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SUMMARY

Parallel factor analysis (PARAFAC) is applied to three calibrations of a field-portable, cuvette-based, single-
measurement, excitation–emission matrix fluorometer. In the first example the fluorometer is calibrated based on
interactions between a non-fluorescent DDT-type pesticide and a fluorescent dye. PARAFAC is employed to
deconvolve the fluorescence profiles of dissociated and complexed dye states. Calibration is performed based on
the intensity of dye–pesticide fluorescence. In the second example, weighted PARAFAC (W-PARAFAC) is
applied to determination of three polynuclear aromatic hydrocarbons (PAHs). The weighted algorithm is
required to incorporate saturated channels of the CCD detector into the calibration model. In the third example,
W-PARAFAC is applied to calibration of two carbamate pesticides. The weighted algorithm is required to
account for Rayleigh and Raman scattering overlapping with the fluorescence spectra. For theses three
applications, parts-per-trillion to parts-per-billion detection limits are observed in aqueous solutions. Copyright
 2000 John Wiley & Sons, Ltd.

KEY WORDS: parallel factor analysis (PARAFAC); calibration; polynuclear aromatic hydrocarbon (PAH);
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INTRODUCTION

The combination of hyphenated instrumentation and multiway spectral deconvolution methods
provides a promising paradigm for quantitative environmental monitoring. Many hyphenated
instruments provide bilinear data well suited for multiway methods that assume the parallel factor
analysis (PARAFAC) model. The multiway spectral deconvolution methods enable accurate and
reliable discrimination of the analyte signal in the presence of unknown and uncalibrated spectral
interferents. This capability is often referred to as the ‘second-order advantage.’ As a practical
consequence, the second-order advantage allows for construction of field-portable sensors that rely on
statistical discrimination, not complete instrumental separation, of the target analytes.

Two decades ago, Hirschfeld listed 66 hyphenated instrumental methods that currently, or could in
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the future,exist [1]. With hyphenated methods the output of oneinstrument,saya chromatograph,
modulatesthe input of a second instrument,sayan arraydetector. Consequently, a matrix of data
(time� wavelength) is collected per sampleanalyzed. Examplesof hyphenated instrumentation
include excitation–emission matrix (EEM) fluorescencespectrometers, gas chromatograph–mass
spectrometers(GC–MS) andtandemmassspectrometers(MS). Comparatively,UV–IR spectroscopy
would not be a hyphenated methodsincethe UV spectrado not modulate the IR spectra.

Multiway modelinghasbeenappliedextensively for quantitativeanalysisof datafrom hyphenated
instrumentation.Modificationsof thebasicPARAFAC modelto accountfor expectednon-linearities
in the instrumental signal have been cataloged[2]. Applications of these multiway calibration
techniquesincludeflow injection analysis[3], GC–GC[4], HPLC–spectroscopy[5,6], tandemMS [7]
and EEM fluorescence [8,9]. The resolution power of multiway methods is essential in the
performance of two environmentalsensors utilizi ng kinetic–spectroscopic analysis[10–12] and
chromatographic–spectroscopic analysis [13].

Of particular interest for in situenvironmental analysesis fluorescencespectroscopy.Fluorescence
spectroscopy provides excellent sensitivity for a range of environmentally relevant analytes,
including polynuclear aromatic hydrocarbons (PAHs) and many pesticides. PAHs, such as
benzanthracenesand chrysenes,are listed in the Clean Water Act (CWA) as section307 Toxic
Pollutants.NineteenspecificPAHsarefurther listed in the CWA assection 307 Priority Pollutants
andrecognizedascarcinogenicunderCaliforniaProposition 65.Otherthannaphthalene,PAHshave
little to no commercial value and are not commercially produced. However, PAHs enter the
environment from numeroussources: leaching from creosoteusedto preservemarine lumber; fuel
spills; and combustion of fossil fuels, wood and garbage. These PAHs, and specifically the
carcinogenicPAHs,arelargelyfat-solubleandtendto bioconcentrateastheymoveupthefoodchain.
Consequently, it is prudent to monitor the levels of PAHs in the environment. Pesticidesare an
integral part of crop managementstrategies.However, environmentalcomplications of pesticide
applications includeinjury to non-target species, downstreamimpactof pesticides,anddecreasein
pesticide efficacy dueto overexposure.Oftenpesticides applied to thesoil arenot readily degraded;
this canresult in repeated exposure of the surroundingareato the pesticide long after application.
Therefore a method for real-time, on-site analysis of pesticides would be advantageous for
environmentalmanagement.

One problem hindering wider application of fluorescence spectroscopyfor environmental
monitoring is the intrinsic lack of selectivity in excitationandemission fluorescence measurements.
The broadcharacterof fluorescence peaksusually prohibits finding an explicit excitation/emission
wavelengthpair that is unique to a givenanalyte.Employmentof multivariate calibration methods,
such as partial least squares regression, is unsatisfactory owing to the inability of multivariate
calibration methodsto providereliableestimatesin thepresenceof uncalibratedinterferents [14]. In
theory,multidimensionalcalibrationmethodsavoid theshortcomingsof univariate andmultivariate
calibration of EEM instruments.

To simultaneouslyexploit the resolution abilities of multiway calibration and the sensitivity of
fluorescenceanalysis,a single-measurementEEM fluorometerwasconstructedfor field analysesof
pesticides and PAHs [15]. The applicability and utilit y of multiway calibration methods for
calibration of andquantificationwith theEEM fluorometeraredemonstratedin threeanalyses. In the
first analysis,methoxychlor, anon-fluorescentDDT-typepesticide,is quantified basedoninteractions
with a fluorescentdye.In thesecondexample,PARAFAC calibrationis appliedto determinationof
PAHs. Here W-PARAFAC is employed to extend the dynamic rangeof calibration beyond the
thresholdof thedetector. In thethird example, W-PARAFAC is employedto mitigate theeffects of
overlapping Rayleigh andRaman scattering for determination of natively fluorescentpesticides.
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THEORY

Trilinear model

Parallelfactor analysis employs the trilinear model[16]

Ri;j;k �
XN

n�1

X̂i;nŶj;nẐk;n � Ei;j;k �1�

wherethekth sliceof thetrilinear cubeR is the I � J matrix of datacollectedfrom theinstrumental
analysisof thekth sample. E is the collectionof model andrandom residual errorsfrom fitting this
trilinear model. In this paper, underlined boldfacecapitals represent three-way arrays,boldface
capitals represent two-way arrays or matrices, and scalarsare italicized. In the caseof EEM
fluorometry eachmatrix containstheexcitationandemission profilesof thefluorescentcomponents
in eachsample. ThustheN columnsof theX̂, Ŷ andẐ matricescorrespondto theestimatesof thetrue
excitation profiles, X, emission profiles, Y, and relative concentrations, Z, of the N unique
components in the samples. This results in I � N, J� N and K� N size matrices for X̂, Ŷ and Ẑ
respectively. The analyst supplies the numberof factors, N, employed by the model. For these
applicationstheidealnumberof factorswaschosen by visually inspectingtheexcitationandemission
profiles to determine their reasonability and comparingroot mean square errors of calibrationfor
successivemodels. In addition,knowledge of the system andthe number of analytes present in the
sampleswerealsoconsidered.

Alternating leastsquares (ALS)procedure

TheN columnsof X̂, Ŷ andẐ areestimatedusinganALS procedure.The following is a three-step
summary of the ALS procedure.

Step1. The PARAFAC algorithm begins with an initial guessof the X andY starting profiles,
while the initial Z profilesaredeterminedby solving the equation

RC � CZT �2a�

suchthat

ẐT � C�RC �3a�

with C� beingthepseudoinverseof C, whichcanbecalculatedfrom thenormalequationsor singular
valuedecompositionof C. In Equation (2a),RC is an IJ� K matrix constructedby unfolding theK
slicesof R in theXYplane,whereRC(j71)I�i,k

= Ri,j,k. Similarly, C is an IJ� N matrix formedfrom N
columnsof X̂ andŶ, whereC(j71)I�i,n = X̂ i,nŶj,n. Randomnumberswereusedto generatetheinitial X
andY startingprofiles.

Step2. Updated estimatesof the X profilesarefoundby solving the equation

RA � AXT �2b�

suchthat

X̂T � A�RA �3b�
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RA is constructed analogously to RC by unfolding the I slicesof R in the YZ plane.This forms a
JK� I matrix for RA, andsimilarly to C, A is a JK� N matrix, whereA(k71)J�k,n= Ŷ j,nẐk,n.

Step3. Updated estimatesof the Y profilesarefoundby solving the equation

RB � BYT �2c�

suchthat

ŶT � B�RB �3c�

Like RA andRC, RB is constructed by unfolding the J slicesof R in the XZ plane.This forms an
IK � J matrix for RB; B is an IK � N matrix, where B(k71)I�k,n= X̂ i,nẐk,n.

Thealgorithmproceedsiteratively, cycling throughSteps1–3until it converges. At eachiteration
themostrecentestimatesof X andY areusedto determine Ẑ (or Y andZ to determine X̂, or X andZ
to determine Ŷ, depending ontheequation currentlybeingsolved).Thusthesquaredresidual penalty
function

X
i;j;k

Ri;j;k ÿ
XN

n�1

X̂i;nŶj;nẐk;n

 !2
24 35 �4�

is minimizedby minimizing the following expressionsat eachiterative cycle:

kRA ÿ AX̂Tk2
F �5a�

kRB ÿ BŶTk2
F �5b�

kRC ÿ CẐTk2
F �5c�

Notethat for anymatrix Q thefollowing equation givesthesquaredFrobenius or Euclidean norm
of Q:

kQk2
F �

XI

i�1

XJ

j�1

Q2
i;j �6�

Convergenceis achievedwhenthe correlationof the mostrecentestimatesof X, Y andZ andthe
valuesof X̂, Ŷ andẐ from the previous stepis greater than171079 [17,18].

W-PARAFAC

In spectral data,someof the measuredvaluesdeviatesignificantly from the underlying trilinear
model.For example, thenon-linearRayleigh andRamanscatteringareinefficiently modeled owing
to their lack of inherentfactorsassumedby the trilinear model;for thePAH analysessome spectral
channels havebecomesaturatedandeffectivelybecome missingdata.A weightmatrix Wi,j,k maybe
constructed to mitigatethe effect of corruptdatapointsfrom the model. By assigningquestionable
dataan arbitrarily small weight in the leastsquaresoptimization, the degree of fit by the model to
thesedata will have no effect on the final determination of model parameters. This yields an
optimization penaltyfunction
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X
i;j;k

Wi;j;k Ri;j;k ÿ
XN

n�1

X̂i;nŶj;nẐk;n

 !2
24 35 �7�

which is minimizedby minimizing thefollowing expressionsat eachappropriatestepin theiterative
cycle [19,20]:

kWA � �RA ÿ AX̂T�k2
F �8a�

kWB � �RB ÿ BŶT�k2
F �8b�

kWC � �RC ÿ CẐT�k2
F �8c�

HereWA, WB andWC areconstructedby unfoldingW equivalently to unfoldingR to constructRA,
RB andRC, and° is the Hadamardproductindicatingelement-wisemultiplication.

EXPERIMENTAL

EEM fluorometer

The EEM fluorometer was constructed in the mannerof Booksh et al. [21] and is described in
Reference[15]. Light from a75 W xenonarclamp(OsramSylvaniaInc.,Danvers, MA) wasfocused
on to the 2⋅75mm entrance slit of a 150mm imagingspectrograph(Acton ResearchCorp.,Acton,
MA). This excitation spectrographwasfitted with a 600groove/mm gratingblazedat 300nm. The
2⋅75mm exit slit was rotated 90° to provide a 60nm band of excitation light. The excitation
spectrographwasfittedto asamplechamber(Acton ResearchCorp.,Acton,MA) containingacuvette
holder. The excitation light was then focused on the near edgeof the cuvette, and the emitted
fluorescence was collected through the 1⋅00mm entrance slit of a second 150mm imaging
spectrograph(Acton ResearchCorp.,Acton, MA) at a 90° angle.This emission spectrographcould
befitted with oneof two gratings:a 600groove/mm gratingblazedat 300nm or a 300groove/mm
gratingblazedat 500 nm. An astronomy-grade,thermoelectrically cooledSBIG ST6 CCD camera
(SantaBarbaraInstrumentGroup, SantaBarbara, CA) wasemployed for collection of the resulting
EEM fluorescence spectra. The camerawascomputer-controlled throughKestrelSpec3⋅2 (Catalina
Scientific,Tucson,AZ). A 60s integrationtime wasemployedfor all samples,andtheCCD camera
wasmaintainedat 720⋅1 °C.

Methoxychlor andNile Red

Nile Red is a solvatochromic dye [22] which hasbeenshownto form a fluorescentcomplex with
methoxychlor [23]. Nile Red andmethoxychlor (95%purity) wereobtainedfrom Aldrich andused
without further purification. Stocksolutions of 140ppm Nile Red and400ppm methoxychlor were
preparedin reagent-gradeacetone.Threesetsof solutionswerepreparedwith identicalmethoxychlor
concentrationsandvariedNile Redconcentrationsof 0, 14 and28 ppb. In-housedistilled waterwas
employed for preparation of themethoxychlor standards,which rangedfrom 0 to 999ppb.Solutions
to be usedasunknownswere preparedusingpondwater,with concentrationsranging from 0 to 747
ppb.All solutionswereallowedto equilibratefor approximately 3 h to ensure consistentresults.

Theemissionspectrographwasfittedwith the300groove/mm grating blazedat 500nm,resulting
in a 60nm� 160nm EEM spectrum. The excitation spectrographwascenteredat 515nm andthe
emissionspectrographwascentered at650nm.Fourreplicatespectraof eachsolutionwereacquired.
Two-factor PARAFAC andW-PARAFAC modelswere found to work bestfor this application.
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Polynucleararomatic hydrocarbons

Aqueoussolutions of polynuclear aromatic hydrocarbonswith overlapping EEM spectrawere
preparedfor investigating the dynamicrangeof the detector. Fluorene(98% purity), naphthalene
(99% purity) andphenanthrene(98% purity) wereobtainedfrom Aldrich andusedwithout further
purification. Twenty-four one-to three-componentaqueous solutions werepreparedfrom stock 11,
18 and12ppm ethanolsolutionsof fluorene, naphthaleneandphenanthrenerespectively. The final
fluorene, naphthaleneandphenanthreneconcentration ranges were0⋅5–25,3⋅5–100and2⋅0–50 ppb
respectively.

Theemission spectrographwasfittedwith the300groove/mm grating blazedat 500nm,resulting
in a60nm� 160nmEEM spectrum. In aqueoussolution, fluorenehastwo excitation maximaat270
and290nm andanemission maximumat 305nm. Naphthalenehasa single excitationmaximumat
280nm andanemission maximum at 345nm. Phenanthrenehasanexcitation maximumat 270nm
andanemissionmaximumat 355nm.Therefore theexcitationspectrographwascentered at 280nm
andtheemission spectrographwascentered at330nm.Fourto six replicatespectrawereacquired for
single-componentsolutions, four replicatespectrawere acquired for multiple-componentsolutions,
and24spectraof purewaterwereacquired.Three-factorPARAFAC andW-PARAFAC models were
found to work bestfor this application.

Natively fluorescentpesticides

Technical-gradecarbaryl (98⋅4% purity) was obtained from Rhône-Poulenc and carbofuran (98%
purity) wasobtained from Aldrich. Onehundred percentethanolandin-housedistilled waterwere
usedfor all dilutions, and all reagentswere usedwithout further purification. Stock solutions of
42ppmcarbaryl andcarbofuranwerepreparedin 10%(v/v) ethanol. Six single-component solutions
of carbarylandcarbofuran wereprepared with concentration ranges of 2⋅5–80and62⋅5–2000ppb
respectively.

Theemission spectrographwasfittedwith the600groove/mm grating blazedat 300nm,resulting
in a 60nm� 80nm EEM spectrum. The excitation spectrographwas centeredat 280nm and the
emissionspectrograph was centered at 340nm. Four replicate spectraof each solution and 16
replicate spectraof purewaterwereacquired. Three-factor PARAFAC models werefound to work
bestfor this application.Whena high cut-off value for determining weights wasemployed,a three-
factor W-PARAFAC model was found to work the best. With lower cut-offs, a two-factor W-
PARAFAC model providedequivalent performanceto the three-factor model. Consequently,the
two-factor model wasemployed.

Data analysis

Analysis and deconvolution of the EEM spectrawere performedin the Matlab 5⋅2 (MathWorks,
Natick, MA) working environment.The PARAFAC decompositionandlinear regressionprograms
were written in-house. The programs were executedon IBM-compatible computers with Intel
Pentium233MHz processors.Prior to importingthedatainto Matlab, spectrawereconvertedto text
files by internalconvertersin KestrelSpec.

Forall applications,linearregressionwascarried outontheZ valuesof known standardsin orderto
calculatethe regression line. Subsequently, the concentrationsof the analytes in eachsamplewere
estimated.The root meansquare error (RMSE)wasthencalculatedusing the equation
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RMSE�

����������������������PK
k�1
�cÿ ĉ�2

K

vuuut
�9�

wherec representsthetruevalue, ĉ representsthepredictedvalueandK representsthetotal number
of samples. Two RMSEsarecalculated.The RMSEof calibration (RMSEC) is calculatedbasedon
the fit of the model to just the standard samples.This statisticis consequentlyemployed to aid in
determining the optimal numberof factors in the PARAFAC model. The RMSE of estimation
(RMSEE)is calculatedfrom theability of thePARAFAC model to predicttheconcentration of non-
standard, ‘unknown’, samples. This statistic is employed to judge the overall efficacy of the
calibration procedure. The standarddeviation of the blank wascalculatedusingthe equation

�blank�

������������������������PKB

k�1
�ĉk ÿ ĉ�2

KB ÿ 1

vuuut �10�

whereĉk is the predictedanalyteconcentration in the kth blank and ĉ is the mean of the predicted
concentrationsin the KB blanks.

RESULTS AND DISCUSSION

Application to novelsensors (PARAFAC on DDT-typepesticides)

Nile Redis a solvatochromatic laser dye[22] which hasproven useful asa hydrophobic probe.Nile
Redhasbeenemployedto studythehydrophobic surfaces[24] andbindingsitesof proteins[25] and
asaselectiveintracellular dyefor lipids andlipoproteins[26]. In addition, Nile Red hasrecentlybeen
shown to interact with the DDT-type pesticide methoxychlor in aqueous solution [23]. The
fluorescence of Nile Red in aqueous solution is severely quenched and red-shifted [24,25] and
centeredat approximately 665nm [23,24]. The blue shift of the excitation andemission spectraof
Nile Redwith increasing solventpolarity [24–26] is alsoobserved in thepresenceof methoxychlor
[23]. However, in the presenceof selected proteins and methoxychlor, two distinct fluorescence
maximaareobservedthatmaybeattributedto thesolvated Nile Redandthehydrophobically bound
Nile Red[23,25].

Theuseof anEEM fluorometer to studytheinteraction of Nile Redwith methoxychlor elucidates
thepresenceof two distinct EEM spectra(Figures1(a)and1(b)). TheEEM spectrumof Nile Redin
aqueous solution is shownin Figure 1(a); addition of methoxychlor resultsin an additional peak,
whichis shown in Figure1(b). Threesetsof standardsandunknownswerepreparedwith 0,14and28
ppb Nile Redto explorethe effect of Nile Redconcentrationon the fluorescence of the Nile Red–
methoxychlor complex. The standardsandunknownswereprepared with methoxychlor concentra-
tionsof 0,664,830and996ppband0,581and747ppbrespectively. Theunknownswerepreparedin
pondwaterto examine theeffectof organic material on thefluorescence of Nile Red.No additional
fluorescence peakswereobserved,andfluorescence of the solvated Nile Redwasunaffected.

PARAFAC wasemployed to resolvetheexcitation andemissionprofilesof thesolvatedNile Red
and the Nile Red–methoxychlor complex (Figures 2(a) and 2(b)). The solvated Nile Red has
excitation and emissionmaxima at approximately 535 and 665nm respectively. The estimated
fluorescenceprofileof Nile Redis negativeat600nm.This is anartifactof themodel andis probably
a result of the Nile Red reabsorbing some of the emitted fluorescence from the Nile Red–
methoxychlor complex.
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Both theexcitation andemissionprofilesof theNile Red–methoxychlorcomplexareblue-shifted.
The excitation profile of the complex is much broaderwith respectto the excitationprofile of Nile
Red,with a maximumat approximately530nm.Theemission profile of thecomplex is blue-shifted
about55nm to 610nm. As expected,therewereno discreteEEM spectrapresentin thesetwithout
Nile Red,confirming that the additional peakmay be attributedto the interaction of Nile Redand
methoxychlor.

A previousstudy by HassoonandSchechterreported a linearincrease in thefluorescenceintensity
of theNile Red–methoxychlor complex with increasingmethoxychlor concentration[23]. Theresults
of thisstudysuggest thatthefluorescenceof theNile Red–methoxychlorcompoundincreaseslinearly
within a rangeof methoxychlor concentrations. However, outside of this range the increasein

Figure1. (a) EEM spectrumof 28 ppbNile Redin aqueoussolution.(b) EEM spectrumof 28 ppbNile Redand
830ppbmethoxychlorin aqueoussolution.

Figure2. (a)Estimatedexcitationprofilesof Nile RedandNile Red–methoxychlorcomplexin aqueoussolution.
(b) Estimatedemissionprofilesof Nile RedandNile Red–methoxychlorcomplexin aqueoussolution.
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fluorescence intensity is non-linear.Application of PARAFAC for deconvolution of thesolvatedand
complexedfluorescentprofilesdoesshowa decreasein fluorescence intensity for solvated Nile Red
andanincreasein fluorescence intensityfor complexedNile redwith increasingmethoxychlor. The
opencircles in Figures3(a) and3(b) represent the rangewithin which the increasein fluorescence
intensity of theNile Red–methoxychlor complexis linear; thegray-filledcirclesrepresent thevalues
thatdonot fall within this range. In addition, this rangeappears to bedependenton theconcentration
of Nile Red. The rangeof methoxychlor concentrations for which there is a linear increase in
fluorescence of the formed complex is 581–747and 664–996ppb with 14 and 28 ppb Nile Red
respectively.

Theuseof 14 ppbNile Redresulted in root meansquareerrorsof estimation (RMSEE)of 42 and
65 ppb for the pond water samples with methoxychlor concentrations of 581 and 747 ppb
respectively. IncreasingtheNile Redconcentrationto 28ppbresultedin RMSEE of 71and18ppbfor
the correspondingsamples. The limit of detection for methoxychlor employing this method is
dependent on the concentration of Nile Red. At high concentrations of Nile Red and low
concentrationsof methoxychlor thefluorescenceof theNile Red–methoxychlor complex is eithertoo
weak to be quantified or undetectable. Future studies will involve lowering the Nile Red
concentrations to sub-ppb concentrations in order to lower the detectable concentration of
methoxychlor.

Extending dynamicrange(PARAFAC on PAHs)

For natively fluorescentanalyteswith high quantumefficiency, suchasPAHs, detectorsaturation
often becomes a concern. In instances when the relative concentration of a targetanalyteis low
compared to overlapping interferents, simply reducingthe integrationtime to avoid saturation is
unsatisfactory; whenthe interferent signal is within the rangeof the detector,the analytesignal-to-

Figure3.Plotsof estimatedfluorescenceintensityof Nile RedandNile Red–methoxychlorcomplexin (a)14ppb
Nile Red and (b) 28 ppb Nile Red versusmethoxychlorconcentration.Opencircles representmethoxychlor
concentrationsfor which the fluorescenceintensityof the Nile Red–methoxychlorcomplexincreaseslinearly
with methoxychlorconcentration.Gray-filled circlesrepresentthe methoxychlorconcentrationsfor which the
fluorescenceintensity of the Nile Red–methoxychlorcomplex increasesnon-linearly with methoxychlor

concentration.Starsrepresentthe fluorescenceintensityof the solvatedNile Red.
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noiseratio maybe insufficient for accuratequantification. W-PARAFAC canalleviate this problem
by treating the saturatedchannelsas missing values. W-PARAFAC has the advantage over
eigenvalue-baseddeconvolution methods, such as direct tril inear decomposition, in that missing
valuesdo not necessitatediscarding all variablesthat share one of the indices.(That is, if the ijk
measurementis missingfrom the data set R, either the ith row, jth column or kth slice must be
removedprior to analysis.)Therearetwo strategiesfor incorporatingmissingvaluesin PARAFAC.
The first is to assignthe missing value a weight of zero and apply a weighted least squares
optimization. This is the strategyimplemented here. The second strategyis to assignthe missing
measurementa random valueanditeratively refinetheassignmentwith parameterestimatesfrom the
model.Both strategiesperformequivalently[27] andtherelativeefficiencyof thestrategiesdepends
on the sizeandnature of the dataset[28].

In this example the ability of W-PARAFAC to extend the dynamic range of analysis is
demonstratedon mixturesof threePAHs.A contourplot presentingthedegreeof overlapamongthe
threeanalytes is shown in Figure4. Naphthalene (center)is muchlessfluorescentthanfluorene(left)
and phenanthrene (right); consequently, naphthalenegenerally demonstrates higher RMSEE. A
typicalsurfaceplot of asample’s EEM spectrais shownin Figure5.Thespectrum ontheleft is from a
mixture of 70 ppbnaphthalene,5 ppb fluorene and17 ppbphenanthrene.Notethatsome channelsin
thecenter of thespectrum aresaturatedandmustbetreatedasmissingvalues.The spectrum on the
right is of thesamesampleaftera twofold dilution. In this application thechoiceof weightsis easily
determined. Saturation is accentuated by the digitization of the CCD cameravoltagefeed. At the
chosencamerasettings the cameraprovides 216 discreteoutput levels ranging from 1 to 216.
Consequently, the cut-off level for deciding whether to assigna weight of zeroor oneis definedas
95%of 216. This 5% buffer protectsagainstanynon-linearities thatmayoccurwhen thedetectoris
nearsaturation.

Figure4. Contourplot of EEM spectrafor fluorene(left), naphthalene(center)andphenanthrene(right).
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There is significant improvement in the RMSEE upon applying W-PARAFAC such that the
saturatedchannelsaretreatedasmissingvaluescompared to applyingPARAFACwith theunaltered,
recordedvalues.Here only the twelve blanks and replicates of two pure standards (below the
saturation level) are employed for calibration (Table I, columns 2 and 3). The RMSEE for
naphthaleneimprovesby 35%uponapplyingW-PARAFAC. TheRMSEE for fluorene improvesby
15%andtheRMSEE of phenanthreneimprovesby 50%.Notethat this improvementin accuracyof

Figure5. Meshplot of fluorene/naphthalene/phenanthrenemixtureat full strength(left) andhalf concentration.
The plateauon the left peakshowstheeffectsof detectorsaturation.

TableI. Comparisonof straightandweightedPARAFAC for estimationof threePAHs

PAH
RMSEEa

(straight)
RMSEEa

(weighted)
�blank

(straight)
�blank

(weighted) Improveb Degradeb
Z

(paireddifference)c

Naphthalene 7⋅74 5⋅00 0⋅17 0⋅14 59 13 4⋅2 (>99⋅99%)
Fluorene 0⋅33 0⋅28 0⋅021 0⋅023 27 6 3⋅0 (99⋅87%)
Phenanthrene 0⋅56 0⋅28 0⋅013 0⋅016 52 15 5⋅0 (>99⋅99%)

aRootmeansquareerrorof estimation.Blank (twelvereplicates)andtwo purestandards(four to six replicates)ascalibration
set.
bImprovement or degradation defined as change in absolute error greater than three standard deviations of the blank.
cLarge-sample (> 30 degrees of freedom) paired difference test comparing square error of estimation with and without
weighting. The confidence level is given parenthetically.

PARAFAC FORCALIBRATION WITH FLUORESCENCESPECTRA 181

Copyright 2000JohnWiley & Sons,Ltd. J. Chemometrics 2000;14: 171–185



estimation doesnotcomeattheexpenseof precision.Thereis nosignificant differencein thestandard
deviationsof estimating the blank samples(TableI, columns4 and5) for the threehydrocarbons.

The improvementderivedfrom W-PARAFAC is furtherseenin head-to-headcomparisons of the
estimatedconcentrationin eachsample for eachanalyte(TableI, columns6–8).Fornaphthalene,59
of the samples experienceda significant improvement in the error of estimation, while only 13
experienceda significant increasein prediction error. Here ‘significant’ is definedasa magnitude
greaterthanthreestandarddeviationsof theblank.Whethertwo throughtenstandarddeviationsare
employed, thereis norealchangein theinterpretationof thesedata.Applyingapaireddifferencetest
[29] on the squaredprediction errorsshowsthat the assumption that straight PARAFAC and W-
PARAFAC perform equivalently canbe rejectedwith greater than99⋅9% confidence. Comparable
conclusions can be drawn from equivalent analysisof the fluoreneand phenanthreneprediction
errors.

Improvinglimits of detection(PARAFAC on carbamate pesticides)

The calibration of the two slightly fluorescent carbamate pesticides presented here,carbaryl and
carbofuran, is plagued by two problems that necessitate applicationof W-PARAFAC. First, the
fluorescenceStokesshift for eachpesticideis not completely resolved from the Raman Stokes and
Rayleigh scattering (Figure6). Second,theRayleigh scattering is sufficiently intenseto saturatethe
detector in roughlyhalf thesamples.Consequently, W-PARAFAC is needed to mask themostintense
Rayleigh and Ramanscattering to achieveacceptable detectionlimits. The Rayleigh and Raman
profilesarenot efficiently modeled by PARAFAC; thereis no intrinsic profile in the ‘excitation’ or
‘emission’ orderthat canbe extracted.Consequently, whenthe PARAFAC model is appliedto the
spectrawithout accounting for the scattering, the modelfails to converge.

Figure6. Contourplot of carbaryl(striped)andcarbofuran(shaded)EEM spectra.The RayleighandRaman
background(denseblacklines,upperleft corner)havebeenminimizedby subtractingthemeanof twelveblanks.
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One possibility for mitigating the effects that the Rayleigh and Raman scattering have on
PARAFAC modeling is to subtract a scattering blank from eachof the samples prior to analysis.
While this may be successful for idealized laboratory analyses, for real-world sampleswith
indeterminateparticulatesandRaman-activespeciesthis approachwould be impractical. However,
blank-subtractedspectraareanalyzedhereasa target comparisonfor W-PARAFAC.

Whenthemeanblank is subtracted from thespectrato minimize thecontribution of scattering in
theEEM spectra, anda W-PARAFAC modelis employedto assignanysaturatedchannels a weight
of zero, a moderately acceptable RMSEC andstandard deviationof theblankareachieved. HereW-
PARAFAC is only consideringmissingmeasurements;noeffort is madeto mitigatetheeffectof non-
saturatedscattering. For carbaryl, this is 6⋅6 ppb and 5⋅9 ppb respectively. The less fluorescent
carbofuranachievesonly anRMSECof 168ppbanda�blankof 149ppb.Therelatively poorer figures
of merit are also a function of increased overlap with the scattering of carbofuran comparedto
carbaryl.

TheRMSECand�blankcanbeimprovedby moreaggressively down-weightingtheentireRayleigh
andRamanscatteringprior to PARAFAC analysis.A weightmatrix is constructedby analyzing the
meanblank to determine thechannels thatcontainedthemost intenseRayleigh andRamansignals.
Thisweightmatrix is constructedsuchthatthesechannels aregivenaweightof zeroin everysample.
It canbeseenin TableII, rows3–9thatthefit andprecisionof thecalibration model initi ally improve
with decreasingthe cut-off for the weight matrix. Eventually thereis little improvementassociated
with rejecting measurements, asan increasingamountof fluorescentsignal will be excludedalong
with thescattering background.Also notethatasmorescattering is rejected,a simpler model (fewer
factors)may be employed. Consequently,a cut-off of 15 000 units is near to optimal for blank-
subtracted data.

TheRMSECand�blank areroughly two to threetimes largerwithout backgroundsubtraction than
whenbackgroundsubtractionis successfullyappliedprior to W-PARAFAC.Whenonly thechannels
with the most intensebackgroundareeliminated(cut-off of 100 000), the RMSECand�blank are
exceedingly large.However,bothfiguresof merit improverapidly with smalldecreasesin thecut-off
level. As with backgroundsubtraction, simplermodels areappropriatewith moreaggressive cut-off
levels.

TableII. Comparisonof PARAFACpreprocessingandweightingstrategiesfor mitigationof
RayleighandRamanscattering

Carbaryl Carbofuran

Substract
meanblank

Weight
cut-off Factors

RMSEC
(�blank) (ppb) Factors

RMSEC
(�blank) (ppb)

Yes None 3 6⋅6 (5⋅9) 3 168 (149)
Yes 100000 3 6⋅3 (6⋅1) 3 157 (152)
Yes 50000 3 2⋅5 (2⋅2) 3 51 (41)
Yes 25000 2 2⋅0 (0⋅8) 3 42 (24)
Yes 15000 2 1⋅2 (0⋅6) 2 29 (15)
Yes 10000 2 3⋅1 (2⋅5) 2 31 (14)
Yes 7500 2 1⋅3 (0⋅6) 2 31 (14)
No 100000 3 20 (16) 3 292 (239)
No 50000 3 4⋅5 (4⋅0) 3 113 (110)
No 25000 2 2⋅1 (1⋅5) 2 51 (37)
No 15000 2 3⋅4 (3⋅5) 2 65 (68)
No 10000 2 4⋅4 (3⋅6) 2 96 (78)
No 7500 2 4⋅2 (3⋅3) 2 73 (54)
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AlthoughtheRMSECand�blankarehigher without thanwith backgroundsubtraction, theseresults
shouldbe put into context. First, in real applications a backgroundwill not be available; therefore
backgroundsubtraction is not an option. Second,the �blank and RMSEC are comparable to the
ResourceConservationandRecoveryAct (Superfund)UniversalTreatmentStandardfor wastewater
(6 ppb) andnon-waste water(140ppb).Third, althoughthedetection limit for carbofuranmight be
toohighfor practicalutilit y in aqueoussolutions,thedetection limit is sufficient followingextraction
and concentration in a less polar solvent. This permits optical detection as an alternative to
chromatographic analysis. Consequently, the use of organic solvents, and associated secondary
waste,is minimized.

CONCLUSIONS

The utilit y of multiway calibration in application of field-portablesensorshasbeendemonstrated.
Combining multiway data deconvolution with hyphenatedinstrumentation can provide a ‘green’
alternative complete physicalseparationof analyteandbackgroundprior to analysis.With judicious
choiceof calibration methodology, many potential problems,suchas saturationand non-bilinear
backgrounds, can be mitigated. However, there are still numerousresearch areasthat may be
addressed to improveapplicationof themultiway calibration methods. Examplesincludeautomated
model selection and validation, on-the-fly determination of statistical confidence limits for the
calibration models, andalternativemodels for incorporationof thenon-bilinearsample background.
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