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SUMMARY

A new approach, the alternating slice-wise diagonalization (ASD) method, is developed for three-way data
resolution. First, based on the least squares principle and the constraints inherent in the resolution of the trilinear
model, a criterion, the slice-wise diagonalization (SD) loss, is proposed for trilinear analysis of three-way data.
This criterion provides a natural way to avoid the two-factor degeneracy, which is difficult to handle for the
PARAFAC algorithm. Second, by alternatingly minimizing the SD loss, a procedure is developed for identifying
the parameters of the trilinear model. Experimental results show that the resolved profiles of chemical meaning
are very stable with respect to the component number provided that the number is chosen to be equal to or greater
than the actual one. This enables the ASD method to achieve resolution without concern about the actual
component number. This approach is different from the traditional ones, since the determination of the actual
component number is a critical step for conventional chemometric resolution techniques. Moreover, the
convergence rate of the algorithm for the ASD method is much higher than that of the PARAFAC algorithm.
Copyright  2000 John Wiley & Sons, Ltd.
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INTRODUCTION

Identification of the components of interest in complex mixtures is a challenging problem in
analytical chemistry. The common practice to attack the problem is to resort to some physical and
chemical separation techniques. This solution, however, is always time-consuming and cost-
expensive. Moreover, when there exists a chemical equilibrium in the mixtures, the equilibrium will
be perturbed by the separation procedure, resulting in misleading quantification of the components of
analytical interest. An alternative way to solve the problem is given by chemometric three-way data
resolution methodologies. Under a certain condition, from three-way data experimentally available,
these methods can extract the information which is adequate for qualitative and quantitative analysis
of the components under consideration.

There are a variety of approaches to three-way data resolution in chemometrics. Among them the
family of rank annihilation factor analysis (RAFA) methods plays a dominant role in chemometric
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practice [1–12]. RAFA was originated by the work of Ho and co-workers [1–2]. Their method
requires, however, the two-way response of the pure species under quantification to be known in
advance. imposing a severe restriction on its applications. A most versatile and algebraically elegant
formulation of RAFA, known as the generalized rank annihilation method (GRAM), was proposed by
Sanchez and Kowalski [8–10]. Unfortunately, GRAM ignores the measurement errors in its
formulation, which induces its solutions to have inflated variance and produce imaginary entries.
Some efforts have been made to improve the performance of GRAM [11,12]. There is another avenue
to three-way data resolution. A prominent example is the PARAFAC algorithm [13–28], as proposed
by Harshman [14] and first used in analytical chemistry by Appellof and Davidson [15]. This
algorithm is in essence a least squares method to estimate the parameters of a trilinear model, which
yields the best fit to the three-way data array. Unfortunately, this algorithm, when trapped in
computational swamps [18], will give chemically meaningless solutions. Additionally, the solutions
finally acquired using this algorithm are rather unstable with respect to the number of components
chosen for the model, creating a dilemma that is hard to handle in practical problem solving.

In this paper a new method, alternating slice-wise diagonalization (ASD), is developed for trilinear
analysis of three-way data. Unlike existing approaches, the idea of the ASD method is to find two
matrices such that the matrix slices along some order, when multiplied by these two matrices at two
sides, are all fitted to diagonal form in the least squares sense. This formulation provides a natural way
to circumvent the so-called two-factor degeneracy (2-FD) problem [18,19], which is difficult to
combat for the PARAFAC algorithm. A salient virtue of the ASD method is that the resolved profiles
of chemical meaning are very stable with respect to the model dimensionality when the
dimensionality is chosen to be equal to or greater than the actual number of components. This
enables the ASD method to achieve a resolution without concern about the actual component number.
This approach is different from the traditional ones, since the determination of the actual component
number is a critical step for conventional chemometric resolution techniques. In addition, the
algorithm for the ASD method has a much higher convergence rate than the PARAFAC algorithm.
Results of a simulated example and a real data set are presented to demonstrate the performance.

THEORY

Slice-wise diagonalization loss for trilinear resolution

Suppose that the data measured in a chemical process or experiment are collected in anI � J� K
three-way arrayR, which is generated by the trilinear model [19]

R�
XN

n�1

xn
 yn 
 zn � E �1�

wherexn, yn andzn are the profiles in three orders respectively of thenth component (n = 1, 2, …,N),
6 denotes the tensor product andE is the array of measurement errors. In general chemical practice
one can assume that the profile matricesX = (x1, x2, …, xN) andY = (y1, y2, …, yN) have full column
rank. To guarantee that the profiles of the components of interest are resolved uniquely, it can be
further assumed that in the third order the profile of each component under concern is linearly
independent of that of any other component. Note that this premise, which is stronger than Kruskal’s
conditions [20], is the case most generally considered in the chemometrics literature [21]. In matrix
notation the trilinear model can be written as

R::k � Xdiag�z�k��YT � E::k; k � 1; 2; . . . ;K �2�

16 J.-H. JIANGET AL.

Copyright 2000 John Wiley & Sons, Ltd. J. Chemometrics2000;14: 15–36



whereR..k andE..k are thekth slices ofR andE respectively along the third order, the superscript T
symbolizes the transpose of a vector or a matrix and diag(z(k)) denotes theN� N diagonal matrix
whose diagonal elements are the corresponding ones ofz(k). Herez(k) is thekth row of the profile
matrixZ = (z1, z2, …, zN). The goal of trilinear resolution is to identify the profile matricesX, Y andZ
given the data arrayR experimentally measured.

It is important to note that, first, in apparent form the trilinear model, equation (1), treats its
parameter matricesX, Y andZ in a symmetric way. However, in the case under consideration it is
merely assumed thatX andY have full column rank, whileZ does not necessarily have full column
rank. In this sense the trilinear model is inherently symmetric only for thex andy orders and does not
treat the three orders in an entirely symmetric way. Second, equation (1) only means that the data can
be decomposed into several trilinear terms, not implying that the species all give trilinear responses.
Therefore trilinear methods can not only be applied to data in which the species all exhibit ideal
trilinear behaviour, but can also be used for data whose trilinear decomposition yields components of
significant chemical meaning. In particular, one can treat partially trilinear data, in which the species
of interest exhibit trilinear behaviour, despite the background components not behaving in a trilinear
way, using trilinear methods. Third, the assumption thatX andY both have full column rank implies
that I � N andJ� N. That is, under this premise the number of components is upper bounded by the
minimum of I andJ.

As it has been assumed thatX andY both have full column rank, it is known that there exist two
matricesP (l � N) andQ (J� N), which belong to the subspaces ofX andY respectively, satisfying

PTX � 1N �3�
YTQ � 1N �4�

whereIN is theN� N identity matrix. Multiplying R..k by PT at the left and byQ at the right and
utilizing equations (2)–(4), one can obtain

PTR::kQ � diag�z�k�� � ~E::k; k � 1; 2; . . . ;K �5�

where Ẽ..k = PTE..kQ (k = 1, 2, …, K). To keep the values of the entries ofẼ..k at the level of
measurement noises, one can assume thatP andQ are column-wise normalized. That is,kpnk = 1 and
kqnk = 1 (n = 1, 2, …,N), wherepn andqn are thenth columns ofP andQ respectively andkak
designates the Euclidean norm of a vectora. With this scaling convention,Ẽ..k s can be regarded as
matrices of measurement errors. Therefore a statistically plausible approach to identify the parameter
matricesP, Q andZ in equation (5) is the least squares method. That is,P, Q andZ are estimated by
the minimizers of the criterion

ESD�P;Q;Z� �
XK

k�1

kPTR::kQÿ diag�z�k��k2 �6�

where kAk denotes the Frobenius norm of a matrixA, i.e. kAk2 = trace (AT A). Here trace(.)
symbolizes the trace of a matrix.ESD is called the slice-wise diagonalization (SD) error, as it
measures the degree of discrepancy to which each slice matrixR..k is fitted to diagonal form. The
value of this least squares criterion, equation (6), depends on three parameter matricesP, Q andZ,
from which the profile matricesX, Y andZ can be resolved directly. Consequently, minimization of
this criterion (6) overP, Q andZ will actually yield the least squares solutions to the profile matrices
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to be identified. Note that in the formulation of this minimization problem one overlooks the
constraints implied by equations (3) and (4), which are inherent in the resolution of the trilinear model
(2). It is found in extensive simulations that, when the component number is correctly determined for
the model, the parameters of the trilinear model can be resolved accurately even without concern
about these constraints; when the model dimensionality is wrongly estimated, however, the algorithm
for the minimization problem sometimes gets trapped in chemically meaningless solutions. Based on
these findings, a new method has been developed for trilinear resolution. The idea of this method is to
seekP, Q andZ minimizing the SD error (6) subjected to the constraints of equations (3) and (4).
Since this method alternatingly exploits the matricesP, Q andZ such that all slicesR..k (k = 1, 2, …,
K) are fitted to diagonal form, it is called the alternating slice-wise diagnolization (ASD) method.

To solve the minimization problem with constraints, the penalty function method can be used to
convert it into a problem without constraints. That is, one seeksP, Q, Z, X andY minimizing the loss
function

LSD�X;Y;Z;P;Q� �
XK

k�1

kPTR::kQÿ diag�zk�k2 � �kPTX ÿ INk2� �kYTQÿ INk2 �7�

where� is a predefined positive constant which determines the weights of the penalty termskPT X
7INk2 andk YT Q 7INk2. For simplicity this loss function is called the slice-wise diagonalization
(SD) loss, since its core is the SD error. Minimization of this loss function overP, Q, X, Y andZ
yields the resolution of the trilinear model (2).

Dimensionality reduction of SD loss

In the present study, instead of minimizing directly the SD loss (7), we first use some dimensionality
reduction technique to transform the minimization problem into a reduced one.

SupposeUx and Uy are the sets of orthonormal bases spanning the common column and row
subspaces respectively ofR..k (k = 1, 2, …, K). From equation (2) it is known thatR..ks are all
chemically rank-deficient, and the dimensionalities of the common column and row subspaces of
R..ks are both intrinsically equal toN, the number of components underlying the data. Consequently,
Ux and Uy are l � N and J� N matrices respectively. In common chemometric practice,Ux is

estimated by the firstN singular vectors of
PK

k�1 R::kRT
::k, andUy is estimated by the firstN singular

vectors of
PK

k�1 RT
::kR::k [9]. BecauseX andY belong to the common column and row subspaces

respectively one can estimateX andY by

X � UxA �8�
Y � UyB �9�

whereA andB are twoN� N matrices which define the transformations fromUx to X and fromUy to
Y respectively. SinceP andQ belong to the subspaces ofX andY respectively, they can be estimated
by

P� UxG �10�
Q � UyH �11�
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whereG andH are also twoN� N matrices which define the transformations fromUx to P and from
Uy to Q respectively. Substitution of equations (8)–(11) into equations (3) and (4) yields

ATG � IN �12�
BTH � IN �13�

These two equations give the dimensionality-reduced version of the constraints of equations (3)
and (4). Noticing thatA, B, G andH are square matrices, one obtains thatG andH are actually the
inverse matrices ofAT and BT respectively. Substituting equations (8)–(11) into equation (7) and
letting

~R::k � UT
x R::kUy �14�

one obtains the loss function

LSD�A;B;Z;G;H� �
XK

k�1

kGT ~R::kH ÿ diag�z�k��k2 � �kGTA ÿ INk2 � �kBTH ÿ INk2 �15�

This loss function is the dimensionality-reduced version of the SD loss (7). AsX, Y andZ can be
estimated by the minimizers of the SD loss (7), minimization of this reduced SD loss overA, B, Z, G
and H will yield the estimates ofA, B and Z. Subsequently, from equations (8) and (9) one can
achieve the resolution of the profile matricesX, Y andZ.

Alternating slice-wise diagonalization (ASD) method for trilinear resolution

In the preceding subsection it has been shown that in the ASD method the trilinear resolution of a
three-way array is transformed to finding a set of parameter matricesA, B, G, H andZ minimizing the
reduced SD loss (15). To exploit the solution minimizing this loss function, a procedure can be
designed based on the alternating least squares (ALS) algorithm. This procedure is implemented by
alternatingly minimizingLSD(A, B, G, H, Z) overZ for fixed A, B, G andH, minimizingLSD(A, B,
G, H, Z) overA for fixedB, G, H andZ, minimizingLSD(A, B, G, H, Z) overB for fixedA, G, H and
Z, minimizingLSD(A, B, G, H, Z) overG for fixed A, B, H andZ, and minimizingLSD(A, B, G, H,
Z) overH for fixedA, B, G andZ. Here the derivation of the updating equations for these parameter
matrices is outlined.

The necessary condition forG minimizing LSD(A, B, G, H, Z) for fixed A, B, H andZ is that

@LSD

@G
� 2

XK

k�1

~R::kH�HT ~RT
::kGÿ diag�z�k��� � 2�A�ATGÿ I� � 0 �16�

One can derive from equation (16) that

G �
XK

k�1

~R::kHH T ~RT
::k � �AAT

 !ÿ1 XK

k�1

~R::kHdiag�z�k�� � �A

 !
�17�

Equation (17) gives the updating equation ofG for fixed A, B, H and Z. Analogously, the
computing equation ofH for fixed A, B, G andZ can be obtained as
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H �
XK

k�1

~RT
::kGGT ~R::k � �BBT

 !ÿ1 XK

k�1

~RT
::kGdiag�z�k�� � �B

 !
�18�

If Z minimizesLSD(A, B, G, H, Z) for fixed A, B, G andH, it is necessary forZ to satisfy the
condition

@LSD

@zkn
� ÿ2�gT

n
~R::khn ÿ zkn� � 0 �19�

wheregn andhn are thenth columns ofG andH respectively. Then one has the updating equation ofZ
as

zkn � gT
n

~R::khn; k � 1; 2; . . . ;K; n� 1; 2; . . . N �20�
The necessary condition forA minimizing LSD(A, B, G, H, Z) for fixed B, G, H andZ is that

@LSD

@A
� 2�G�GTA ÿ IN� � 0 �21�

Noticing thatG is a square matrix, one can obtain the updating equation ofA as

A � �Gÿ1�T �22�
Analogously, the updating equation ofB for fixed A, G, H andZ is given by

B � �Hÿ1�T �23�
Having presented the updating equations for the parameter matrices, we can give the general

algorithm for the ASD method as follows:

1. EstimateUx andUy and computeR̃..k using equation (14).
2. Initialize G andH to be invertible matrices which are column-wise normalized and set� to a

small positive number.
3. ComputeZ using equation (20).
4. ComputeA andB using equations (22) and (23) respectively.
5. ComputeG using equation (17) and subsequently scaleG to be column-wise normalized.
6. ComputeZ using equation (20).
7. ComputeH using equation (18) and subsequently scaleH to be column-wise normalized.
8. Repeat steps 3–7 until a stopping criterion is satisfied.

This procedure is virtually an ALS algorithm for minimizing the SD loss (15). It is important to
point out that in the algorithm we follow the scaling convention thatG and H are column-wise
normalized. BecauseUx andUy are both column-wise orthonormal, one obtains from equations (10)
and (11) thatP andQ are also column-wise normalized. However, in common chemometric practice
it is generally assumed thatX and Y are column-wise normalized. Therefore, after the algorithm
converges, one must rescaleX andY to be column-wise normalized so as to keep consistency with the
common scaling convention. That is,

20 J.-H. JIANGET AL.
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xn � Uxan=kank �24�
yn � Uybn=kbnk �25�

wherean andbn are thenth columns ofA andB respectively. As a consequence,zn given by the
algorithm must also be rescaled by a factor ofkank kbnk. Nevertheless, it is found in experiments that
it is preferable to re-estimateZ using least squares regression of model (2) withX and Y thus
resolved. That is,Z is estimated by

Z � F��XTX� � �YTY��ÿ1 �26�

whereF is a K� N matrix with entries given by

fkn � xT
nR::kyn; k � 1; 2; . . . ;K; n� 1; 2; . . . ;N �27�

and* signifies the element-wise (Hadamard) product of the matrices.
Thus far we have shown the ASD method for recovering the profile matrices from a given three-

way array. Notice that, in model (2), postmultiplyingX, Y and Z by diagonal matrices whose
diagonal elements are 1 or71 with the product being 1 does not alter the trilinear decomposition.
That is, after the profile matrices have been identified, the signs of the profiles are still left
undetermined. Therefore one needs to establish some sign convention to remove such a source of
non-identifiability. In spectroscopic applications, since the physical profiles are non-negative, one can
employ the sign convention that in each column ofX andY the element with the largest absolute
value is positive. If several entries in a column have absolute values equal to the largest one, then the
first such entry is positive. This sign convention defines the sign of the profiles inX andY, leaving the
sign of the profiles inZ determined. To keep consistency with this sign convention, after the profile
matrices have been identified, the following postprocessing is performed:

xn;final � xn;initial sign�xn;initial�MIx��; n� 1; 2; . . . ;N �28�
yn;final � yn;initial sign�yn;initial�MIy��; n� 1; 2; . . . ;N �29�
zn;final � zn;initial sign�xn;initial�MIx�� sign�yn;initial�MIy��; n� 1; 2; . . . ;N �30�

wherexn,initial, yn,initial andzn,initial are the profiles initially resolved inx, yandzorders respectively by
the ASD method, sign(x) designates the sign ofx, MIx andMIy are the indices of the elements with the
largest absolute values inxn,initial andyn,initial respectively andxn,final, yn,final andzn,final are the profiles
finally given in x, y and z orders respectively by the method. In the setting of spectroscopic
applications, after this postprocessing, one can immediately obtain the ‘true’ physical profiles of each
component in three orders.

It is important to note that, when two of the columns are collinear simultaneously inP andQ, the
SD error (6) will generally have a large value. Moreover, the penalty terms in the SD loss (7) cause
the resolvedX andY to have full column rank. That is, there will be no collinearity between any two
columns inX as well as inY. Therefore the ASD method is capable of circumventing the so-called 2-
FD, which is difficult to handle for the PARAFAC algorithm.
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EXPERIMENTAL

Simulated HPLC–DAD data

A data set measured using a high-performance liquid chromatography (HPLC) system with diode
array detection (DAD) on four samples of four species was simulated. The spectral profiles of these
four species,s1, s2, s3 ands4, were generated by

s1;i � 0:2 gs�2i ÿ 1; 30; 30� � 0:5 gs�2i ÿ 1; 70; 10�; 1; 2; . . . ; 50

s2;i � 0:6 gs�2i ÿ 1; 20; 10� � 0:3 gs�2i ÿ 1; 80; 30�; 1; 2; . . . ; 50

s3;i � 0:7 gs�2i ÿ 1; 40; 20� � 0:2 gs�2i ÿ 1; 90; 20�; 1; 2; . . . ; 50

s4;i � 0:7 gs�2i ÿ 1; 50; 25�; 1; 2; . . . ; 50

where gs(x, a, b) is the value atx of the Gaussian function with centrea and standard deviationb, i.e.
gs�x; a; b� � exp�ÿ�xÿ a�2=2b2�. The chromatographic profiles of the components,c1, c2, c3 andc4,
were simulated by

c1;i � 0:5 gs�4i ÿ 3; 40; 5�; i � 1; 2; . . . ; 20

c2;i � 0:5 gs�4i ÿ 3; 30; 10�; i � 1; 2; . . . ; 20

c3;i � 0:5 gs�4i ÿ 3; 40; 10�; i � 1; 2; . . . ; 20

c4;i � 0:5 gs�4i ÿ 3; 40; 5�; i � 1; 2; . . . ; 20

The first two of the four simulated samples contained only the first three species, the concentrations
of which are uniformly distributed in the range 0–1. The remaining two samples contained all four
components, with the concentrations of each component uniformly distributed in the range 0–1. The
three-way response array was generated exactly in terms of equation (2), in which the random errors
were normally distributed with mean zero and standard deviation 0⋅002. The data array was treated
using the ASD method as well as the PARAFAC algorithm to resolve the profiles of each component
in three orders.

Real excitation–emission fluorescence data

Acridine red, fluorescein sodium and rhodamine B are three fluorescent dyes coexisting in a dye laser.
The steady state fluorescence of six samples of these three dyes was measured in 0⋅01 M NaOH
solutions. The concentrations of these three species in the six samples are shown in Table I. The
fluorescence was measured on a Hitachi 850 florescence spectrometer. The excitation and emission
wavelengths were set from 450 to 600 nm and from 480 to 620 nm respectively, with a fixed interval
of 5 nm. The scan rate was 240 nm min71. The effect of Rayleigh scattering on each response matrix
was eliminated by subtracting the measurement matrix of a blank from the sample measurements. A
31� 29� 6 three-way data array was thereby collected. This array was treated using the ASD
method as well as the PARAFAC algorithm for recovering the profiles of each component in three
orders.

All computer programs were written in MATLAB and run on a personal computer (Pentium
Processor 233 MHz). The programs for the ASD method are given in the Appendix. The stopping
criterion for the ASD algorithm was that the difference in the values of the SD loss (15) between
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consecutive iterations was less than a predefined constant, set to 10710 in the simulations and 1075 in
real data analysis, or the total computational iterations were greater than 2000. The PARAFAC
algorithm used in the study was the version given by Krijnen [22]. The stopping criterion for the
PARAFAC algorithm was that the improvement in the PARAFAC error between consecutive
iterations was less than a predefined constant, also set to 10710 in the simulations and 1075 in real
data analysis, or the maximum computational epoch of 10000 was expired. In the PARAFAC
algorithm the starting values ofX andY wereUx and Uy respectively. This starting configuration is
commonly used in the implication of this algorithm.

RESULTS AND DISCUSSION

Simulated HPLC-DAD data

In the ASD method two parameters need to be determined preliminarily. One is the penalty weight�
and the other is the model dimensionality, i.e. the component numberN. Because in the ASD
algorithm the updates ofA andB always keep the constraints (12) and (13) fulfilled, the value of�
will introduce no bias to the profiles finally recovered. Nevertheless, the value of� has some effect on
the convergence of the ASD algorithm. If� is too large, the algorithm converges very slowly. In
contrast, if� is too small, as the iterative process proceeds, the matricesG andH are inclined to
become singular and the iteration has to be interrupted owing to the computation of inverses of nearly
singular matrices. This phenomenon induces the algorithm not to converge. However, it offers an
indication for the determination of the value of�. That is, one can start the algorithm with a relatively
small value of�. If the iterative process produces nearly singular matrices forG andH, one can break
the iterations and restart the algorithm with� ten times as great as the previous one. Using such a
procedure, one can determine an appropriate value of� with which the iteration process does not
produce nearly singular matrices forG andH and converges sufficiently fast. It was discovered in
simulations that� = 1073 was a good initial guess for exploiting the proper values of�.

For the PARAFAC method the component number is the parameter of dominant significance. If the
component number is wrongly determined, the performance of PARAFAC generally collapses,
creating a dilemma that is difficult to handle in practical problem solving. For comparison the effect
of the component number on the solutions given by ASD was examined using the simulated data.
With different numbers of components chosen for the model, the simulated data were analysed using
the ASD method. In the investigation the initial estimates ofG andH were both set to the identity
matrices. The resolution errors, which are defined as the Euclidean distances between the resolved
profiles and the actual ones, for the first species are plotted versus the component numbers in Figure 1.
It can be seen that the resolution errors in three orders are undesirably large in cases where the
component number determined is smaller than the actual number of components present in the
samples, and the errors are stabilized to acceptable values as the component number is increased to be
equal to or greater than the true model dimensionality. These findings were also observed for the other
three species. These results imply that the profiles of chemical meaning recovered by the ASD

Table I. Compositions of six samples in real fluorescence measurement experiments.

Concentration (�g g71)

Component #1 #2 #3 #4 #5 #6

Acridine 0⋅00 0⋅00 0⋅00 0⋅00 0⋅24 0⋅12
Fluorescein 0⋅12 0⋅00 0⋅12 0⋅24 0⋅12 0⋅24
Rhodamine 0⋅00 0⋅11 0⋅22 0⋅11 0⋅22 0⋅22
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Figure 1. Relationship between component number and resolution errors of profiles of first species in simulated
HPLC-DAD data for ASD method. The resolution error of a profile is the Euclidean distance between the
resolved and the actual profile. (a) Resolution error of spectral profile. (b) Resolution error of chromatographic

profile. (c) Resolution error of concentration profile.
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method are very stable to overestimates of the component number. Therefore with the ASD method
one does not need to determine the component number accurately. One merely needs to estimate an
upper bound for the component number. In the extreme one can simply take the smaller ofI andJ as
the estimate. This conclusion is appealing from the practical point of view, since it indicates that the
difficulty of determining a proper number of components for the model is circumvented in the ASD
method. This offers a salient advantage over the PARAFAC algorithm.

The ASD algorithm is an iterative procedure calling for starting values. That is, to start the
algorithm, one needs to determine the initial estimates forG andH. In the simulated experiments the
effect of the choice of these initial estimates on the convergence behaviour of this algorithm was
investigated. This was performed by running the algorithm separately ten times. Since the
performance of ASD was very stable to overestimates of the model dimensionality, for simplicity the
component number was chosen to be four, which was the true dimensionality of the model,
throughout this investigation. In each run the algorithm was started from initial estimates ofG andH
which took values randomly distributed in the domain [71, 1]. It was discovered in the experiment
that in each run the algorithm converged very fast, and the solutions given in different runs are almost
the same. The average iteration number for ten runs was 46⋅6. (In this study, ASD required 10 494
floating point operations (FLOPs) per iteration.) This was much less than that of PARAFAC, as given
below. The profiles resolved in ten runs were averaged. The Euclidean distances from the resolved
profiles to the average ones as well as to the actual ones are listed in Table II. These figures verified
that the solutions recovered using ASD in ten runs all provided accurate estimates for the actual
profiles. Moreover, the profiles resolved in different runs exhibited very slight discrepancies. This
gives evidence for the fact that the ASD algorithm had desirable convergence precision. Based on this
finding, one can conclude that for the ASD method the initial estimates ofG andH have little effect
on the solution finally recovered. Therefore one can arbitrarily determine the initial estimates forG
andH to start the algorithm. For simplicity in subsequent studies the initial estimates ofG andH were
both set to the identity matrices.

Finally, the simulated data were analysed using the ASD method as well as the PARAFAC
algorithm. It was found with components less or more than four that some profiles recovered by
PARAFAC deviated severely from the actual ones. The best resolution for PARAFAC was achieved
in the case where the component number was chosen to be four, i.e. the actual number of components
present in the four simulated mixtures. It took 4109 iterations for PARAFAC to achieve the
resolution. (In the analysis, more than 170000 FLOPs were required for one PARAFAC iteration.)
These resolved profiles in the spectral and chromatographic orders are depicted against the actual
ones in Figure 2, and the concentration profiles computed are given in Table III. It can be seen that
these profiles gave a very good fit to the actual ones. In contrast, when the component number was
chosen to be equal to or greater than four, the profiles of chemical meaning were all accurately
recovered by the ASD method. In the case where the component number was chosen to be five, the

Table II. Mean squared deviations (MSDs) from profiles resolved in ten runs to average ones and to actual ones.
The deviation between two profiles is the Euclidean distance between them.

MSDs to average profiles MSDs to actual profiles

Component x order y order z order x order y order z order

1 1⋅2� 10713 3⋅3� 10711 3⋅6� 10710 3⋅3� 1075 4⋅6� 1075 1⋅2� 1073

2 4⋅2� 1079 1⋅1� 1079 3⋅2� 1077 6⋅5� 1075 1⋅1� 1074 7⋅4� 1074

3 2⋅5� 10713 1⋅0� 10712 2⋅7� 10710 5⋅2� 1075 5⋅0� 1075 6⋅6� 1074

4 1⋅2� 1078 6⋅1� 1078 3⋅1� 1077 7⋅0� 1074 5⋅2� 1074 1⋅8� 1073
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resolved profiles are also shown in Figure 2 and Table III. Notice that in Table III the concentration
profiles resolved by ASD have several negative elements. These negative values have resulted from
the propagation of model errors, since a standard alternating least squares algorithm in which non-
negativity is not imposed is used for the ASD algorithm. It took 319 iterations for ASD to obtain such
resolution, indicating that ASD had a much higher convergence rate than PARAFAC. (For the five-
component model, ASD required 19 879 FLOPs per iteration.) One can observe that the profiles of
chemical meaning resolved by ASD (Figures 2c and 2d) fit the actual ones as well as those obtained
using PARAFAC (Figures 2a and 2b). Because in the resolution the model dimensionality was set to

Figure 2. Profiles of simulated HPLC-DAD data resolved by ASD and PARAFAC methods. The component
numbers for PARAFAC and ASD were four and five respectively. One noise component was extracted by ASD,
since the actual component number was four. (a) Spectral profiles resolved by PARAFAC algorithm (full line)
against actual ones (dotted line). (b) Chromatographic profiles resolved by PARAFAC algorithm (full line)
against actual ones (dotted line). (c) Spectral profiles resolved by ASD method (full line) against actual ones
(dotted line). (d) Chromatographic profiles resolved by ASD method (full line) against actual ones (dotted line).
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five, one component of noise was extracted. It can be perceived from Table III that the entries in the
concentration profile of this noise component are all nearly zero. This implies that this component
made little contribution to accounting for the total variation in the data, indicating that only four
components are present in the underlying model. These results showed that the ASD method was not
only stable to the overestimate of the model dimensionality, but could also give an indication for the
actual number of components present in the model.

Real excitation–emission fluorescence data

With the three-way fluorescence data experimentally measured, the goal of data analysis in the
investigation was to recover the profiles of the species present in the six-sample system. For
validating the resolution results, solutions of pure species involved were prepared and their excitation
and emission spectra were measured. Two choices of the component number were employed for the

Figure 2. Continued.
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model. One choice for the component number was three, which is consistent with the actual
dimensionality of the model. The other dimensionality chosen for the model was four. With these two
choices of the component number the three-way array (31� 29� 6) was treated using the ASD
method as well as the PARAFAC algorithm. When the component number was chosen to be three, it
took 58 iterations for PARAFAC to converge to the solution. (For the three-component model,
PARAFAC required more than 160 000 FLOPs per iteration.) The excitation and emission spectral
profiles thus identified are depicted against those experimentally measured in Figures 3a and 3b, and
the resolved concentration profiles are given in Table IV. One can observe that the resolved profiles
show very small deviations from the actual ones. With the component number set to three, it took 38
iterations for ASD to achieve the profile estimates. (In resolving the three-component model, 6610
FLOPs were required for one ASD iteration.) The estimated excitation and emission spectral profiles
are plotted in Figures 3c and 3d, and the concentration profiles are also shown in Table IV. It can be
seen that the solutions recovered by ASD also exhibited very slight discrepancies compared with
those experimentally measured. These results suggested that in the situation where the component
number was correctly determined for the model, both ASD and PARAFAC yielded accurate
estimates for the true profiles. On the other hand, it was found that when the component number was
chosen to be four, the performance of PARAFAC turned out to be very poor. In this case it took 10000

Table IV. Concentration profiles of three species calculated using PARAFAC and ASD against
actual ones in real data. The component number was chosen to be three for PARAFAC and ASD.

All the values listed are divided.

Actual values Values calculated by PARAFAC Values calculated by ASD

Sample 1 2 3 1 2 3 1 2 3

#1 0 1895 0 5 1941 4 5 1941 4
#2 0 0 1014 8 11 1022 6 11 1022
#3 0 1895 2028 1 1897 1851 73 1897 1852
#4 0 3790 1014 1 3813 995 72 3813 995
#5 1031 1895 2028 1059 1919 2233 1052 1923 2241
#6 515 3790 2028 472 3729 1998 478 3727 1994

ra 0⋅9986 0⋅9997 0⋅9893 0⋅9990 0⋅9997 0⋅9888

Table V. Concentration profiles of three species calculated using PARAFAC and ASD against
actual ones in real data. The component number was chosen to be four for PARAFAC and ASD. All

the values listed are divided by 103.

Actual values Values calculated by PARAFAC Values calculated by ASD

Sampe 1 2 3 1 2 3 4 1 2 3 4

#1 0 1895 0 4 1022 724 948 38 1941 5 75
#2 0 0 1014 4 1571 1059 71594 48 17 1022 25
#3 0 1895 2028 72 3786 1891 71923 74 1897 1852 7
#4 0 3790 1014 71 3490 974 346 73 3808 996 719
#5 1031 1895 2028 1047 4454 2289 72575 1047 1940 2235 31
#6 515 3790 2028 472 4968 2013 71250 471 3729 1995 714

ra 0⋅9989 0⋅6165 0⋅9883 0⋅9971 0⋅9997 0⋅9891

a Correlation coefficients between the resolved profiles and the actual ones.
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iterations for PARAFAC to give the solution. (For the four-component model, PARAFAC required
more than 230 000 FLOPs per iteration.) These resolved excitation and emission profiles are shown in
Figures 4a and IVb, and the concentration profiles are listed in Table V. One can notice that in each
order only one profile fits the experimentally measured one with acceptable accuracy, while the other
profiles deviate severely from those measured. These findings revealed the fact that in the case where

Figure 3. Spectral profiles of real fluorescence data resolved by ASD and PARAFAC methods when
component number was set to three. (a) Excitation spectral profiles resolved by PARAFAC algorithm (full
line) against excitation profiles experimentally measured (dotted line). (b) Emission spectral profiles
resolved by PARAFAC algorithm (full line) against emission profiles experimentally measured (dotted
line). (c) Excitation spectral profiles resolved by ASD method (full line) against excitation profiles
experimentally measured (dotted line). (d) Emission spectral profiles resolved by ASD method (full line)

against emission profiles experimentally measured (dotted line).
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the component number was incorrectly ascertained, PARAFAC generally produced a frustrating
performance. In contrast, it was discovered in the study that with the model dimensionality set to four,
the ASD method still exhibited desirable stability in the profile resolution. As can be seen in Figures
4c and 4d and Table V, the true profiles in three orders are accurately recovered by the ASD method,
disclosing that using ASD the resolved profiles of chemical meaning are very stable in the situation
where the component number is overestimated. Moreover, one can recognize that in Table V the
elements of the concentration profile of the fifth component, which is associated with the
measurement background and noise, are all insignificant in comparison with those of the components
of chemical meaning. This characteristic is of particular significance in practical problem solving,

Figure 3. Continued.
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since it hints at the actual component number in the model. In this investigation the iteration number
for ASD was merely 111. (In resolving the four-component model, ASD required 14,864 FLOPs per
iteration.) This re-verified that ASD had a much higher convergence rate than PARAFAC.

Figure 4. Spectral profiles of real fluorescence data resolved by ASD and PARAFAC methods when
component number was set to four.(a) Excitation spectral profiles resolved by PARAFAC algorithm (full
line) against excitation profiles experimentally measured (dotted line).(b) Emission spectral profiles
resolved by PARAFAC algorithm (full line) against emission profiles experimentally measured (dotted
line).(c) Excitation spectral profiles resolved by ASD method (full line) against excitation profiles
experimentally measured (dotted line).(d) Emission spectral profiles resolved by ASD method (full line)

against emission profiles experimentally measured (dotted line).
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CONCLUSIONS

A new method, alternating slice-wise diagonalization (ASD), has been developed for three-way data
resolution. The presented results have shown that the developed ASD method can render accurate
resolution for the component profiles, and the performance of the method is very stable with respect
to overestimates of the component number. Moreover, the algorithm of ASD has shown a much
higher convergence rate than PARAFAC. This method provides a valuable tool for second-order
calibration and for the study of complex chemical systems or processes which can be characterized by
a three-way data array.

Figure 4. Continued.
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APPENDIX: PROGRAMS IN MATLAB CODE FOR ASD

% Notations:
% rrzk is the response matrix of the kth sample.
% KK is the number of samples. KK> = 2. In the study we use KK = 4.
% rrzr = [rrz1 rrz2 … rrzKK];
% rrzl = [rrz1' rrz2' … rrzKK'];
% II is the number of variables in x order. In the study II = 50.
% JJ is the number of variables in y order. In the study JJ = 20.
% XX, YY and ZZ are the resolved profiles in x, y and z orders respectively.
% NN is an estimate of the number of components.
% uux and uuy are the first N singular vectors of rrzr* rrzr' and rrzl* rrzl' respectively.
% weight is the penalty weight.
% AA = uux'* XX; BB = uuy'* YY; GG = inv(AA '); HH = inv(BB').

function [XX, YY, ZZ, errflow] = asdmain(rrzr, rrzl, II, JJ, KK, NN)

[rrzr2, rrzl2, uux, uuy] = svddr(rrzr, rrzl, NN, JJ, KK);
GG = eye(NN); HH = eye(NN);
err1 = 100; derr = 1; cyc = 0; weight = 1e7 3;
errflow = [];

while derr> 1e7 10 & cye< 2000
cyc = cyc� 1
err0 = errl;
ZZ = gghhtozz(rrzr2, GG, HH, NN, KK);
AA = inv(GG'); BB = inv(HH');
errl = errorl(rrzr2, GG, HH, KK, NN);
HH = ggzztohh(rrzr2, GG, ZZ, BB, weight, NN, KK);
HH = HH * diag(ones(1, NN) ./ sqrt(sum(HH* HH)));
ZZ = gghhtozz(rrzr2, GG, HH, NN, KK);
GG = ggzztohh(rrzl2, HH, ZZ, AA, weight, NN, KK);
GG = GG* diag(ones(1, NN) ./ sqrt(sum(GG.* GG)));
errflow = [errflow, err1];
derr = abs(err07 err1);

end

XX = uux * AA; YY = uuy * BB;
XX = XX * diag(ones(1, NN) ./ sqrt(sum(XX.* XX)));
YY = YY * diag(ones(1, NN) ./ sqrt(sum(YY.* YY)));
ZZ = xxyytozz(rrzr, XX, YY, JJ, KK, NN);

% Post-processing to keep sign convention.
[maxx, indx] = max(abs(XX));
[maxy, indy] = max(abs(YY));
xsign = ones(NN, 1); ysign = ones(NN, 1);
for nn = 1:NN
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xsign(nn) = sign(XX(indx(nn), nn));
ysign(nn) = sign(YY(indy(nn), nn));

end
XX = XX * diag(xsign);
YY = YY * diag(ysign);
ZZ = ZZ * diag(xsign)* diag(ysign);

function err1 = error1(rrzr, pp, qq, KK, NN)
drrz = [];
for kk = 1:KK

rrz = pp' * rrzr(:, NN * (kk 7 1)� 1:NN * kk) * qq;
drrz = [drrz, rrz7 diag(diag(rrz))];

end err1 = sum(sum(drrz.* drrz));

function ZZ = gghhtozz (rrzr, GG, HH, NN, KK)
for kk = 1:KK

ZZ(kk, :) = diag (GG' * rrzr (:, NN * (kk 7 1)� 1:NN * kk) * HH)';
end

function HH = ggzztohh (rrzr, GG, ZZ, BB, weight, NN, KK)
tt1 = zeros (NN, NN);
tt2 = zeros (NN, NN);
for kk = 1:KK

tt1 = tt1� rrzr (:, NN* (kk 7 1)� 1:NN * kk)' * GG* GG' * rrzr (:, NN* (kk 7 1)� 1:NN * kk);
tt2 = tt2� rrzr (:, NN * (kk 7 1)� 1:NN * kk)' * GG * diag(ZZ(kk,:));

end
HH = inv (tt1� weight * BB * BB') * (tt2� weight * BB);

function [rrzr2, rrzl2, uux, uuy] = svddr (rrzr, rrzl, NN, JJ, KK)
[uu, ss, vv] = svd (rrzl* rrzl');
uuy = uu (:, 1:NN);
[uu, ss, vv] = svd (rrzr* rrzr');
uux = uu (:, 1:NN);

rrzr2 = []; rrzl2 = [];
for kk = 1:KK

rrzr2 = [rrzr2 uux' * rrzr (:, JJ* (kk 7 1)� 1:JJ* kk) * uuy];
rrzl2 = [rrzl2 uuy' * rrzr (:, JJ* (kk 7 1)� 1:JJ* kk)’ * uux];

end

function ZZ = xxyytozz (rrzr, XX, YY, JJ, KK, NN)
FF = zeros (KK, NN);
for kk = 1:KK

FF(kk,:) = diag (XX' * rrzr (:, JJ* (kk 7 1)� 1:JJ* kk) * YY) ';
end
ZZ = FF * inv ((XX ' * XX). * (YY ' * YY));
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