandell (1968) found that nearly 40% of 
the variance in individual choices for different drinks is explained by brand x situation 
interaction effects (as compared to 14.6% and 2.7% for brand and situation main effects, 
respectively), thereby reflecting the importance of situational influences on brand 
choice. Similarly, Belk (1974) has demonstrated that situational variables account for 
nearly half of the explained variance in both meat and snack preferences. Comparable 
findings have been obtained using other types of products/services such as leisure 
activities (Bishop & Witt, 1970), fast foods (Belk, 1975; Miller & Ginter, 1979), and time 
(Hornick, 1982). 

Perhaps the most popular approach taken to define the concept of a situation is that 
proposed by Belk (1974, 1975). In terms of this approach, a situation is defined by a 
locus in time and space. An objective element of a situation is one that is capable of 
external verification without the need to construct measures of internal states of the 
individual such as mood, plan, and purposes (Belk, 1975). Besides the physical features 
of the situation (i.e., temperature, time of the day, person present, sounds, odors, 
decor, etc.), objective descriptions may include the existence of external facts and 
events that bear upon current behavior even though they are not themselves physically 
a part of the situation. For example, instead of attempting to measure the mood a 
person brings to the situations, one can ascertain whether the person has had a hectic 
day with his or her children, has just finished the last of several difficult final exami- 
nations, or has been promoted (Belk, 1975). More precisely, Belk (1975) defines a 
consumption situation as "all those factors particular to a time and place of observation 
which do not follow from a knowledge of personal (intra-individual) and stimulus' 
(choice alternative) attributes, and which have a demonstrable and systematic effect on 
current behavior" (p. 157). 

In an attempt to define what he means by "all those f a c t o r s . . .  " ,  Belk (1975) 
identifies five situational characteristics. Physical surroundings include geographical 
and institutional location, decor, sounds, aromas, lighting, weather, and visible con- 
figurations of merchandise or other material surrounding the stimulus object. Social 
surroundings include other persons present and their characteristics, their apparent 
roles, and interpersonal interactions. Temporal perspective is an aspect of situations 
that may be specified in units ranging from time of the day to season of the year. Time 
also may be measured related to some past or future event for the situational partici- 
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pant. Task definition features of a situation include an intent or requirement to select, 
shop for, or obtain information about a general or a specific purchase. In addition, task 
may reflect different buyer and user roles anticipated by the individual. Antecedent 
states include momentary moods (such as acute anxiety, pleasantness, hostility, and 
excitation) or momentary conditions (such as cash on hand, fatigue, or illness) rather 
than chronic individual traits. These momentary conditions are further stipulated as 
immediately antecedent to the current situation to distinguish states that the individual 
brings to the situation from individual states that result from the situation. 

The strength of this taxonomy lies in its potential for operationalization since we 
can simply define a situation in terms of some or all the above situational characteris- 
tics. For example, the situation "you are at the store to pick up some things for a picnic 
you are planning with friends and are trying to decide what kind of snack to buy"  (Belk 
1974, p. 157), is made up of the physical surroundings (picnic), the social surroundings 
(friends), time (may be a weekend), and task definition (shopping for a picnic with 
friends). 

Study Description 

DeSarbo and Cho (1989) report on the collection of intended pick any/J choice 
judgments for various brands of soft drinks in five different consumption situations. The 
subjects were fifty MBA students from Columbia University in New York. The data for 
ten of the 50 individuals were discarded since they claimed not to drink any soft drink 
in one or more of the situations tested. Eleven brands of soft drinks were used: Coke 
(A), Diet Coke (B), Diet Pepsi (C), Diet 7UP (D), Dr. Pepper (E), Mountain Dew (F), 
Pepsi (G), Pepsi Light (H), Sprite (I), Tab (J), and 7UP (K). ~ The five situations con- 
sidered were: (a) to quench your thirst on a very hot day, (b) a social beverage you drink 
with friends, (c) a beverage you drink with meals, (d) as a mixer, and (e) a beverage you 
relax with (watching TV or studying). These situations represent various usage occa- 
sions for beverages. All but the fourth have been utilized in previous research (see 
Sandell, 1968). The fourth situation "as a mixer" is also important to consider since 
many brands of soft drinks are positioned as mixers. 

Using Belk's (1975) taxonomy of a situation, one can describe Situation 1 "to 
quench your thirst on a very hot day" as evoking mood (the feeling of being thirsty) and 
temporal (summertime) aspects. Situation 2 "A  social beverage you drink with friends" 
captures a social surrounding aspect (friends). Situation 3 "A beverage you drink with 
meals" encompasses spatial (where you eat your meals), social (with whom you eat 
meals), and perhaps temporal aspects. Situation 4 "As a mixer" evokes a task or 
purpose aspect (using the soft drink as a mixer). Finally, Situation 5 "A beverage you 
relax with (watching TV or studying)" elicits spatial (at home) and mood aspects. 

Analysis 

Each of the four choice models (i.e., the fixed and floating-vector models and the 
fixed and floating ideal-point models) was estimated in T = 1, 2, 3, and 4 dimensions 
with crij k --- 1, a varying threshold by subject, and an external analysis option. The 
external estimates for the brands' coordinates were obtained from the two-way vector 
model analysis performed on the overall consumption data for these same subjects, as 
reported in DeSarbo and Cho (1989). In their two-way, binary data, a " 1 "  indicates 
purchase and consumption at least every other week and "0"  indicates purchase and 
consumption less than every other week. The choice of performing an external analysis 
was based on the fact that the external results (T = I, 2, 3, 4) were already published. 

I All products are registered trademarks of their respective companies. 
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TABLE 3 

Analyses of Soft Drink Choice Data 

Matching 
T df I~L Deviance Pbc Phi Coefficient AIC 

489 

Fixed Ideal-Point Model 

1 85 -960.8 1921.6 0.468 0.387 0.805 2091.6 
2 130 -744.4 1488.8 0.629 0.536 0.842 1748.8 
3 175 -645.3 1290.6 0.703 0.623 0.870 1640.6 
4 220 -631.9 1263.8 0.712 0.624 0.872 1703.8 

Fixed-Vector Model 

1 84 -973.2 1946.2 0.460 0.341 0.799 2114.2 
2 128 -790.5 1581.0 0.598 0.488 0.832 1837.0 
3 172 -605.5 1211.0 0.720 0.635 0.875 1555.0 

216 -572.3 1144.6 0.743 0.682 0.890 1576.0 
a 160 -680.5 1361.0 0.668 0.564 0.852 1681.0 

Floating Ideal-Point Model 

1 245 -844.4 1688.8 0.552 0.438 0.814 2178.8 
2 450 -695.4 1390.8 0.654 0.533 0.839 2290.8 
3 655 -419.3 838.6 0.816 0,759 0.914 2148.6 
4 860 -346.2 692.4 0.854 0.804 0.930 2412.4 

Floating-Vector Model 

1 240 -884.7 1769.4 0.533 0.419 0.816 2249.4 
2 440 -596.8 1193.6 0.719 0.620 0.870 2073.6 
3 640 -244.1 488.2 0.900 0.873 0.955 1768,2 
4 840 -87.6 175.2 0.966 0.951 0.982 1855.2 

aEstimation with T=3 but with Wkt = 1 for all k,t. 

Also, performing an external analysis has the advantage of estimating fewer parameters 
and this decreases the chance of locally optimum solutions. More importantly, there is 
no assurance that the brands' spaces we could obtain from performing internal fixed- 
vector, floating-vector, fixed ideal-point, and floating ideal-point model analyses would 
all be similar. Thus, having a common brands' space will facilitate the comparisons 
between the various solutions. Finally, these dimensions have also been uncovered in 
various perceptual studies performed in this market (e.g., Lehmann, 1985). DeSarbo 
and Cho (1989) present a T = 3 dimensional solution (reparameterized brands) as best 
representing the structure in this data. They interpret the first dimension as market 
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FIGURE 1 
Joint space plot of  Dimension 1 vs. 2 for the soft drink fixed-vector model. 

Dim. I 

share (proxy for popularity), the second as a Diet-NonDiet dimensions, and the third as 
a Cola-NonCola (caffeine) dimension. 

Table 3 presents the statistical summaries for the fixed-vector, fixed ideal-point, 
floating ideal-point, and floating-vector models analyses, respectively. In all of these 
analyses, the minimum AIC is found with three dimensions. The other goodness-of-fit 
measures also support this conclusion. This result is congruent with the DeSarbo and 
Cho (1989) results. 

We can also use the minimum AIC rule (Akaike, 1974) as a basis for selecting 
between fixed versus floating models in three dimensions. The minimum AIC is 1640.6 
for the fixed ideal-point model and is 2148.6 for the floating ideal-point model. This 
suggests that ideal points do not float or vary from situation to situation, but are fixed. 
Situational factors seem to affect students' choice behavior in the same way. The 
dimensions' saliencies or importances vary across situations, not the ideal points. 
Similarly, the minimum AIC for the fixed-vectormodel is 1555.0 compared to 1768.2 for 
the floating-vector model. Here also, a fixed representation appears more appropriate 
than a floating representation. Thus, the two models selected are the fixed ideal-point 
model and the fixed-vector model. Since the fixed-vector model has a minimum AIC 
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FIGURE 2 
Joint space plot of Dimension 2 vs. 3 for the soft drink fixed-vector model. 

(1555.0) that is smaller than that of the fixed ideal-point model (1640.6), it is the model 
selected here for spatially representing situational choice. 

Results 

Figures 1 and 2 present the two, two-dimensional joint spaces for the T = 3 
dimensional solution of the fixed-vector model analysis. The lines in the plot represent 
the normalized vectors for subjects 1--40. These vectors are normalized to a constant 
length for convenience. The letters A-K represent the eleven brands of soft drinks. 
Note how the subjects' vectors are mostly oriented towards the left side of dimension 
one in Figure 1. This suggests that students have higher utility for the more popular 
(high market share) brands like Coke, Pepsi, 7-up, and Sprite. This homogeneity of 
utility does not hold for the Diet-NonDiet and Cola-NonCola dimensions where there 
is substantially more dispersion among the subjects' vector directions as shown in 
Figure 2. 

The significance of the fixed analysis as compared to the floating analysis suggests 
that situations homogeneously affect student's choice behavior by affecting only the 
importance or the salience of the various dimensions in the various situations. As 
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TABLE 4 

Importance Weights for Dimensions by Situation 

' " " v " l w ,  . . . . . . . . . . . . . .  

Dimension: 

I II 111 

1 1.99 3.91 2.65 

2 1.33 2.82 1.31 

3 1.73 3.04 1.73 

4 1.41 0.97 1.17 

5 2.06 3.45 2.08 

previously noted, these weights are common to all the subjects. The finding that a 
fixed-vector representation is the most appropriate for the soft drink choice data might 
result from the homogeneity of the sample (all are MBA students). Table 4 presents the 
weights of the three dimensions across the five usage occasions after normalizing X and 
Y to constant length by dimension. In Situation I (to quench your thirst on a very hot 
day), Dimension 2 (Diet-NonDiet) is the most important, suggesting a calorie concern 
for a situation where heavy consumption/usage typically occurs. The third dimension 
also carries a substantial weight, suggesting that students give moderate importance to 
taste in choosing a soft drink to quench their thirst. In Situation 2 (a social beverage you 
drink with friends) and in Situation 3 (a beverage you drink with meals), Dimension 2 
(Diet-NonDiet) is also the most important. In Situation 4 (as a mixer), Dimension 1 
(Popularity) is most important; Dimension 2 (Diet-NonDiet) is the least important. 
These results are quite intuitive given the set of brands we are considering. 

To informally test the hypothesis that the importance of each dimension does not 
vary by situation, a fixed-vector model analysis with the same options as the one 
discussed above (i.e., T = 3, orij k = 1, external brands' coordinates, and varying 
threshold by subjects), but with all the weights set equal to one was performed. The 
AIC of this analysis is 1681 which is not smaller than the AIC value for the fixed-vector 
model, and as such one can conclude that situational factors do appear to significantly 
affect the importance of the dimensions. 
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