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A new second-order calibration procedure, the coupled
vectors resolution (COVER) method, has been developed.
The objective of the method is to seek a couple of vectors
that minimize a least-squares criterion. With the knowl-
edge indispensable for quantitation, the method yields
direct solutions to various cases of second-order calibra-
tion. Moreover, it allows a statistically plausible way to
make use of multisample information. In the case of
multiple calibration samples, the method uses the cali-
bration samples to resolve the profiles of the analytes in
each order, and then calculates the concentrations of the
analytes. This offers the advantage that unknown mixtures
newly collected can be predicted in a direct manner. In
the case of one calibration sample, the method provides
an effective way to utilize the information of spectral
profiles of the analytes. Results of simulated experiments
and a real analytical example show that the proposed
method produces acceptable performance in profile reso-
lution and concentration estimation.

The advancement of second-order instrumentation, such as
excitation-emission fluorescence, liquid chromatography with
ultraviolet/visible detection (LC-UV/vis), and gas chromatogra-
phy hyphenated with mass spectrometry (GC/MS), which pro-
duces two-way data for a single sample, has brought growing
interest in the development of second-order calibration methodolo-
gies.1-3 Tremendous potential can be derived from bilinear data
in that the data enable one to quantify the components of analytical
interest in the presence of unknown interferences not included
in the calibration samples. This is known as the second-order
advantage.4 Mathematically, the second-order advantage makes
the final goal of analytical chemistry achievable even without the
aid of complicated preseparation procedures. Primarily, there are
two types of methodologies approaching second-order calibration.
Methods of the first type are built upon eigenanalysis or general-
ized eigenanalysis.5-8 Prominent examples are the generalized

rank annihilation method (GRAM) 5,9-11 as well as its extension,
the trilinear decomposition (TLD) method.12-19 Unfortunately,
these methods need to construct two pseudosamples to formulate
a eigenproblem, which unavoidably incurs a loss of information
for multiple samples. Moreover, the algorithm for the methods is
subjected to the danger of yielding imaginary solutions. Methods
of the second type are established on an iterative trilinear
decomposition of the data cube integrated by the calibration
matrices and the data measured on the unknown samples.20-29

The methods do provide a sensible way to make use of the whole
data. However, it is reported that iterative algorithms are plagued
by degenerate solutions and computational swamps, yielding
chemically meaningless solutions.25,27 Additionally, these methods
by themselves are incapable of generalizing to new unknown
samples in an immediate way. One has to redo an entire
decomposition of the data cube augmented by the data matrices
measured on the new samples.

In this paper, a coupled vectors resolution (COVER) method
is developed. The method aims at seeking a couple of vectors,
called coupled vectors, which minimize a least-squares criterion
proposed by the present authors. With the prior knowledge of
partial spectral or concentration profiles of the analytes, the
COVER method can produce direct solutions to second-order
calibration and provides a statistically plausible manner to make
use of multisample information. A salient characteristic of the
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method is that it deals with the calibration and prediction stages
separately in the case where two or more calibration samples are
available. This offers the advantage that unknown samples newly
collected can be predicted in a direct manner. In the case of only
one calibration sample available, the method provides an effective
way to utilize the information of pure spectral profile.

THEORY
1. Least-Squares Criterion for Coupled Vectors Resolu-

tion. Trilinear instrumental responses, say the two-way matrices
obtained using LC-UV/vis, for K mixture samples can be
expressed as

where Rk is the response matrix for the kth sample (I wavelengths
by J retention times). ckn is the concentration of the nth component
in the kth sample. xn and yn are the spectral and the chromato-
graphic profiles, respectively, for the nth component. It is
important to note that it is implied by eq 1 that xn yn

T is the two-
way response of the pure nth component of unit concentration.
To guarantee unique representations of xn and yn, one can assume
without loss of generality that || xn || ) 1 with || ‚ || denoting the
Euclidean norm of a vector. Ek is the measurement error matrix
for the kth sample, and N is the number of components in the
samples. It is known that the mth contravariant vector 12 qm of
the base vectors y1, ..., yN satisfies

where δmn ) 1 if m ) n, and δmn ) 0 if m * n. Therefore, one
obtains

where ekn is a vector of errors. Because eq 3 holds for all the K
samples, a statistically plausible way to estimate qn, xn and
unknown ckn’s is the least-squares method. That is, qn, xn and
unknown ckn’s can be estimated by the minimizers of the following
least-squares criterion

where the vector pair, xn and qn, are called coupled vectors,
because they are dependent upon each other in the method.
Analogously, one can derive another least-squares criterion

where pn is the nth contravariant vector of the base vectors, x1,
..., xN, and yn and pn are called coupled vectors, too. The
minimizers of the criterion give the least-squares estimates of yn,
pn and unknown ckn’s. Because the resolution of coupled vectors

constitutes the core of the proposed method, it is called the
coupled vectors resolution method.

In subsequent sections, it will be shown that the proposed
method provides closed-form solutions to various cases of second-
order calibration. For simplicity and without loss of generality, it
is supposed that only one component, say the nth one, is of
analytical interest.

2.MultisamplePredictionwithxnandynKnown: COVER1.
It is known that with bilinear two-way measurements on unknown
samples, the spectral and the chromatographic profiles, xn and
yn, or equivalently xn yn

T, are sufficient for the quantitation of the
component in unknown mixtures even in the presence of new
interferences. It will be shown that with known xn and yn direct
estimates of the concentrations of the analyte in K unknown
samples can be derived using the COVER method.

In the case where xn and yn are known, the COVER method
aims at seeking the estimates of ckn’s and qn which minimize the
least-squares criterion, eq 4. A necessary condition for the
estimates is

One can derive from eqs 6 and 7 that

It is important to note that, in the case of second-order calibration,
the rank of ∑k)1

K Rk
TRk is intrinsically N, the number of compo-

nents present in the K samples. This implies ill-conditioning of
the eigenproblem, eq 9. Therefore, rank-reduced approximations
to ∑k)1

K Rk
TRk and Rk (k ) 1, ..., K) should be used for combating

ill-conditioned solutions. Let the singular value decomposition
(SVD) of ∑k)1

K Rk
TRk be

where U and S are both J × J matrices. These matrices are
truncated by removing the right-hand columns and the bottom
rows to give Uh (J × N) and Sh (N × N). The rank-reduced
approximation of ∑k)1

K Rk
TRk is thus given by the truncated SVD

Because Uh spans the common subspace of the rows of Rk (k ) 1,
..., K), then Rk (k ) 1, ..., K) can be approximated by

Rk ) ∑
n)1

N

cknxnyn
T + Ek k ) 1, ..., K (1)

yn
Tqm ) δmn m, n ) 1, ..., N (2)

Rkqn ) cknxn + ekn k ) 1, ..., K (3)

L1 ) ∑
k)1

K

||cknxn - Rkqn||2 (4)

L2 ) ∑
k)1

K

||cknyn - Rk
Tpn||2 (5)

∂L1/∂ckn ) 2xn
T(xnckn - Rkqn) ) 0 k ) 1, ..., K (6)

∂L1/∂qn ) -2∑
k)1

K

Rk
T(xnckn - Rkqn) ) 0 (7)

ckn ) xn
TRkqn k ) 1, ..., K (8)

∑
k)1

K

Rk
Txnxn

TRkqn ) ∑
k)1

K

Rk
TRkqn (9)

∑
k)1

K

Rk
TRk ) US2UT (10)

∑
k)1

K

Rk
TRk ≈ Uh Sh2Uh T (11)

Rk ≈ Rk Uh Uh T k ) 1, ..., K (12)
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In practice, N is generally unknown but can be estimated by the
number of significant singular values or cross-validation. More-
over, provided N selected is not smaller than the actual number
of components, the choice of N has little effect on the final results.

Substitution of eqs 11 and 12 into eq 9 yields

Letting

one has

Substituting eqs 14 and 15 into eq 13, one can obtain

Now it can be concluded that R is the eigenvector of the symmetric
matrix Sh-1Uh T∑k)1

K Rk
Txnxn

TRkUh Sh-1 corresponding to the eigen-
value 1. It can be shown that the eigenvalues of the symmetric
matrix are not greater than 1. Accordingly, R is the eigenvector
associated with the largest eigenvalue, and one can easily solve
the eigenproblem to obtain the solution of R. Then qn can be
calculated by

where a is a constant, which can be determined using yn
Tqn ) 1,

an equality implied by eq 2. Therefore, one has

With eq 18, the concentrations of the nth component in K
unknown samples can be predicted immediately using eq 8.

The method above proposed, called COVER1, is an extension
of Lorber’s noniterative rank annihilation factor analysis (RAFA)
procedure,2 which can only be used for the case involving one
unknown sample. In the case of one unknown sample, an analytical
solution of eq 16 can be derived

where Sh and Uh are given by the truncated SVD of R1.

Therefore, one obtains

The solution differs slightly from that given by Lorber’s method.
There are two important cases for second-order calibration in

which direct solutions of the spectral and the chromatographic
profiles, xn and yn, for the component under determination are
available. One is the case where one has the two-way response
R0 measured on the pure analyte of known concentration c0n. That
is, the measurement matrix is available

In this case, one can estimate xn and yn using SVD. Let the SVD
of R0/c0n be

then xn and yn can be estimated by xn ) u1 and yn ) s1v1. Here u1

and v1 are the first columns of U and V, respectively. s1 is the
first diagonal entry of S. The other important case is where two
or more calibration samples are available. This will be shown in
the next section.

3. Resolution of xn and yn in the Case of Two or More
Calibration Samples: COVER2. Suppose one has K (K g 2)
calibration samples, in which the concentrations, ckn (k ) 1, ...,
K), of the component under quantitation are all known. The
estimates of the coupled vectors, xn and qn, are given by the
minimizers of the least-squares criterion, eq 4. A necessary
condition for the estimates is that

One can derive from eqs 25 and 26 that

Analogously to the derivation of eq 16, one obtains

where Sh and Uh are given by the truncated SVD of ∑k)1
K Rk

TRk, eq
11, and R is analogously defined by eq 14. Notice that R is the
eigenvector of the symmetric matrix (Sh-1UT∑k,h)1

K cknchn

Rk
TRhUh Sh-1/∑k)1

K ckn
2 ) corresponding to the eigenvalue of 1. It can

be proved that the eigenvalues of the symmetric matrix

Uh T∑
k)1

K

Rk
Txnxn

TRkUh Uh Tqn ) Sh2Uh Tqn (13)

R ) ShUh Tqn (14)

Uh T qn ) Sh-1R (15)

Sh-1Uh T∑
k)1

K

Rk
Txnxn

TRkUh Sh-1R ) R (16)

qn ) aUh Sh-1R (17)

qn ) Uh Sh-1R/yn
TUh Sh-1R (18)

R ) Sh-1Uh TR1
Txn (19)

R1 ) VhShUh T (20)

qn ) Uh Sh-1VhTxn/yn
TUh Sh-1VhTxn (21)

c1n ) xn
TVhVhTxn/yn

TUh Sh-1VhTxn (22)

R0 ) c0nxnyn
T + E0 (23)

R0/c0n ) USVT (24)

∂L1/∂qn ) -2∑
k)1

K

Rk
T(xnckn - Rkqn) ) 0 (25)

∂L1/∂xn ) 2∑
k)1

K

ckn(xnckn - Rkqn) ) 0 (26)

xn ) ∑
k)1

K

cknRkqn/∑
k)1

K

ckn
2 (27)

∑
k)1

K

Rk
TRkqn ) ( ∑

k,h)1

K

cknchnRk
TRh/∑

k)1

K

ckn
2 )qn (28)

(Sh-1Uh T ∑
k,h)1

K

cknchnRk
TRhUh Sh-1/∑

k)1

K

ckn
2 )R ) R (29)
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are not larger than 1. Therefore, R is the eigenvector associated
with the largest eigenvalue, and it can be easily approached. Then
one can obtain the closed-form solution of qn analogously in terms
of eq 17. By keeping consistency with the preliminary assumption
that || xn || ) 1, the constant a in eq 17 can be determined.
Therefore,

and the spectral profile, xn, can be calculated using eq 27.
Analogously, the coupled vectors, yn and pn, can be estimated

by the minimizers of the least-squares criterion, eq 5. It can be
shown that

where Sh (N × N) and Vh (I × N) are given by the truncated SVD
of ∑k)1

K RkRk
T, that is,

The coupled vectors can be calculated as follows

where b is a constant, which can be uniquely determined using
eq 2.

So far it has been demonstrated that in the case where two or
more calibration samples are available, closed-form solutions to
the spectral profiles for the component of interest in each order
can be approached only with the calibration set using the proposed
COVER method, called COVER2. With the spectral profiles in
each order thus estimated, concentrations of the component in
multiple unknown mixtures can be predicted directly by using
the method developed in the preceding section.

4. Quantitation in the Case of One Calibration Sample:
COVER3. It is acknowledged that only one calibration mixture,
in which the concentration of the component under determination
is known, is insufficient for quantifying the concentrations of the
analyte in unknown mixtures, unless extra information is avail-
able.5 One can at most calculate the relative concentrations and
the spectral profiles in each order for the components. Identifica-
tion of the sought-for analyte is practically unfeasible. Convention-
ally, to identify the component of interest, the actual spectral
profile of the analyte in a certain order need to be used for
matching to the calculated one. The concentrations of the
component are then computed from its relative concentrations
and its concentration in the calibration sample. It will be shown
that, by utilizing the information of the spectral profile, compu-
tationally easily achievable closed-form solutions of the concentra-

tions in multiple unknown samples can be obtained using the
method developed here. The method, called COVER3, is merely
slightly different from that proposed in section 2.

In fact, suppose one has a calibration sample and the spectral
profile in a certain order, say xn, then the concentrations, ckn (k )
2, ..., K), of the analyte in K - 1 unknown mixtures and the nth
contravariant vector, qn, can be estimated by the minimizers of
the least-squares criterion, eq 4. Following the derivation in section
2, one obtains that qn can be estimated using eqs 16 and 17. The
constant a in eq 17 can be determined from eq 8 and the
concentration of the component in the calibration sample. One
thus has,

where c1n and R1 are the concentration of the component and the
two-way response for the calibration sample, respectively. Analo-
gously, R is given by eq 16. Uh and Sh are calculated by eq 11.
With qn achieved, the concentrations of the analyte can be
estimated using eq 8 for the K - 1 unknown mixtures (k ) 2, ...,
K).

5. Algorithms and Implementation. In this section, the
implementation of the COVER methods in various cases of second-
order calibration is discussed.

The first case of second-order calibration is that where the
profiles of the component under quantitation in x and y orders
are both known a priori. As mentioned above, a typical example
of this case is that the two-way response of the pure analyte of
known concentration is available. In this case, the COVER1
method can be used to directly determine the concentrations of
the analyte in unknown mixtures. The computing procedure is
given as follows.

a1. Compute the eigenvector R of the symmetric matrix Sh-1Uh T

∑k)1
K Rk

Txnxn
TRkUh Sh-1 corresponding to the largest eigenvalue.

a2. Calculate qn by

a3. Calculate ckn by

The second case of second-order calibration is that where the
profiles xn and yn are unavailable, but one has two or more
calibration samples in which the concentrations of the component
under determination are known. In this case, the COVER2 method
can be used to resolve directly the profiles xn and yn of the analyte.
The procedure for resolving xn is given by

b1. Compute the eigenvector R of the symmetric matrix Sh-1Uh T

∑k,h)1
K cknchnRk

TRhUh Sh-1/∑k)1
K ckn

2 corresponding to the largest eigen-
value.

b2. Calculate qn by

qn ) (∑
k)1

K

ckn
2 /||∑

k)1

K

cknRkUh Sh-1R||)Uh Sh-1R (30)

(Sh-1VhT ∑
k,h)1

K

cknchnRkRh
TVhSh-1/∑

k)1

K

ckn
2 )â ) â (31)

∑
k)1

K

RkRk
T ≈ VhShVhT (32)

pn )bVhSh-1â (33)

yn ) ∑
k)1

K

cknRk
Tpn/∑

k)1

K

ckn
2 (34)

qn ) (c1n/xT
nR1Uh Sh-1R)Uh Sh-1R (35)

qn ) Uh Sh-1R/yn
TUh Sh-1R

ckn ) xn
TRkqn k ) 1, ..., K

qn ) (∑
k)1

K

ckn
2 /||∑

k)1

K

cknRkUh Sh-1R||)Uh Sh-1R
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b3. Calculate xn by

Then the procedure for estimating yn is given by
c1. Compute the eigenvector â of the symmetric matrix Sh-1VhT

∑k,h)1
K cknchnRkRh

TVhSh-1/∑k)1
K ckn

2 corresponding to the largest eigen-
value.

c2. Calculate pn by

c3. Calculate yn by

With xn and yn thus identified, the second case is transformed
into the first one, and one can use COVER1 for the quantification
of the component in unknown mixtures.

The third case of second-order calibration is that where one
has the profile of the analyte in a certain order, say xn, and one
calibration sample in which the concentration of the analyte, ckn,
is known. In this case, the COVER3 method can be used to directly
estimate the concentrations of the component in unknown
mixtures. The computing procedure is implemented as follows.

d1. Compute the eigenvector R of the symmetric matrix Sh-1Uh T

∑k)1
K Rk

Txnxn
TRkUh Sh-1 corresponding to the largest eigenvalue.

d2. Calculate qn by

d3. Calculate ckn by

Note that in the aforementioned three cases the prior knowl-
edge is indispensable for quantification of the analyte. In analytical
practice one sometimes encounters the cases where excessive
knowledge is available for second-order calibration. An example
is the case where one has the profile xn and more than one
calibration samples. In this case, one can simply use the COVER3
method for estimating the relative concentrations of the analytes
in all samples and then utilize the calibration samples to determine
the absolute values of these concentrations.

EXPERIMENTAL SECTION
1. Simulated Example. The spectral profiles of four compo-

nents, s1, s2, s3, and s4, were generated by

where gs(x, a, b) is the value at x of Gaussian function with center
a and standard deviation b; i.e., gs(x, a, b) ) exp{-(x - a)2/2b2}.
The chromatographic profiles of the components, c1, c2, c3, and
c4, were simulated by

Ten samples were generated, in which the first five samples only
contained the components of analytical interest, i.e., the first three
components, with the analyte concentrations uniformly distributed
in the range of 0-1. The remaining five samples contained the
three analytes as well as an interference, i.e., the fourth compo-
nent, with the concentrations of each component uniformly
distributed in the range of 0-1. The two-way response of each
sample were generated exactly in terms of eq 1, in which the
random errors were normally distributed with a mean of 0 and a
standard deviation of 0.002. To investigate the performance of the
proposed method, these 10 samples were divided into two sets.
The calibration set was composed of the first five samples, and
the prediction set consisted of the remaining five samples. With
the calibration samples, COVER2 was used for the resolution of
the spectral and the chromatographic profiles for each analyte.
COVER1 was then used to estimate the concentrations of the
analytes in the samples. To examine the behavior of COVER3,
the first of these 10 samples was used as a calibration sample.
With the spectral profiles assumed known, the concentrations of
the samples were estimated using COVER3. For comparison,
these 10 samples were also treated using the TLD method and
the PARAFAC algorithm.

2. HPLC-DAD Data. Nine mixtures of o-dichlorobenzene (o-
DCB), p-chlorotoluene (p-CT), and o-chlorotoluene (o-CT) as well
as an internal retention time standard, chlorobenzene (CB), were
analyzed using a high-performance liquid chromatography (HPLC)
system with diode array detection. The concentrations for each
component are shown in Table 1. Details of the experimental
procedures are as given previously.28 With the samples 3-6 as
the calibration set, COVER2 was used to resolve the spectral and
the chromatographic profiles of the analytes, p-CT and o-CT, as
well as the interference o-DCB. COVER1 was then applied to
estimating the concentrations of the two analytes in the samples.
With the spectral profiles experimentally obtained and sample 1
as a calibration sample, the concentrations of p-CT in the samples
were calculated by COVER3. With the spectral profiles experi-
mentally obtained and sample 2 as a calibration sample, the
concentrations of o-CT in the samples were also estimated using
COVER3. For comparison, these nine samples were also treated
using the TLD method and the PARAFAC algorithm.

s3,i ) 0.7 gs(2i - 1, 40, 10) + 0.2 gs(2i - 1, 90, 20)
i ) 1, 2, ..., 50

s4,i ) 0.7 gs(2i - 1, 50, 25) i ) 1, 2, ..., 50

c1,i ) 0.5 gs(4i - 3, 40, 5) i ) 1, 2, ..., 20

c2,i ) 0.5 gs(4i - 3, 30, 10) i ) 1, 2, ..., 20

c3,i ) 0.5 gs(4i - 3, 50, 10) i ) 1, 2, ..., 20

c4,i ) 0.5 gs(4i - 3, 40, 9) i ) 1, 2, ..., 20

xn ) ∑
k)1

K

cknRkqn/∑
k)1

K

ckn
2

pn ) VhSh-1â/xn
TVhSh-1â

yn ) ∑
k)1

K

cknRk
Tpn/∑

k)1

K

ckn
2

qn ) (c1n/xn
TR1Uh Sh-1R)Uh Sh-1R

ckn ) xn
TRkqn k ) 2, ..., K

s1,i ) 0.2 gs(2i - 1, 30, 30) + 0.5 gs(2i - 1, 70, 10)
i ) 1, 2, ..., 50

s2,i ) 0.6 gs(2i - 1, 20, 10) + 0.3 gs(2i - 1, 80, 30)
i ) 1, 2, ..., 50
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All computer programs were written in Matlab and run on a
personal computer (Pentium processor). The algorithm for TLD
used in the investigation was the improved version developed by
Li et al.10 and Booksh and co-workers.15 The PARAFAC algorithm
used in the study is the version given by Krijnen.30 The stopping
criterion for the PARAFAC algorithm is that the improvement of
the PARAFAC error between consecutive iterations is less than
10-5, or the total computational epochs are greater than a
predefined maximum, set to 10 000 in the investigation.

RESULTS AND DISCUSSION
1. Simulated Example. The goal of the simulated experi-

ments was two-fold. First, the performance of the proposed
method was investigated in comparison with the TLD method as
well as the PARAFAC algorithm. Throughout the investigation,
the number of components in the samples was chosen to be four,
which was determined by the number of significant singular values
given by eqs 10 and 32. The spectral and the chromatographic
profiles of the three analytes resolved using COVER2 with the
five-sample calibration set are depicted against the actually simu-
lated ones in Figure 1a and d.

It took 338 cycles for PARAFAC to achieve the resolution of
the 10-sample data. The resulting spectral and chromatographic
profiles of the three components are shown in Figure 1c and f.
One can observe that the profiles estimated by COVER2 fit the
actual ones as well as those given by PARAFAC. The spectral
and chromatographic profiles of the three analytes calculated
using TLD with all the 10 samples are plotted in Figure 1b and e.
It can be seen that the deviations between the estimated and the
actual profiles are much larger than those given by COVER2 and
PARAFAC. With the 5-sample calibration set, the concentrations
of the analytes in 10 mixtures were estimated by TLD as well as
PARAFAC. For TLD, the mean squared errors (MSEs) between
the estimated and the actual concentrations were 1.4179 × 10-3,
7.2776 × 10-5, and 1.1752 × 10-4, respectively, for the three
analytes, while for PARAFAC the MSEs were 3.8450 × 10-6, 1.6114
× 10-6, and 2.9667 × 10-6, respectively, for the three components.
With the profiles estimated by COVER2, the concentrations of
the analytes in the 10 samples were calculated using COVER1.
The MSEs of the calculated concentrations from the actual ones
were 1.0699 × 10-4, 9.1394 × 10-6, and 2.0322 × 10-5, respectively,
for the three analytes. Using the first sample as calibration set
and the simulated spectral profile of each analyte, the concentra-
tions of the analytes in the 10 samples were predicted separately
by COVER3. The MSEs were 1.3263 × 10-4, 2.5999 × 10-5, and
7.2945 × 10-5, respectively, for the three analytes. For comparison

with the first sample as calibration set and the spectral profiles
simulated, the concentrations of the three components in 10 mix-
tures were estimated separately using the restricted PARAFAC
algorithm in which one of the spectral profiles was restricted to
the known spectral profile of the analyte. The MSEs were 4.0420
× 10-6, 3.3726 × 10-5, and 3.3823 × 10-5, respectively, for the
three analytes. The concentrations of the first component in 10
samples calculated by different methods are shown in Table 2. It
can be seen that for the simulated data the estimating errors given
by COVER1 and COVER3 are a little larger than those given by
PARAFAC and its restricted version. However, it was found that
for 10 times (or runs) one started PARAFAC from randomly sel-
ected values, this algorithm converged to degenerate solutions
twice. This indicates the PARAFAC algorithm is subjected to the
danger of getting trapped into degenerate solutions. Moreover,
for the simulated data when the component number was not
chosen to be four, the performance of PARAFAC was undesirably
bad, hinting that the behavior of PARAFAC was very sensitive to
the choice of the component number. Because in practical prob-
lem solving determination of the component number in unknown
mixtures is usually a difficulty that is hard to handle, the afore-
mentioned results do suggest that in practical problem solving
the robustness of PARAFAC to errors is frequently offset by the
degenerate solutions and its sensitivity to the component number.
This can be shown from the results of the real data presented
below.

Second, the effect of the estimated number of components
present in the samples, N, on the behavior of the proposed method
was examined. The results are shown in Figure 2. It was found
that, when N selected was smaller than the number of components
actually present in the samples, the profiles in each order resolved
by COVER2 deviated severely from the true ones. The perfor-
mance of COVER3 in concentration estimation of unknown mix-
tures was also very poor. However, as N increased and became
equal to or greater than the actual number of components in the
samples, the performance of COVER2 and COVER3 tended to be
very stable and was little affected by the estimates of N. Similar
observations were obtained for COVER1, since it differs merely
slightly from COVER3. The results really indicate an attractive
characteristic of the proposed method in that its performance is
very stable with respect to the overestimates of the component
number. Because an upper bound of the component number can
always be easily estimated, this characteristic does imply an ad-
vantage of the COVER method over the PARAFAC algorithm in
that the COVER method is free of the difficulty of determining
the number of components present in the samples, while for
PARAFAC one cannot circumvent this difficulty, since the per-
formance of PARAFAC is very sensitive to the choice of the com-
ponent number. It seems that this advantage derives from the
fact that one uses SVD in eqs 9 and 28 to obtain well-defined
eigenproblems.

2. HPLC-DAD Data. With the four-sample calibration set,
COVER2 was applied to the resolution of the spectral and the
chromatographic profiles of o-DCB, p-CT, and o-CT. The spectral
profiles of the three components computed by COVER2 are plotted
against those experimentally measured from pure components in
Figure 3a. One can observe a very good fit of the estimated profiles
to the actual ones. This further confirmed the performance of

(30) Krijnen, W. P. The Analysis of Three-Way Arrays by Constrained PARAFAC
Methods; DSWO Press: Leiden, 1993.

Table 1. Compositions of Nine Mixtures in HPLC-DAD
Data

concentration (µg mL-1)

sample 1 2 3 4 5 6 7 8 9

o-DCB 0.0 0.0 0.0 0.0 152.2 15.2 60.8 91.2 30.4
p-CT 75.6 0.0 50.4 25.2 12.6 12.6 25.2 50.4 75.6
o-CT 0.0 91.2 30.4 60.8 15.2 152.0 91.2 30.4 60.8
CB 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4
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COVER2. Using all the nine samples, TLD and PARAFAC were
used for calculating the spectral profiles, too. It was found that
with different numbers of components chosen for the model, the
performance of TLD and PARAFAC varied, and the best resolu-
tions for PARAFAC and TLD were both achieved when the

component number was set to three. It took 774 iterations for
PARAFAC to locate the best solution. The spectral profiles of the
three components obtained using TLD and PARAFAC are depicted
against the experimentally measured ones in Figure 3b and c.
The discrepancies between the calculated and the measured

Figure 1. Spectral and chromatographic profiles of simulated data. (a) Spectral profiles simulated (dotted line) and calculated by COVER2
(solid line). (b) Spectral profiles simulated (dotted line) and calculated by TLD (solid line). (c) Spectral profiles simulated (dotted line) and calculated
by PARAFAC (solid line). (d) Chromatographic profiles simulated (dotted line) and calculated by COVER2 (solid line). (e) Chromatographic
profiles simulated (dotted line) and calculated by TLD (solid line). (f) Chromatographic profiles simulated (dotted line) and calculated by PARAFAC
(solid line).
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profiles are much larger than that given by COVER2. With the
four calibration samples, the concentrations were computed by
TLD as well as PARAFAC. The results are shown in Tables 3 and

4. For TLD the MSEs were 7.9 and 56.9, respectively, for p-CT
and o-CT, while for PARAFAC the MSEs were 11.9 and 31.8,
respectively, for p-CT and o-CT. Using the profiles resolved by
COVER2, COVER1 was applied to estimating the concentrations
of the two analytes in nine samples. The calculated concentrations
are shown in Tables 3 and 4. The MSEs were 5.8 and 9.5,

Table 2. Concentrations of the First Component in Ten
Samples in Simulated Data

values calculated by different methods

sample
no.

actual
values

TLD COVER1 PARAFAC COVER3 restricted
PARAFACa

1 0.8130 0.7715 0.8118 0.8145 0.8130 0.8130
2 0.8979 0.9234 0.8877 0.8959 0.8899 0.8953
3 0.2446 0.2304 0.2496 0.2473 0.2499 0.2468
4 0.7606 0.7307 0.7594 0.7603 0.7607 0.7590
5 0.6949 0.7402 0.6954 0.6951 0.6980 0.6949
6 0.4519 0.4643 0.4541 0.4484 0.4558 0.4481
7 0.2636 0.2304 0.2773 0.2643 0.2776 0.2635
8 0.6655 0.6878 0.6787 0.6631 0.6821 0.6626
9 0.1166 0.1360 0.1347 0.1178 0.1363 0.1178
10 0.2096 0.2904 0.2252 0.2074 0.2283 0.2082

MSEb 1.4179c 1.0699d 3.8450e 1.3263d 4.0420e

a The restricted PARAFAC algorithm is the one where the knowl-
edge of known spectra of the component under determination is
employed. b MSE is the mean squared error. c The number is multi-
plied by 103. d The number is multiplied by 104. e The number is
multiplied by 106.

Figure 2. Relationship of the errors of spectral resolution and
concentration estimation for the first component to the estimated
number of components present in the samples. (a) Relationship
between the logarithmic Euclidean distance of the spectral profiles
estimated by COVER2 from the actual ones and the estimated
number of components. The actual number of components in the
calibration set is 3. (b) Relationship between the logarithmic Euclidean
distance of the concentrations estimated by COVER3 from the actual
ones and the estimated number of components. The actual number
of components in the prediction set is 4.

Figure 3. Spectral and chromatographic profiles of HPLC-DAD
data. (a) Spectral profiles experimentally measured from pure
compounds (dotted line) and calculated by COVER2 from mixture
samples (solid line). (b) Spectral profiles experimentally measured
from pure compounds (dotted line) and calculated by TLD from
mixture samples (solid line). (c) Spectral profiles experimentally
measured from pure compounds (dotted line) and calculated by
PARAFAC from mixture samples (solid line).
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respectively, for p-CT and o-CT. Using sample 1 as the calibration
set and the experimentally measured spectral profile of p-CT, the
concentrations of p-CT in the samples were computed using
COVER3 and the restricted PARAFAC algorithm. The results
obtained are shown in Table 3. The MSEs were 4.8 and 10.5,

respectively, for COVER3 and the restricted PARAFAC algorithm.
With the second sample as the calibration set and the experi-
mentally obtained spectral profile of o-CT, COVER3 and the
restricted PARAFAC algorithm were used to estimate the con-
centrations of o-CT in the samples. The concentrations computed
are shown in Table 4. The MSEs were 8.0 and 38.2, respectively,
for COVER3 and the restricted PARAFAC algorithm. The results
verified the conclusion obtained in previous simulated experiments
that the proposed method could provide acceptable performance
in second-order calibration.

CONCLUSIONS
The coupled vectors resolution method has been developed.

The method can produce directly solutions to various cases of
second-order calibration and can generalize in a direct manner
to new unknown samples. The presented results demonstrate that
the proposed method is capable of yielding accurate estimates
for the profiles of the analytes in each order and for the
concentrations of the analytes, and the performance of the
proposed method is very stable when the number of components
is chosen to be equal to or greater than the actual number present
in the samples. This offers the advantage that in second-order
calibration one can circumvent the difficulty of determining a
proper number of components present in the samples.
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Table 3. Concentrations of p-CT in Nine Mixtures in
HPLC-DAD Data

values calculated by different methodssample
no.

actual
values TLD COVER1 PARAFAC COVER3 restricted PARAFACa

1 75.6 77.2 76.0 77.3 75.6 75.6
2 0 -0.2 2.1 -0.4 2.1 0.1
3 50.4 51.4 51.4 51.4 51.1 50.4
4 25.2 25.6 26.8 25.5 26.6 25.2
5 12.6 6.6 16.3 6.2 16.3 7.0
6 12.6 10.6 12.1 10.4 12.4 10.9
7 25.2 19.5 26.6 17.4 26.1 17.7
8 50.4 48.8 55.8 47.8 55.3 47.4
9 75.6 75.1 77.8 74.3 77.3 73.1

MSEb 7.9 5.8 11.9 4.8 10.5

a The restricted PARAFAC algorithm is the one where the knowl-
edge of known spectra of the component under determination is
employed. b MSE is the mean squared error.

Table 4. Concentrations of o-CT in Nine Mixtures in
HPLC-DAD Data

values calculated by diferent methodssample
no.

actual
values TLD COVER1 PARAFAC COVER3 restricted PARAFACa

1 0 -6.4 2.1 1.8 2.0 1.1
2 91.2 99.8 89.8 100.7 91.2 91.2
3 30.4 29.0 31.3 34.7 31.8 31.2
4 60.8 64.4 60.6 67.7 61.5 61.2
5 15.2 29.1 16.1 11.3 17.1 10.0
6 152.0 148.0 148.2 148.1 148.7 134.1
7 91.2 104.3 83.4 97.7 84.6 88.2
8 30.4 36.1 28.1 29.2 28.3 26.0
9 60.8 65.9 63.3 70.0 64.2 62.9

MSEb 56.9 9.5 31.8 8.0 38.2

a The restricted PARAFAC algorithm is the one where the knowl-
edge of known spectra of the component under determination is
employed. b MSE is the mean squared error.
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