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A weighted parallel factor analysis (W-PARAFAC) model
is applied to excitation—emission matrix (EEM) fluores-
cence spectra of carbamate pesticides to aid with calibra-
tion in the presence of Raman scattering. Traditional
PARAFAC inefficiently models the Raman scattering,
resulting in prediction and calibration errors when a
significant background is present. Four different weighting
strategies were investigated and compared with subtrac-
tion of the appropriate sample background. Using a binary
weighting strategy produced superior results, compared
with a continuous distribution of weights. Further choice
of weighting strategies, which are optimized to include
either maximum analyte signal or to exclude a maximum
amount of background scattering, is dependent on the
degree of overlap and relative signal intensity.

Carbamate pesticides are widely used in agriculture to control
insects resistant to the less costly organo-phosphorus pesticides.!
Two commonly used carbamates are carbaryl and carbofuran.
Carbaryl, also known as Sevin, is moderately toxic and often used
in household gardens. It can be purchased in almost any nursery.
Carbofuran, however, is highly toxic and more closely regulated.
A ban on all granular formulations became effective in 1994.2 Both
carbaryl and carbofuran are unstable in water and should pose
little threat to the environment, once they have degraded to their
less-toxic metabolites.® However, although carbaryl and carbofuran
hydrolyze readily in aqueous solutions, their effect on the
environment and surrounding wildlife can be long-lasting.

The long-term effects of carbamate exposure on nontarget
species have been investigated. For example, beekeepers have
reported pesticide contamination in their bee colonies after
application to neighboring areas. Winterlin et al. reported carbaryl
residues found in the bees, honey, and bee bread following
exposure.* Another study showed that concentrations within the
freshwater fish Motsugo were as high as 7.5 part per million (ppm)
after 1 day of exposure to water with a 1 ppm concentration of

carbaryl.> Often, carbamates are applied to the soil where they
are not as readily degraded. This can result in repeated exposure
of the surrounding environment to pesticides long after application.
The results of a study on soil-incorporated carbofuran presented
the repeated emergence of carbofuran in the runoff water after a
heavy rain for several months after application. Therefore, real-
time, on-site analysis of pesticides would be advantageous for
environmental management.

EPA methods for carbamate detection employ liquid chroma-
tography (LC) (EPA methods 531.1, 632, and 8318) with detection
limits in the part per million (ppm) to part per billion (ppb) range
when solid-phase extraction is used. Gas chromatography (GC)
based analysis can be used to achieve part per billion (ppb) to
part per trillion (ppt) detection limits if solid-phase micro-extraction
(SPME) is used. However, carbamates are thermally labile and
degrade in the column, so a precolumn derivatization must be
performed.5” The consumption of carrier solvents for separation
and extraction, which can produce large volumes of waste, is a
disadvantage of chromatographic methods. Another drawback is
that chromatographic instruments are cumbersome and not
readily portable, making on-site analysis a laborious task. Finally,
analysis is often lengthy, requiring several hours for multiple
samples.

Fluorescence spectroscopy is an attractive alternative to
chromatographic methods. Many pesticides are either naturally
fluorescent® or photodegrade to byproducts with a high fluores-
cence quantum yield.%1° Postcolumn reaction or UV photolysis
induced fluorescence is often employed in liquid chromatography
to increase the sensitivity of the method.’*12 The same postcolumn
fluorophore-inducing reactions employed in liquid chromatogra-
phy can be employed to generate analytically useful fluorophores
in sample extracts for fluorescence analysis.

Despite these benefits, the wide application of fluorescence
techniques for environmental monitoring has been limited by the
lack of selectivity of fluorescence spectroscopy. The broad
character of both the excitation and emission fluorescence bands
curtails the possibility of finding a unique excitation and emission
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wavelength for each potential analyte. Collection of entire excita-
tion—emission matrix (EEM) fluorescence spectra followed by
application of advanced multiway spectral deconvolution and
calibration algorithms overcomes the limitations of fluorescence
spectroscopy. The use of parallel factor analysis (PARAFAC) to
resolve overlapping spectra of target polycyclic aromatic hydro-
carbons and pesticides has been demonstrated.’*-> However,
resolution becomes difficult when an analyte’s fluorescence signal
overlaps the background scattering.

A single-measurement EEM fluorometer lacks the baffles and
filters typically present in scanning fluorometers; therefore, the
intensity of the Rayleigh and Raman scattering is unmitigated.
These diagonal patterns across the spectra are inefficiently
modeled by trilinear calibration methods.!¢ This problem is easily
solved if blank spectra are available; unfortunately, this is not
normally the case for environmental samples. An alternate solution
is to employ a weighted PARAFAC (W-PARAFAC) model. Results
using a W-PARAFAC model are compared with results from
nonweighted models that use more conventional methods for
background reduction.

THEORY
Three-Way Calibration. Parallel factor analysis employs the

trilinear model

N
Ri,j,k = Xi,an,nZk,n + Ei,j,k ®

n=

where the kth slice of the trilinear cube R is the | x J matrix of
data collected from the instrumental analysis of the kth sample.
In the case of excitation—emission matrix fluorometry, each matrix
contains the excitation and emission profiles of the fluorescent
components in each sample. Thus, the N columns of the X, Y,
and Z matrices correspond to the estimates of the excitation
profiles, emission profiles, and relative concentrations in the
samples, respectively. The analyst supplies the number of factors,
N, employed by the model. E is the collection of model and
random errors residual from fitting this trilinear model.

The N columns of X, Y, and Z are estimated using an
alternating least squares (ALS) procedure. The PARAFAC algo-
rithm begins with an initial guess of the X-way and Y-way starting
profiles, while the initial Z-way profiles are determined by solving

R.=CZ' (2a)

such that 2T = C*Rewith C* being the pseudoinverse of C, which
can be calculated from the normal equations or singular value
decomposition of C. In eq 2a, Rc is a IJ x K matrix constructed
by unfolding the K slices of R in the 1J plane where Re, .., =
Rijk Similarly, Cis a IJ x N matrix formed from N columns of X
and Y where Cj_1i+in = XinYin.
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Updated estimates of the X-way and Y-way profiles are found
by solving

R, =AX" (2b)

such that XT = A*R,, and

Rg = BY' (20)

such that Y7 = B*Rg. Ra and Rg are constructed analogously to
Rc by unfolding R in the YZ and XZ planes, respectively. This
forms a JK x | matrix for Ry and a IK x J matrix for Rg. Similarly
to C, A(kfl)Hk,n = Yj,nZk,n and B(k*l)IJrk,n = Xi,nZk,n. The algorithm
proceeds iteratively, cycling through egs 2a, 2b, and 2c until the
algorithm converges. At each iteration, the most recent estimates
of X and Y are used to determine Z (or Y and Z to determine X,
or X and Z to determine Y, depending on the equation currently
being solved). Thus, the squared residual penalty function,
Yijk((Rijx — Zﬂzlxi,an,nZk‘n)z) is minimized by minimizing IR —
AXTIE, IIRg — BYTIZ, and IIRc — CZTI at each iterative cycle.
Note, that for any matrix Q, lIQI = Si_, 5}, Q; and is the
squared Frobenius, or Euclidian, norm of Q. Convergence is
achieved when correlation of the most recent estimates of X, Y,
and Z, and the values of X, ¥, and Z from the previous step, is
greater than 1-107°.17

In spectral data, there are often errors present that deviate
from the underlying trilinear model. For example, the nonlinear
Rayleigh and Raman scattering are inefficiently modeled, due to
their lack of true excitation and emission profiles. A weight cube,
Wi« may be constructed to reduce or eliminate this scattering
from the model. For this application, each kth layer is identical
and independent of sample. However, having each of the k slices
of W being identical is not necessary. The optimization penalty
function, Zi,j,k(Wi,j,k(Ri,j,k - Zrﬁ‘:lxi,an,nZk,n)z) s is minimized by
minimizing IIWx®(Ra — AXDIE, IWs®(Rg — BYT)IZ and [IWc®-
(Re — CZT)IIF at each appropriate step in the iterative cycle, where
® is element-wise multiplication. Here, W,, Wg, and W¢ are
constructed by unfolding W equivalently to unfolding R to
construct Ra, Rg, and Re.

Weighting Strategies. There are two classes of weighting
strategies—positive and negative (Figure 1). Positive weighting
concentrates on enhancing each component’s signal, while nega-
tive weighting concentrates on eliminating any nonlinearities
present in the background. These subtle differences may be
carried further to two subgroups—hard and soft weighting. With
hard weighting, cutoff values are applied to the weight matrix;
intensities above and below the cutoff value are assigned a weight
of either one or zero, respectively (Figure 1a,b). Soft weighting
applies a range of weights, between one and zero, proportional to
the intensities of either the analyte or blank signal (Figure 1c,d).
Four weighting strategies are thus produced: hard positive, soft
positive, hard negative, and soft negative weighting.

Positive weighting applies an increasing weight matrix from
zero to one, dependent on each compound’s fluorescent spectrum.
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Figure 1. Three-dimensional representation of (a) hard positive weighting, (b) hard negative weighting, (c) soft positive weighting, and (d) soft
negative weighting for a mixture of 60 ppb 1-naphthol, carbaryl, and carbofuran.

Positive-weight matrixes were constructed by first subtracting the
mean background spectrum from each single-component standard
spectrum. An average spectrum for each analyte was created by
summing the individual standard spectra and dividing by the
number of samples. The average EEM spectrum of carbofuran
was then scaled, with the most intense signal areas having a
weight of one. This resulted in a single-component weight matrix.
A multiple-component weight matrix was created by adding the
average EEM spectrum for each analyte together and then scaling
to one. The relative fluorescence intensities of each analyte were
thus maintained.

Positive weighting is based on each component’s fluorescence
signal such that analysis may be tailored to compounds of interest
while removing or reducing the signal of interferents. For hard-
positive weighting, a weight of one is applied to areas with an
intensity greater than a baseline noise level; all other areas are
given a weight of zero. Several cutoffs were chosen between 5
and 20% of the maximum intensity of the mean standards. This
range of cutoffs eliminated any Rayleigh and Raman scattering
not directly overlapped with an analyte’s signal. On the basis of
the ability of the calibration to accurately model the standards,
the optimal cutoff was determined. In the case of soft weighting,
the fluorescent spectrum is given a weight between zero and one
on the basis of relative signal intensity of the pure standard. Each
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compound’s spectrum changes with solvent polarity; consequently,
it is necessary to know the type of solvent being used ahead of
time.

Contrary to positive weighting, negative weighting is based
on removing the sample background spectrum, with the most
intense regions of the background assigned a weight of zero. Hard-
negative weighting assigns weights of zero to areas with intensity
of the blank above a predetermined cutoff value, and all other
areas are assigned weights of one. Soft weighting assigns
decreasing values from one to zero in order of increasing intensity.
Negative weighting is independent of the fluorescent components
in the samples, so information concerning the contents of a
solution is conserved. The Rayleigh and Raman scattering intensi-
ties will vary with solvent type and the quantity of dissolved
particles in solution. If a blank is not available, pure solvent may
be used, correcting for any intensity differences.

Common problems and benefits exist for both hard and soft
weighting. The primary advantage of hard weighting is that
assigning certain measurements a weight of zero may eliminate
background interference. However, any information in these areas
may be lost. Instead of applying strict values of one or zero, soft
weighting could be used to avoid any loss of data, although
resolution of a compound'’s signal from the background scattering
may be impossible if they are directly overlapped.



EXPERIMENTAL SECTION

EEM Fluorometer. The EEM fluorometer was constructed
in the manner of Murowski et al.’*1* and previously described in
JiJi et al.*® Light from a 75 W Xe arc lamp (Acton Research Corp.,
Acton, MA) was focused through the 2.75-mm entrance slit of a
150-mm imaging spectrograph (Acton Research Corp., Acton,
MA). This excitation spectrograph was fitted with a 600 groove
(gr)/mm ruled grating blazed at 300 nm. The spectrograph was
modified such that the 1-mm exit slit is rotated 90°. The excitation
spectrograph was attached to a sample chamber (Acton Research
Corp., Acton, MA) where the excitation spectrum was focused
near the front edge of a cuvette. The emitted fluorescence was
collected perpendicular to the excitation radiation and focused
onto the 1-mm slit of a second 150-mm imaging spectrograph
(Acton Research Corp., Acton, MA). For the methanol samples,
the emission imaging spectrograph contained a 600 gr/mm ruled
grating blazed at 500 nm, resulting in a 60-nm by 80-nm EEM
spectrum. For the aqueous samples, the emission imaging
spectrograph contained a 300 gr/mm ruled grating blazed at 500
nm, resulting in a 60-nm by 160-nm EEM spectrum. The resultant
spectra were recorded on a thermoelectrically cooled SBIG ST6
CCD camera (Santa Barbara Instrument Group, Santa Barbara,
CA). The camera was computer controlled through KestrelSpec
3.2 (Catalina Scientific, Tucson, AZ).

Sample Preparation and Analysis. Technical-grade carbaryl
(98.4% purity) was donated by Rhéne-Poulenc and 1-naphthol (99%
purity) and carbofuran (98% purity) were obtained from Aldrich.
For the first experiment, anhydrous reagent-grade methanol
(Aldrich) was used for all dilutions and all reagents were used
without further purification. Stock solutions of carbaryl, 1-naphthol,
and carbofuran were prepared by diluting 1.4, 1.3, and 1.3 mg,
respectively, in methanol to 100 mL. Seven standard solutions,
from 5 to 100 ppb, were individually prepared for 1-naphthol,
carbaryl, and carbofuran. In addition, three mixtures containing
two of the analytes at 60 ppb each and one mixture containing all
three analytes at 60 ppb each were also prepared.

Four replicate EEM spectra were collected for the 1-naphthol
and carbaryl standard solutions. Five replicate spectra were
collected for each of the carbofuran standard solutions. Four EEM
spectra were collected for each of the four mixtures, and eight
spectra of pure methanol, to be used as blanks, were collected.
Each replicate spectrum was included as a layer of the three-way
array. The excitation and emission spectrographs were centered
at 270 and 300 nm, respectively, with a 60-s integration time
chosen for the detector. The detector temperature was maintained
at —20 °C.

EEM spectra of the standards were collected on the first day
of the experiment, and the EEM spectra of the mixtures were
collected on the second day of the experiment. On the second
day, the instrument sensitivity varied slightly from that on day
one, resulting in absolute errors. However, relative compositions
could be calculated. Therefore, the root-mean-squared error
(RMSE) of percent prediction is presented in Table 2, for the
mixtures.

For the second experiment, stock solutions were prepared in
methanol to avoid hydrolysis of the analytes. A stock solution of
1-naphthol was prepared by diluting 11.9 mg in methanol to 50
mL. Stock solutions of carbaryl and carbofuran were prepared by
diluting 107.9 and 102.6 mg in methanol to 10 mL, then 0.1 mL of
each primary stock solution was further diluted in methanol to
100 mL. In-house-distilled water was used for preparation of

Table 1. Individual Analyte Concentrations for
Multicomponent Solutions in Water

mixture  1-naphthol (ppb)  carbaryl (ppb)  carbofuran (ppm)

1 71 540

2 24 108

3 36 62
4 83 41
5 809 21
6 216 72
7 12 108 10
8 95 647 31
9 48 384 51

standard and mixture solutions. Two single-component standards
were prepared for each analyte. The standard concentrations were
12 and 119 ppb for 1-naphthol, 270 and 1079 ppb for carbaryl,
and 10 and 103 ppm for carbofuran. Six mixtures containing two
analytes and three mixtures containing all three analytes were
prepared (Table 1). The concentration range of 1-naphthol in the
mixtures was from 12 to 95 ppb, 108 to 809 ppb for carbaryl, and
21 to 72 ppm for carbofuran. Four replicate spectra of each sample
and eight replicate background spectra were acquired. The
excitation and emission spectrographs were centered at 290 and
355 nm, respectively, with a 60-s integration time, and the detector
temperature was maintained at —20 °C.

Data Analysis. Analysis and deconvolution of the EEM spectra
were performed in the Matlab 5.2 (MathWorks, Natick, MA)
working environment. The PARAFAC decomposition and linear
regression programs were written in-house. The programs were
executed on IBM-compatible computers with Intel Pentium 233
MHz processors. Prior to importing the data into Matlab, spectra
were converted to text files by internal converters in KestrelSpec.

For all analyses the data cube was composed of a 30 row by
50 column EEM spectrum for each sample. All replicate spectra
were included in the model. This resulted in 30 x 50 x 115 and
30 x 50 x 68 data cubes for samples in methanol and water,
respectively. The correct number of factors was determined by
simultaneously minimizing the RMSE of prediction, minimizing
the limits of detection, and monitoring the predicted spectral
profiles for reasonable peak shapes. The limit of detection was
determined as three times the standard deviation of the predicted
analyte concentration in the blanks and was calculated by

Kg

LOD =34 [ (5 (6 = /(5 ~ 1) ®)
=

where cy is the predicted analyte concentration in the kth blank
and T is the mean of the predicted concentrations in the Kg blanks.
The RMSE was calculated by

RMSE = 4)

K
— 8K
(kZl(c 0)/K)

where ¢ represents the true value, € represents the predicted value,
and K represents the total number of samples. For calculation of
the RMSE of prediction, ¢ represents the concentration of the
analyte. For calculation of the RMSE of percent prediction, ¢
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Table 2. Figures of Merit for Carbofuran Solutions in Methanol

background correction subtract truncate Rayleigh soft positive soft negative
method mean blank scattering weighting weighting

sensitivity2 (1 x 10%) 1.9 1.6 1.9 1.8

(total counts/ppb)

LOD® (ppb) 31 5.0 5.3 4.0

carbofuran® (ppb) 3.8 5.6 5.6 4.7

a Sensitivity represents the integrated area under the resolved 1 ppb spectra of the analyte.  The LOD is determined by three standard deviations
from the blank. ¢ Root mean-squared error of prediction in the single-component standards.

represents the percentage of each analyte present in a mixture.
For example, a solution made up of 60 ppb each of 1-naphthol
and carbaryl has fifty percent 1-naphthol and carbaryl.

Spectra of the mixtures in methanol were collected 1 day
following collection of the standard spectra. Because of daily
variations in environmental conditions, such as temperature, and
the instrumental response, the exact concentration of each
component could not be predicted from the standard spectra.
Therefore, the RMSE of percent prediction was calculated. This
is sufficient for the purposes of this study because it allows for a
qualitative evaluation of the performance of this instrument and
W-PARAFAC. In addition, this problem can be curtailed by
collecting all spectra on the same day, minimizing the variations
in conditions throughout the experiment.

The sensitivity was determined by taking the cross product of
the estimated excitation and emission spectra for each analyte
and normalizing the total area under the curve to unit area to
determine a scalar, Z. The change in Z with concentration (AZ/
Ac) is thus defined as the sensitivity for each analyte.

RESULTS AND DISCUSSION

Environmental monitoring of aqueous pesticides may be
impaired by overlap of the pesticides’ fluorescence signals with
the Raman scattering. Figure 2a shows the Rayleigh scattering
in the top left corner of the image and the Raman scattering just
below, overlapping the carbofuran signal. Both types of scattering
have distinct diagonal shapes. By applying weights to the EEM
spectra during analysis, effects of the Rayleigh and Raman
scattering on the model are reduced. Figure 2 parts a and b
highlight the effective weight of each channel of the EEM after
applying weights to an EEM spectrum of pure carbofuran in
methanol. Distinguishing the carbofuran signal from the Raman
scattering is difficult due to the intensity of the background
scattering. When hard-negative weighting is applied to the same
EEM spectra, the carbofuran signal becomes more discernible
due to the effective removal of the Rayleigh and Raman scattering.

Multilinear decomposition of both the Rayleigh and Raman
scattering is inefficient because they have no intrinsic excitation
and emission profiles.1® Therefore, the scattering must be removed
prior to data analysis. Accepted methods for accomplishing this
include truncating the Rayleigh scattering, setting the scattering
to a nominal baseline value, measuring only the emission
wavelengths above the excitation wavelengths, and subtracting a
blank spectrum.

However, these methods for dealing with Rayleigh and Raman
scattering fall short when a signal overlaps the Raman scattering.
Truncating the Rayleigh scattering resulted in nonsensical estima-
tions of the excitation and emission spectra. In addition, any area
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Figure 2. (a) Recorded EEM spectrum of 100 ppb carbofuran in
methanol with no background correction and (b) a hard negative
weight matrix applied to the same EEM spectrum.

set to zero will be modeled as having no response or signal.
Therefore, for further evaluations, the truncated areas of the
spectra were set to a nominal value based on the 1,1 pixel of a
mean background EEM spectrum. However, this leaves the
Raman scattering uncorrected. This is sufficient in the case of
1-naphthol, which is highly resolved from the scattering and has
a large fluorescence cross section. However, truncation of the
background scattering is unreasonable when the analyte’s signal
is overlapped with the background scattering. This is the case
with the pesticides carbofuran and carbaryl. Truncation of both
the Rayleigh and Raman scattering would remove an excessive
amount of the analyte’s signal, resulting in higher limits of



detection (LOD) and root-mean-squared errors (RMSE) of predic-
tion for carbofuran and carbaryl.

Measuring only the emission wavelengths above the excitation
wavelengths is also impractical. For example, the emission
maximum of carbofuran in methanol is 300 nm, which lies at the
top of the excitation wavelength range, 240—300 nm. A large
portion of the carbofuran signal would be lost, possibly raising
detection limits further. Another solution is to subtract a blank
spectrum from each EEM spectrum. However, a blank is not
normally available for in-situ analysis of complex environmental
samples. An added disadvantage of background subtraction is the
inability of the model to account for the variability of the Rayleigh
and Raman scattering due to changes in sample makeup and
detector saturation. Therefore, when an analyte signal is over-
lapped with the background scattering, an alternate method of
reducing or removing the effects of the scattering is necessary.

W-PARAFAC overcomes many of the limitations of current
methods for removing Rayleigh and Raman scattering. Contrary
to truncating the Rayleigh scattering, the Raman scattering is also
effectively removed in a W-PARAFAC model. Areas that are given
a weight of zero are estimated and not modeled as zeros. This is
a significant contrast with truncation, which assigns an actual value
to an area. Enough of the anlaytes’ signals are left in the spectrum
for the model to produce reliable and accurate predictions.
Another advantage is the elimination of the need to subtract a
blank spectrum. When compared with conventional methods,
W-PARAFAC lowers the LOD when an analyte’s signal is over-
lapped with the scattering and, in addition, often reduces the
RMSE of prediction.

The four weighting strategies, hard positive, hard negative,
soft positive, and soft negative, are evaluated using a preliminary
set of samples in methanol and selected figures of merit. Figures
of merit for the four weighting strategies are compared with
subtraction of the appropriate blank. Note that the figures of merit
for the blank subtraction are the best case scenario, although the
proper blank is usually not available. The most appropriate
weighting strategies are then applied to a second set of samples
in aqueous solution. The performance of each of the strategies
will be addressed in the following sections.

Soft Weighting. Soft weighting applies a weighting propor-
tional to the intensity of either the analyte signal or sample
background. Soft-positive weighting enhances the signal of one
or more analytes, while decreasing background interference.
Because positive weighting is based on each analyte’s unique
signal, a priori knowledge of the sample makeup and solvent type
is necessary. In contrast, negative weighting decreases the weight
given to the background scattering, with minimal effect on the
analytes’ signals. Negative weighting may be performed with no
prior knowledge of the sample makeup.

To determine the efficacy of soft weighting for carbofuran
prediction, initial models excluded the carbaryl and 1-naphthol
standards. The limits of detection for carbofuran were 3.1, 5.0,
5.3, and 4.0 ppb when subtracting the mean blank spectrum,
truncating the Rayleigh scattering, using soft-positive weighting,
and using soft-negative weighting, respectively (Table 2). Initial
results for soft-positive weighting were encouraging, so it was
applied to a data set containing all standards and mixtures.
Inclusion of 1-naphthol and carbaryl provides a means to evaluate
soft-positive weighting on multiple analytes with varying degrees
of resolution. 1-Naphthol is totally resolved from the Raman
scattering with no overlap; carbaryl is moderately resolved from

the Raman scattering, with only part of its signal being overlapped.

With only the carbofuran signal enhanced, the model failed to
converge. Enhancement of a single analyte was determined to be
impractical for field studies, because environmental samples will
normally contain fluorescent background interferents that should
be included in the PARAFAC model. Subsequently, a weight
matrix in which the signals of all three components were enhanced
was applied to the previous data set. The LOD for carbofuran was
66 ppb—six times that for subtracting a blank spectrum (Table
3). The RMSE of carbofuran prediction in the 1-naphthol, carbaryl,
and carbofuran standards and mixtures were 78, 40, 33, and 29
ppb, respectively. These are significantly higher than other types
of weightings. The RMSE is expected to be higher for the samples
than for the blanks, due to the proportional nature of measurement
error with fluorescent intensity.

An additional problem encountered with soft-positive weighting
is a result of the direct overlap of the carbofuran signal with the
Raman scattering. The Raman scattering is enhanced along with
the carbofuran signal, resulting in convolution of the carbofuran
signal and the Raman scattering. The Raman scattering is
interpreted falsely as additional fluorescence and, consequently,
an abnormally high estimated sensitivity.

Soft-positive weighting results in adequate prediction errors
of 2.6 and 5.1 ppb (Table 3) for 1-naphthol and carbaryl,
respectively, but it is not effective for carbofuran prediction when
compared with other methods. This is probably due to the weaker
fluorescence signal of carbofuran and the greater overlap with
the Raman scattering. In addition, there is no benefit to using
soft-positive weighting for 1-naphthol and carbaryl prediction
because comparable results may be obtained by simply truncating
the Rayleigh scattering (data not shown) when this degree of
inherent resolution exists.

Soft-negative weighting diminishes the effect of the Rayleigh
and Raman scattering without pretreatment. However, the inten-
sity of the Rayleigh scattering was extremely high, so assignment
of any positive weight still prevented the model from converging.
Therefore, it was necessary to first truncate the Rayleigh scatter-
ing, then apply soft-negative weighting in order to reduce the
influence of Raman scattering. Soft-negative weighting was con-
sequently applied to the limited data set mentioned previously,
containing only the carbofuran standards. The LOD for carbofuran
was 4.0 ppb, only 0.9 ppb higher than subtracting a mean blank
and 1.0 ppb lower than truncating the Rayleigh scattering.
However, when soft-negative weighting was applied to the
complete data set, the limits of detection and RMSE values for
carbofuran were 33 and 8.1 ppb, respectively. This is as much as
three times higher than subtracting out a background spectrum
(Table 3). The poor prediction for carbofuran and low sensitivity
may be attributed to convolution of the Raman scattering and
carbofuran signal, as with soft-positive weighting.

The overlap of the carbofuran signal and the Raman scattering
is the main limitation of both soft-positive and soft-negative
weighting. The carbofuran signal becomes indistinguishable from
the background, causing both the Raman scattering and the
carbofuran signal to simultaneously be either enhanced or
reduced. The combination of the carbofuran signal and the Raman
scattering may be avoided by using hard weighting rather than
soft weighting.

Hard Weighting. Contrary to soft weighting, hard weighting
applies a weight of either one or zero, on the basis of a
predetermined cutoff value. For hard-negative weighting, a value
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Table 3. Figures of Merit for Single- and Multiple-Component Solutions in Methanol

subtract hard soft hard soft
mean positive positive negative negative
background-correction method blank weighting weighting weighting weighting
Prediction of 1-Naphthol
sensitivity? (1 x 10%)
(total counts/ppb) 8.4 8.8 8.4 8.4 9.9
LOD® (ppb) 31 4.3 34 11 3.0
1-naphthol°® (ppb) 2.5 2.4 2.6 2.5 2.9
carbaryl? (ppb) 2.2 1.0 1.2 1.1 1.3
carbofurand (ppb) 1.3 0.57 2.2 0.51 2.6
mixtures® (ppb) 7.2 4.9 19 6.3 3.9
Prediction of Carbaryl
sensitivity? (1 x 10%)
(total counts/ppb) 35 4.2 3.8 4.4 4.2
LOD® (ppb) 5.0 7.8 6.9 5.0 9.6
1-naphthold (ppb) 6.1 8.2 4.2 7.8 7.7
carbaryl® (ppb) 2.6 3.3 51 2.5 51
carbofurand (ppb) 2.6 6.1 12 55 18
mixtures® (ppb) 10 2.7 14 5.8 8.4
Prediction of Carbofuran

sensitivity? (1 x 10%)
(total counts/ppb) 1.7 2.1 4.6 2.4 0.50
LOD® (ppb) 11 18 66 10 33
1-naphthold (ppb) 5.5 12 78 5.0 14
carbaryld (ppb) 7.1 11 40 3.8 16
carbofuran® (ppb) 53 7.6 33 3.4 8.1
mixtures® (ppb) 10 6.3 29 9.0 10

a Sensitivity represents the integrated area under the resolved 1 ppb spectra of the analyte. ® The LOD is determined by three standard deviations
from the blank. ¢ Root mean-squared error of prediction of the analyte in the single-component standards that were used to construct the model.
9 Root mean-squared error of prediction of the analyte in the alternate single-component standards. The actual value of analyte in alternate standards
is assumed to be zero. ¢ Root mean-squared error of percent prediction in the multiple-component solutions. The methods with the lowest equivalent
detection limits and prediction errors are in bold type as determined by an F-test (Fgs v1 = 30 and v, = 30).

of zero is assigned to areas of the solvent spectrum in which the
intensity is above the predetermined cutoff value. For hard-positive
weighting, a weight of zero is applied to areas of the pure analyte
spectrum in which the intensity is below the predetermined cutoff
value. With hard weighting, there is some loss of signal that is
not encountered with soft weighting.

Analyses on the multiple-component solutions in methanol
demonstrated that hard weighting performed superior to soft
weighting overall. For carbofuran prediction, detection limits and
prediction errors were consistently lower for hard-negative weight-
ing when compared with hard-positive weighting as shown in
Table 3. Although employment of hard-negative weighting resulted
in lower detection limits for 1-naphthol, carbaryl, and carbofuran
when multiple analytes were present in solution, hard-positive
weighting resulted in more accurate prediction of each analyte.
When positive weighting was employed, the RMSE of percent
carbofuran prediction was 6.3 ppb, 2.7 ppb lower than that obtained
when negative weighting was employed (Table 3). Although this
value is comparatively small, the moderate overlap of the carbo-
furan signal with the carbaryl signal may favor positive weighting.
A more significant difference was found for carbaryl prediction
in the mixtures. The RMSE of percent carbaryl prediction is 2.7
ppb (Table 3); this is two times lower than that obtained when
hard-negative weighting is used and four times lower than that
obtained when a background spectrum is subtracted out. This
indicates that focusing the analysis on the analytes and removing
exterior information may facilitate carbaryl prediction.

Prediction errors for single-component standards and 1-naph-
thol in multicomponent solutions were lowest when hard weight-
ing was employed. Hard-negative weighting resulted in detection
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limits of 1.1, 5.0, and 10 ppb, respectively, for 1-naphthol, carbaryl,
and carbofuran (Table 3).

It should be noted that in the model in which subtraction of a
background spectrum was the applied background correction, only
seven of the eight blank spectra were included. One background
spectrum was visibly more intense and had a significant effect on
the RMSE of prediction. When this blank was included in the
model, the limits of detection for carbofuran were raised to 33
ppb from 10 ppb. However, the limit of detection of 1-naphthol
lowered from 3.1 to 1.4, implying that naphthol prediction becomes
more accurate with increasing background variance while the
inaccuracies in subtracting the background Raman scattering
degrade prediction of the overlapped carbofuran signal. Incorpo-
rating this blank in the complete data set had no effect on the
figures of merit when positive or negative weighting was em-
ployed.

Water Samples. Figure 3 presents an EEM spectrum of
1-naphthol, carbaryl, and carbofuran in aqueous solution. The
diagonal patterns of the Rayleigh and Raman scattering are
apparent in the top left corner of the EEM spectrum. In aqueous
solution, the fluorescence signal of 1-naphthol is red shifted
compared with that in solutions in methanol, with an excitation
maximum at 295 nm and an emission maximum above 435 nm.
The carbaryl signal is shifted toward the Raman scattering,
overlapping both the Raman scattering and the carbofuran signal.
The excitation and emission maxima for carbaryl are 285 and 310
nm, respectively. Carbofuran is also highly overlapped with the
Raman scattering, with excitation and emission maxima of 280
and 300 nm, respectively.
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Figure 3. Recorded EEM spectrum of 48 ppb 1-naphthol, 384 ppb
carbaryl, and 51 ppm carbofuran in aqueous solution.

Because of the limitations of soft weighting and the increased
overlap of the carbaryl signal with the Raman scattering, only
subtraction of a background spectrum and hard weighting are
presented for background correction. Soft-weighted models often
converged to nonsensical solutions. Contrary to the previous
experiment, hard-positive weighting resulted in the lowest detec-
tion limits for all three analytes. Prediction errors for 1-naphthol
and carbaryl in pure standards and multiple-component solutions
were also lowest when a hard-positive weighting was employed
compared with the hard-negative weighting (Table 4).

In the case of carbofuran, the LOD was decreased more than
3 ppm with both types of weighting, compared with subtracting a
background spectrum out (Table 4). Also, the difference of 0.2
ppm in detection limits for hard-positive and -negative weighting
strategies is statistically insignificant for carbofuran prediction.
In addition, hard-negative weighting performed superior for
prediction of carbofuran in the presence of other analytes. The
RMSE of carbofuran prediction in the 1-naphthol, carbaryl,
carbofuran standards and in multiple-component solutions were
2.2, 2.9, 15, and 3.2 ppm, respectively (Table 4).

CONCLUSIONS
The effects of Rayleigh and Raman scattering cannot always

be efficiently mitigated by background subtraction, so alternatives
must be investigated. W-PARAFAC does successfully mitigate
problems associated with the presence of a Rayleigh and Raman
background and often performs superior to subtraction of the
appropriate blank. Hard weighting methods achieved better results
compared with soft weighting strategies. Soft weighting led to
convolution of the Raman scattering and the carbofuran signal,
resulting in imprecise estimations of sensitivity and distortions
to the estimated signal. Although this paper did not discuss in
depth the use of soft weighting on signals from other analytes, it
can be inferred that soft weighting would result in convolution of
the analytes’ signals with one another. Future studies of soft
weighting may provide insight on how to minimize this effect.
Hard positive and negative weighting strategies seemed to perform
equivalently well in all cases except carbofuran prediction in

Table 4. Figures of Merit for Single- and
Multiple-Component Solutions in Water

hard hard
background- subtract positive negative
correction method mean blank weighting weighting

Prediction of 1-Naphthol
sensitivity? (1 x 108)

(total counts/ppb) 13 11 1.4
LOD" (ppb) 1.8 2.0 2.9
1-naphthol°® (ppb) 1.8 0.9 2.0
carbaryld (ppb) 1.4 3.1 1.2
carbofurand (ppb) 0.4 23 0.9
mixtures® (ppb) 6.2 52 5.8

Prediction of Carbaryl
sensitivity? (1 x 107)

(total counts/ppb) 2.3 1.0 2.2
LOD® (ppb) 22 20 36
1-naphthol? (ppb) 8.7 24 22
carbaryl® (ppb) 5.3 3.2 17
carbofurand (ppb) 13 62 51
mixtures® (ppb) 16 29 38

Prediction of Carbofuran
sensitivity? (1 x 10)

(total counts/ppb) 1.8 1.7 2.1
LOD® (ppm) 5.7 1.9 2.1
1-naphthold (ppm) 2.1 1.6 2.2
carbaryld (ppm) 2.0 5.6 2.9
carbofuran® (ppm) 1.4 1.6 1.5
mixtures® (ppm) 4.0 5.3 3.2

a Sensitivity represents the integrated area under the resolved 1 ppb
spectra of the analyte. ® The LOD is determined by three standard
deviations from the blank. ¢ Root mean-squared error of prediction of
the analyte in the single-component standards that were used to
construct the model. ¢ Root mean-squared error of prediction of the
analyte in the alternate single-component standards. The actual value
of analyte in alternate standards is assumed to be zero. ¢ Root mean-
squared error of prediction in multiple-component solutions. The
methods with the lowest equivalent detection limits and prediction
error)s are in bold type as determined by an F-test (Fgs v1 = 30 and v
= 30).

methanol. This can be attributed to the greater amount of Raman
scattering present in the EEMs of solutions in methanol. For the
solutions in methanol, weighting strategies achieved better or
equivalent results to subtraction of a background in 14 out of 15
instances. In only one instance did subtraction of a background
spectrum result in better prediction. In conclusion, hard weighting
should be employed rather than soft weighting in cases where
there is no blank available. Positive and negative weightings are
suitable for most situations and should be applied according to
the goals of the researcher. In the case of the analyte’s signal
being highly overlapped with especially intense background
scattering, hard negative weighting should be employed.
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