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AN ALTERNATING LEAST SQUARES ALGORITHM FOR FITTING THE 
TWO- AND THREE-WAY DEDICOM MODEL AND THE IDIOSCAL 

MODEL 

HENK A.  L .  KIERS 

UNIVERSITY OF GRONINGEN 

The DEDICOM model is a model for representing asymmetric relations among a set of 
objects by means of a set of coordinates for the objects on a limited number of dimensions. The 
present paper offers an alternating least squares algorithm for fitting the DEDICOM model. The 
model can be generalized to represent any number of sets of relations among the same set of 
objects. An algorithm for fitting this three-way DEDICOM model is provided as well. Based on 
the algorithm for the three-way DEDICOM model an algorithm is developed for fitting the 
IDIOSCAL model in the least squares sense. 

Key words: DEDICOM, three mode data analysis, IDIOSCAL. 

Harshman (1978) has proposed a family of models for analyzing data matrices that 
are intrinsically asymmetric. The family of models is called DEcomposition into DI- 
rectional COMponents (DEDICOM). The simplest member of this family is the single- 
domain DEDICOM model. Because this is the only member of the family that will be 
considered here it will be referred to as DEDICOM for short. For an extensive de- 
scription of this model we refer to Harshman, Green, Wind and Lundy (1982). A brief 
description of the model will be given here. 

According to the DEDICOM model a square data matrix X, containing entries x U 
representing the (asymmetric) relation of object i to object j ,  is decomposed as 

X = A R A '  + E,  (1) 

where A is an n by p (p < n) matrix of weights (or "loadings") for the n objects on p 
dimensions or aspects, R is a square matrix of order p, representing (asymmetric) 
relations among the p dimensions, and E is a matrix with entries eij representing the part 
of the relation of object i to object j that is not explained by the model (the error-part). 
The objective of fitting this model to the data is to explain the data by means of relations 
among as small a number of dimensions as possible. These dimensions can be consid- 
ered as "aspects" of the objects. The loadings of the objects on these aspects are given 
by matrix A. The entries in matrix A indicate the importance of the aspects for the 
objects. The dimensionality of R and A, and hence the number of aspects to be deter- 
mined, is to be based on some external criterion, defined by the user. 

Several methods have been proposed for fitting data to the model (1) in the least 
squares sense. These algorithms have been discussed in detail by Harshman and Kiers 
(1987). Some of these algorithms are alternating least squares (ALS) algorithms and fit 
a model in which the left and the right hand matrix A in A R A '  are treated independently. 
Mostly, upon convergence of the algorithm the left and right hand A are equal so that 
the proper model has been fitted. However, equality of left and right hand A is by no 
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means guaranteed. Other algorithms, especially gradient algorithms, may be prob- 
lematic because they do not necessarily decrease a function monotonically, and hence 
convergence is not guaranteed for them. An example where such an algorithm failed to 
converge, and oscillated between two solutions is available from the author upon re- 
quest. In the present paper an ALS algorithm is described that does not differentiate 
between left and right hand matrix A and is proven to converge monotonically. 

Harshman and Lundy (1984, p. 187ff) have described a generalization of the DEDI- 
COM model for three-way data. That is, a model has been described for representing 
m matrices (m > I) originating from m instances (e.g., observers or occasions) with 
asymmetric relations among the same set of objects by means of relations among a 
single set of dimensions. This three-way DEDICOM model is a special case of the 
PARAFAC-2 model (Harshman & Lundy). According to this generalized DEDICOM 
model the k-th data matrix X k is represented by 

Xk = A D k R D k A '  + Ek, (2) 

where A and R are defined as in (1), while D k is a diagonal matrix with weights to 
represent the dimensions in the k-th instance. 

The model (2) described above is a rather heavily constrained model, because it 
specifies both the A and the R matrices to be equal for every instance, except for row- 
and column-scalings. However, a less constrained three-way generalization of DEDI- 
COM is feasible in such a way that this model is an asymmetric variant of the IDIO- 
SCAL model in its usual scalar product form (Carroll & Wish, 1974). That is, the 
positive semi-definite matrix in IDIOSCAL defining the metric for the space in which 
scalar products between objects are computed for the k-th instance is replaced by an 
asymmetric matrix. The latter matrix cannot be considered to define a metric anymore. 
It merely provides relations among the dimensions at the k-th instance. This three-way 
DEDICOM model specifies X k as 

Xk = A R k A '  + E~, (3) 

which is considerably less constrained than model (2). In the present paper an algorithm 
for the least squares fitting of the model specified by (3) is given as well by means of a 
simple extension of the algorithm for fitting the DEDICOM model (1). 

When Carroll and Chang (1970, 1972) proposed the IDIOSCAL model, they de- 
scribed methods for obtaining approximate solutions for fitting the model. They re- 
marked (Carroll & Chang, 1970, p, 309) that a procedure similar to their CANDECOMP 
procedure for fitting the INDSCAL model could be developed, but did not elaborate 
this. Since then not very much attention seems to have been paid to fitting the IDIO- 
SCAL model in the least squares sense. All techniques reviewed by de Leeuw and 
Pruzansky (1978, p. 483ff) yield approximate solutions only. 

Kroonenberg and de Leeuw (1980, p. 78) suggest that their TUCKALS2 algorithm 
for fitting the Tucker-2 model can be used to test the appropriateness of the IDIOSCAL 
model. Although they do not elaborate this approach, it is readily verified that an ALS 
algorithm for fitting the IDIOSCAL model can be constructed by means of  a slight 
modification of the TUCKALS2 algorithm. However, the latter procedure again is 
based on differentiating between left and right hand matrices A, while it is not guaran- 
teed that the left and right hand matrices A will be equal upon convergence. (An 
example where the left and right hand matrices A differ at convergence of the 
TUCKALS2 algorithm is available from the author upon request.) Therefore, it seems 
that no straightforward techniques for fitting the IDIOSCAL model in the least squares 
sense have been developed yet. This gap is filled by means of a slight modification of 
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the algorithm for fitting model (3). First, however, the algorithm for fitting the DEDI- 
COM model will be described. 

An ALS Algorithm for Fitting the DEDICOM Model 

In order to fit the DEDICOM model in the least squares sense the function 

f(A, R) = IIX- ARA'H 2 (4) 

has to be minimized over A and R. Because every linear one-to-one transformation of 
A can be undone by an inverse transformation of R, matrix A can be constrained to be 
column-wise orthonormal, that is, A'A = Ip, without loss of generality. Then (4) can be 
elaborated as 

f(A, R) = tr X'X - 2 tr X'ARA' + tr R'R. (5) 

Functionf(A, R) can be minimized by alternatingly minimizingfover  R while A is fixed, 
and decreasing f over A while R is fixed, un t i l f i s  not decreased anymore by means of  
this procedure. 

The step of minimizing flA, R) over R is accomplished by choosing R = A'XA. 
That this choice of R minimizes flA, R) for fixed A can be seen as follows. Function 
flA, R) can be elaborated as 

f(A, R) = tr X ' X  - tr A 'XAA 'X'A + IIA ' X A  - RII z. (6) 

Clearly, 3'(A, R) is minimized over R by choosing R = A'XA. 
In the sequel the procedure for decreasing function f(A, R), for fixed R, over A, 

subject to A'A = It,, is described. Decreasing f(A, R) over A while R is fixed is 
equivalent to decreasing 

g(A) = - 2  tr X'ARA' = - 2  tr A'X'AR (7) 

over A. Let  aj be column j of matrix A, then (7) can be rewritten as 

P P 

g(A) = - 2  Z ~, ajX'atrtj. 
j = l l = l  

(8) 

The constraint A'A = Ip can be reformulated as aja l = 8jl, for j ,  I = 1 . . . . .  p,  in which 
8fl is the Kronecker symbol, that is, 6it = 0 when j ~ t and 8jr = 1 when j = I. 

Decreasing (8) is achieved by successively minimizing g(A) over the columns of  A 
separately, subject to the constraint ajal = 8jl, for j ,  l = I . . . . .  p. Minimizing g(A) 
over a i subject to a;aj  = 60., f o r j  = 1 . . . . .  p, is equivalent to minimizing 

g(ai) = - 2 (  a[ ~ X'alrli+ ~ ajX'airij+ l÷i j¢i +c 

+c + a[j¢i ~ Xajru + a'X'airii) = - 2 ( a :  t~iZ X'alrli 

= - 2 ( a / ~ \  J¢~ (X'ajrji+Xajrij)+a~X'airii) +c, (9) 
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where c is a constant with respect to a i. Obviously, a~X'a i = a[Xa i = a~{1/2(X + X ' ) } a i .  
Hence 

g(ai)  = - -2  a '  ~ (X'ajrji + Xajrij) + a[ ( - r i i (X  + X ' ) ) a / +  c. ( I 0 )  

The constraint a~aj = ~ij, for j  = 1 . . . . .  p, forces a i to be a length one vector in the 
orthogonal complement space of the remaining columns of A. Let A _  i denote the 
matrix with the elements of A except for column i, which contains zero elements. The 
columns of (I - A _ i A  '-i) span the orthogonal complement space of a i. Let the n by (n 
- p + 1) matrix B contain columns that span an orthonormal basis for this space. The 
restriction a[aj = ~ij, for j  = 1 . . . . .  p, is tantamount to a i = Bv for some vector v of 
length one and order (n - p + 1). 

The problem of minimizing (10) subject to the constraint alaj = ~ ~/, j = 1 , . . .  , p, 
can be reformulated as minimizing the function 

h(v) = - 2  v'B' ~ (X'ajrji + gajrij) + v'B'(-rii(g + X'))Bv, (11) 
j~i  

over v, subject to v'v = 1. Let an eigendecomposition o f B ' ( - r i i ( X  + X ' ) )B  be given by 
B'(-rii(X + X'))B = UDU', let vector z be defined by z = U'B'~j~i(X'ajr j i  + Xajr~i) 
and let w - U ' v ,  then minimizing h(v) subject to ~ v  = 1 is tantamount to minimizing 

k(w)  = - 2  w ' z  + w ' D w ,  (12 )  

over w, subject to w'w = 1. 
The problem of minimizing k(w) subject to w'w = 1 has been solved by ten Berge 

and Nevels (1977, p. 594-597). Although in their problem matrix D is positive semi- 
definite, exactly the same algorithm can be used for solving the problem when D is an 
arbitrary diagonal matrix with elements in weakly descending order. The reason for this 
is that in deriving their algorithm, ten Berge and Nevels never used the restriction that 
the elements of D be nonnegative. 

T h e  p r o b l e m  o f  m i n i m i z i n g  g (a i )  s u b j e c t  to  t he  c o n s t r a i n t  a [ a j  = 80., j = 1, . . . , 
p, is now solved as follows. Let w0 be the vector found by the ten Berge and Nevels 
procedure that minimizes k(w) subject to w'w = 1. Then a~ = BUwo minimizes g ( a i )  
subject to a[aj = ~U ,J = 1 . . . . .  p. When all the columns of A are updated in this way, 
f(A, R) is decreased over A while R is fixed. 

The procedures for updating R and for updating A both decrease function f(A, R), 
and J~A, R) is bounded from below by zero. Therefore, alternating these procedures will 
finally converge to an A and R such that f(A, R) cannot be improved any further by 
either of these procedures. In this way convergence of this algorithm is guaranteed. 

The algorithm described here is an alternating least squares algorithm, because it 
alternates the least squares procedures of minimizing f over R while A is fixed, and 
minimizing f over each column of A, while R and the other columns of A are fixed. 

The constraint that A be column-wise orthonormal has been imposed in order to 
simplify the problem. A different constraint on A could also simplify the problem 
(although to a lesser extent) and obviate the use of orthogonal complement spaces. This 
is the constraint Diag(A'A) = Ip, which may be imposed without loss of generality, 
also. This leads to a different algorithm which is beyond the scope of the present paper. 

Performance of the Column-Wise DEDICOM Algorithm 

The algorithm described above for fitting the DEDICOM model has been pro- 
grammed on a CDC Cyber. As a starting configuration for the matrix A we have chosen 
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the matrix containing the p eigenvectors that are associated with the eigenvalues of the 
symmetric part of X, that are the largest in absolute value. 

Harshman and Kiers (1987) compared the above described algorithm with four 
other algorithms on twenty random data sets. The latter algorithms were based on 
differentiating between left and right hand matrices A. The column-wise algorithm 
might be expected to be slower than the other algorithms, because each step of updating 
a column of A requires the computation of a complete eigendecomposition of a matrix 
of order (n - p + 1) by (n - p + 1) and minimization of the function k by the ten Berge 
and Nevels procedure. However, the results of Harshman and Kiers indicate that the 
column-wise algorithm is faster than one of the other four algorithms, and only slightly 
slower than the other three algorithms. The column-wise algorithm took an average of 
5.0 cp seconds computation time, whereas the average computation times for the other 
four algorithms were 4.2, 4.0, 5.6 and 3.8 seconds. 

It might be expected that the column-wise algorithm would converge to local 
minima more often than the other four algorithms, because updating A column-wise 
involves smaller changes of the A matrix than updating the complete matrix A, as the 
other algorithms do. However, the column-wise algorithm did not converge to local 
minima more often than the other four algorithms did on the average. Moreover, in 
those cases restarting with a different starting configuration led to a better solution for 
the column-wise algorithm. 

Although only tentative conclusions can be made on the basis of this limited 
number of test runs, it seems safe to conclude that the DEDICOM algorithm developed 
here is not particularly problematic. That is, it is not particularly slow and it does not 
very often converge to a local minimum. Moreover, when it does converge to a local 
minimum, it is likely that in several new runs with different starting configurations the 
global minimum will be found. For this reason, it is advised to use more than one 
starting configuration. 

Three-Way DEDICOM and IDIOSCAL 

In order to fit the three-way DEDICOM model as formulated by (3) in the least 
squares sense, a procedure similar to the one for fitting the DEDICOM model can be 
used. The function to be minimized in order to fit the three-way DEDICOM model (3) 
is 

m 

f l ( A ,  R1 . . . . .  Rm) = ~ IlXk - ARkA ' [ [  2. 
k = l  

(13) 

The constraint that A be column-wise orthonormal can again be imposed without loss 
of generality. The minimization off1 is accomplished by an ALS algorithm alternating 
over the columns of A, and the matrices R 1 . . . . .  R m . The update for R k is given by 
R k  = A ' X k A .  The derivation of the updates for the columns of the matrix A in the 
three-way DEDICOM model is analogous to that for the updates of the columns of 
matrix A in the DEDICOM model, as can be seen as follows. 

Minimizingfl over A, for fixed R 1 . . . . .  R m ,  subject to A ' A  = I p ,  is equivalent to 
minimizing 

m 

g l ( A )  = - 2  ~ tr X ' ~ A R k A '  = - 2  tr A ' X ' k A R k  (14) 
k = l  k = l  
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over A. Let aj be columnj  of matrix A, then (I4) can be rewritten as 

m p p 

gl(A) = - 2  ~ ~ ~ ajX'katruk, (15) 
k = l  j = l  I = 1  

where rtj k refers to the entry in cell (l, j3 of matrix Rk. 
Analogously to decreasing g(A), see (8), decreasing gl(A) is achieved by succes- 

sively minimizing g l(A) over the columns of A separately, subject to the constraint 
ajal = ~jt, for j ,  l = 1 . . . . .  p. Function gl(A) can be rewritten as 

gl(ai) = - - 2 (  a[~l~Tk=l~X~alrlik+~j¢i aj~k=l Xkairijk+ k=l~a'X~airiik)+cl 

( m  m ) 
= - 2  a" ~ ~ X~atr,ik + a; ~ ~ Xkajrijk + 2 a;X~airiik + Cl 

l ¢ i  k = l  j # i  k = l  k = l  

= - 2  a; ~ ~'~ (X~ajrjik + Xkajrok) + a;X~airiik + Cl, (16) 
j-~i  k = l  k = l  

where Cl is a constant with respect to a i. Obviously, a~X~a i = a~Xka i = ai{1/2(Xk + 
X~)}ai. Hence m (m ) 
gl(ai) = - 2  a; ~ ~ (Xtkajrjik -t- Xkajrqk ) + a[ - 2 riik(Xk q" X~) ai + Cl. 

j # i  k = l  k = l  

(17) 

From (17) it is clear that gl(ai) can be minimized in essentially the same way as g(ai), 
see (10). 

Alternating the procedures for minimizing f l  over R 1 . . . . .  R m while A is fixed 
and minimizing f l  over each of the columns of A while the other columns of  A and 
R 1 . . . . .  R m are fixed yields an ALS algorithm for fitting the three-way DEDICOM 
model in the least squares sense. Because the ALS algorithm decreases f l  monotoni- 
cally and f l  is bounded from below, the algorithm must converge. 

The IDIOSCAL model differs from the three-way DEDICOM model mentioned 
above in two respects. Firstly, IDIOSCAL is a model for a number of symmetric data 
matrices, instead of asymmetric matrices. Secondly, the matrices R k in the IDIOSCAL 
model are not arbitrary but are required to be positive semi-definite. The first difference 
does not affect the applicability of the three-way DEDICOM algorithm, because the 
algorithm is suitable for any set of square data matrices Xk. The second difference calls 
for a slight modification of the three-way DEDICOM algorithm in order to make it 
suitable for fitting the IDIOSCAL model. The steps for updating the matrices R k , k = 
1 . . . . .  m, should be modified to the effect that the best positive semi-definite matrix 
R k is found. This comes down to minimizing the function 

fz(Rk) = llA 'XkA - gktt 2 (18) 

over positive semi-definite matrices Rk. When Xk is itself positive semi-definite the 
solution for Rk is the same as in three-way DEDICOM, that is, Rk = A'XkA,  because 
when X k is positive semi-definite, the product A'XkA is positive semi-definite as well. 
However, if Xk is not positive semi-definite then a different choice for R k should be 
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made. Let q be the number of positive eigenvalues of A'XkA, let Dq be the diagonal 
matrix containing these positive eigenvalues, and let Kq be the column-wise orthonor- 
mal matrix containing the eigenvectors associated with these positive eigenvalues. 
Then, in order to minimize f2(Rk) matrix R k should be chosen as Rk = KqDqK~ 
(Keller, 1962). These steps combined yield an ALS algorithm for fitting the IDIOSCAL 
model in the least squares sense. 

Discussion 

In the present paper algorithms have been described for finding a set of coordinates 
on a limited number of dimensions in order to represent a set of objects for which 
measures of relations among the objects are given. These relations are not necessarily 
symmetric. The algorithms that had been developed for these purposes have been 
based on the assumption that when two sets of object coordinates are estimated inde- 
pendently, these will be equal upon convergence. However, it is by no means guaran- 
teed that this assumption holds. The algorithms described in the present paper do not 
require this assumption to be made. This advantage is due to the fact that these algo- 
rithms are based on column-wise updating of the object coordinate matrices in the ALS 
algorithms described above. This feature turns out to be very useful for fitting the 
DEDICOM model, the three-way DEDICOM model (3), and the IDIOSCAL model. 
The column-wise updating procedure used here is in no way limited to solving the 
specific problems mentioned above. It might successfully be used as a step in ALS 
algorithms for a wide variety of least squares minimization problems. 
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