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Millsap and Meredith (1988) have developed a generalization of principal components 
analysis for the simultaneous analysis of a number of variables observed in several populations 
or on several occasions. The algorithm they provide has some disadvantages. The present paper 
offers two alternating least squares algorithms for their method, suitable for small and large data 
sets, respectively. Lower and upper bounds are given for the loss function to be minimized in 
the Millsap and Meredith method. These can serve to indicate whether or not a global optimum 
for the simultaneous components analysis problem has been attained. 
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Principal components analysis (PCA) is a technique for constructing a number of 
components from a set of variables such that components are found that represent the 
original variables as well as possible (Meredith & Millsap, 1985). In ordinary PCA 
components are determined for variables that have been observed in a single popula- 
tion. When observations have been made in more than one population, then it is 
possible, of course, to analyze the observations separately for each of the populations. 
However, this will generally yield components for the different populations that are 
constructed in different ways. That is, components in each population are computed as 
weighted sums of the variable scores with different weights in each population. As a 
consequence, the components found across populations need not have much in com- 
mon. 

In order to find components that do have much in common, components can be 
constructed that are based on the same set of weights for the variables in all popula- 
tions. As in ordinary PCA, these components can be constructed such that they explain 
as much variance as possible in all populations simultaneously. We will denote the 
latter analysis by the heading "simultaneous components analysis" (SCA). For details 
on the rationale behind SCA and suggestions for interpreting results, as well as for an 
application of the method to empirical data we refer to Millsap and Meredith (1988). 

Millsap and Meredith (1988) have not only proposed a model for simultaneous 
components analysis. They also have offered an algorithm for fitting this model. How- 
ever, there is a problem in the algorithm they use to compute the components for SCA. 
Their algorithm for SCA is based on a conjugate gradient procedure which requires 
certain identification constraints on the weights. These constraints might be chosen 
such that the optimal weights can never be found by the procedure (Millsap & 
Meredith). Moreover, their algorithm has not been shown to converge monotonely. 
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The chief objective of the present paper is to describe two alternating least squares 
(ALS) algorithms for SCA. ALS algorithms converge monotonely by definition. The 
algorithms developed here require no identification constraints whatsoever. Moreover, 
lower and upper bounds are formulated for the loss function that is minimized in SCA. 
The upper bound is used for obtaining a rational start for the parameters that are 
computed iteratively. The lower bound can be used for providing an indication of the 
quality of the solution. 

An Alternating Least Squares Algorithm for SCA 

The SCA problem is to minimize the sum of the residual (or unexplained) variances 
over all populations. Let Xi denote the n i by m data matrix from population i, for n i 
objects having scores on m variables that are the same across k populations. Let matrix 
B denote the m by p component weight matrix for all k populations, and let Pi denote 
the m by p pattern matrix for population i. The pattern matrix gives the least squares 
weights to be assigned to the components for optimally reconstructing the original 
variables. Then XiBP ~ denotes the part of the data matrix Xi that is explained by the 
components (columns o f X i B  ) in population i. Therefore, in order to minimize the sum 
of the residual variances over all populations, the function 

k 

f(B, P1  . . . . .  Pk) = I Ix , -  xene;tl 2 
i = 1  

(1) 

has to be minimized over matrix B and the matrices P1 . . . . .  Pk. It will now be shown 
that an ALS algorithm can be developed in which first the matrices Pl . . . . .  Pk are 
updated while matrix B is fixed, then matrix B is updated while the matrices P1 . . . . .  
Pk are fixed. This procedure is repeated until the function value does not decrease 
considerably anymore. 

For i = 1 . . . . .  k, minimizing function f over matrix ei while matrix B is fixed is 
achieved by solving a multiple regression problem for Pi. It follows from linear regres- 
sion theory that, assuming that B'XIXiB is nonsingular, the update for Pi is 
X[XiB(B'X~XiB) -1 . In c a s e  B'X[XiB is singular, a generalized inverse should be used 
instead of the inverse. This does not essentially change the algorithm and theory de- 
veloped here. 

The problem of minimizing f o v e r  B while the matrices Pi a r e  fixed can be solved 
as follows. Function f consists of a sum of squared euclidean norms of residual matri- 
ces. Obviously, these norms do not change when the matrices are strung out as column- 
vectors containing the elements of the successive rows of the matrices. Therefore, 
function f can be written as 

k 

f (B ,  P1 . . . . .  Pk) = ~ IIVec Xi - Vec (XiBP;)tl z, (2) 
i = 1  

where Vec ( ) denotes a matrix strung out row-wise into a column-vector. From ele- 
mentary algebra it follows that Vec (XiB[PD = (Xi ® Pi) Vec B, where ® denotes the 
Kronecker product. Using this notation and putting the column-vectors for each of the 
k populations into one supervector yields 
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It/VecX    XIQ) I II 2. 
f ( B ,  P1 . . . . .  Pk) = ~ -- ! Vec B (3) 

II\VecXk/ \sk®eg 
It is now obvious that the problem of minimizing function f over B while the matrices 
P1 . . . .  , Pk  are fixed is a multiple regression problem, with Vec B containing the 
regression weights. Therefore, function f is minimized over B by choosing 

Vec B = ~ (Xi @ ei)'(Xi @ ei) Z (xi @ ei)' Vec Xi 
i = 1  i = 1  

( ) = ~ X[Xi (~ e[Pi V e c  X [ X i P i  • (4) 
i = 1  i = 1  

Subsequently, the update of matrix B is found by simply rewriting Vec B in matrix form. 
We have now described a solution to the problem of minimizing function f over 

matrix Pi while B is fixed, for i = 1 . . . . .  k, and the problem of minimizing f over B 
while the matrices P1 . . . . .  Pk are fixed. These k + 1 problems are all solved in the 
least squares sense. Therefore, alternating these procedures yields an alternating least 
squares algorithm for minimizing functionf. This algorithm decreases functionfmono- 
tonely, and because the function is bounded from below (by zero) the function must 
converge. 

This algorithm requires determining the inverse of a matrix of order mp by mp.  For 
small m and p there is no problem. However, if the number of variables and the number 
of components required increases, computational efficiency rapidly decreases, due to 
the necessity of inverting an increasingly large matrix. For this reason, an alternative 
algorithm is proposed, that requires the inverse of matrices of smaller order (m by m). 

Alternating Least Squares Algorithm for SCA on Large Numbers of Variables 

In order to handle cases where mp is large, that is, requiring too much computer 
time or storage, an algorithm has been developed that uses a different alternating least 
squares procedure. In this algorithm the matrices P1 . . . . .  Pk are updated as in the 
previous algorithm, but matrix B is updated column-wise. That is, each column of B is 

• updated successively, while the other columns are fixed. It should be noted that the 
solution for matrix B found during the process is not the best least squares solution for 
B. However, because all columns of B are optimal in the least squares sense, the 
function f is decreased nonetheless. This results in an alternating least squares algo- 
rithm consisting of k + p steps (p steps for matrix B instead of 1). 

The column-wise procedure for updating matrix B will be explained after rewriting 
functionf(B, P1 . . . . .  Pk) in order to isolate the columns of B. Let b h denote column 
h of matrix B, and Pih column h of matrix Pi,  for h = 1 . . . . .  p. Thenf(B, Pl . . . . .  Pk) 
can be rewritten as 

k 
f ( B ,  P1 . . . . .  Pk) = 

i = 1  lh II Xi -  E XibhP[h 
h=l 

(5) 
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Writef(bj) to denote that functionf(B, P1 . . . . .  Pk) is to be minimized over column bj 
only, while the other columns of B, and the matrices P1 . . . . .  Pk are fixed. Isolating 
the part containing bj in (5) yields 

k Ft II 2 f(bj) = ~ ( X i -  ~ Xibhp/h)-Xibjp b . 
i = t  h ~ j  

We define Xi(_j)  = ( X  i - 2h¢ jX ibhP[h  ) and simplify (6) as 

(6) 

k 

f ( b )  = llXi<-i)-Xibjpbll z 

i = l  

 Vecil( vec'l - )Xk  (XIQ:I)Xk O b r[ 2 7 
Minimizing expression (7) over hj is a simple linear regression problem. Clearly, the 
update for bj is 

bj = (Xi (~ po')'(Xi Q P0') (Xi (~ P0")' Vec Xi(-j) 
i = 1  1 

= ~ (X'Xi) (~ (Po'PiJ) ~ V e c  (X[Xi<-j)p(i)  
i = 1  i = 1  

= ~ pb.puX'Xi ~ X[Xi(-j)pij. (8) 
i = 1  i = 1  

It should be noted that this algorithm has the advantage that it does not use 
matrices of order mp by mp. The largest matrix that has to be inverted in this algorithm 
is an m by m matrix, which allows handling large numbers of variables. 

Lower and Upper Bounds to the SCA Loss Function 

In order to find lower and upper bounds to loss function (1), we reformulate (I). It 
is important to note that minimizing the least squares function (I) is equivalent to 
maximizing the trace of a matrix. That is, for i = 1 . . . . .  k, Pi can be expressed 
uniquely in terms of X i and B as 

Pi = X[XiB(B'X[XiB)- 1, (9) 

without loss of optimality. Therefore, minimizing (1) over B and P1 . . . .  Pk reduces to 
maximizing 

k 

g(B) =-tr ~] B'CZB(B'CiB) -1 
i = 1  

(10) 
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over B, where we have written C i for X[Xi. In fact, it is this form in which Millsap and 
Meredith (1988) have dealt with the SCA problem (unweighted case). 

An upper bound to the minimum o f f  is obtained as follows. According to ten Berge 
(1986, p. 56; Lemma 2), we have for every positive definite matrix Ci 

tr B'C~B(B'CiB)-I  >_ tr B'CiB(B'B)-I ,  (1 I) 

assuming that the inverses exist. Summing over i yields 

k 

g(B) = ~ tr B'CZiB(B'CiB)-l >_ tr B'CB(B 'B) - I ,  (12) 
i = 1  

where C is defined as C =- Y~ik=lCi . It readily follows from (12) that the maximum of g 
is larger than or equal to the maximum of tr B'CB(B'B) -1. This trace is maximal when 
B contains the first p eigenvectors of C, and the maximum is equal to the sum of the first 
p eigenvalues of C. Therefore, the sum of the first p eigenvalues of C is a lower bound 
to g(B). Because f(B) = tr C - g(B), the sum of the last m - p eigenvalues of C is an 
upper bound to the minimum of f,  where f iB)  denotes f iB,  P1 . . . . .  Pk) with (9) 
substituted for Pi,  i = 1 . . . .  k. 

The upper bound to the minimum o f f  derived above will be used to choose starting 
values for the weight matrix B. A matrix B for which this upper bound is attained is 
given by the matrix containing the first p eigenvectors of C. Choosing this matrix as a 
starting matrix for B limits the range of possible function values to be passed by the 
algorithms and decreases the liability to convergence to a local minimum. 

A lower bound to function f is readily obtained as follows. Obviously, 

P 

t r  B'C2iB(B'CiB)-I ~ ~ ~j(Ci) ' 
j = l  

where I~j(Ci) is the j-th eigenvalue of C i, and 

m 

t r  Ci : Z ftj(Ci). 
j = l  

Hence 

m 

[tr Ci - tr B'CZiB(B'CiB)-I] >_ ~ m(Ci).  
3 = p + l  

From this inequality it follows immediately that 

k m 

f (B)  >-- ~_~ ~_~ tzj(Ci). (13) 
i = l j = p + l  

Therefore, the right hand side of (13) is a lower bound to the loss function that is to be 
minimized in SCA. 

Comparing the lower bound expressed by (13) to the function value that one 
obtains by SCA in fact gives the difference between unexplained variance by SCA and 
unexplained variance by separate PCA analyses in all populations. This difference 
expresses to what extent the separate PCA's explain what is specific in each of the 
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populations. In order to see how large the difference is in each population it is instruc- 
tive to compute the amount of variance explained by SCA in each population, and to 
compare this amount with the amount of variance explained by separate PCA's in each 
population. 

Orthogonality and Rotation of the SCA Components 

In ordinary PCA the principal components are mutually orthogonal. The compo- 
nents resulting from SCA, on the other hand, are not orthogonal in any of the popula- 
tions. Obviously, a nonsingular transformation of the weight matrix can make the 
components orthogonal in one population, but generally not in all populations at the 
same time. Such a nonsingular transformation does not change the residuals and func- 
tion value, when the matrices P1 . . . . .  Pk are subjected to the inverse transformation. 
In order to prevent an asymmetric treatment of the populations one may choose the 
components orthogonal over the union of the k populations. That is, the weight matrix 
might be transformed such that component scores computed for all individuals (from all 
populations) are orthogonal. 

Performance and Application of the ALS Algorithms for SCA 

Both SCA algorithms based on ALS have been programmed on a CDC Cyber. 
When submitted to a series of 14 test data sets (of order 6 × 6), the two ALS algorithms 
reached the same function value, throughout. In all cases the column-wise algorithm 
needed considerably less computation time (mean computation time 1.58 sec.) than the 
global ALS algorithm that updates matrix B at once (mean computation time 5.23 sec). 
So apart from space limitations for the global algorithm, computation times seem to be 
another reason to prefer the column-wise algorithm. 

As an example we reanalyzed the data set that Millsap and Meredith (1988) used to 
illustrate their method. This data set consists of two samples of subjects tested on three 
occasions, thus yielding six independently measured data sets. On each occasion scores 
on six subtests have been computed for each subject. 

This data has been subjected to our SCA procedure. The weight matrix that has 
been found could be transformed by means of a nonsingular transformation in such a 
way that the weights reported by Millsap and Meredith (1988) were reproduced. As has 
been mentioned above, such a nonsingular transformation does not affect the function 
value. Therefore, our analysis has shown that the solution given by Millsap and 
Meredith (1988) for their data can just as well be obtained by an algorithm free of 
identification constraints. 

Discussion 

It has been explained above that the weight matrix cannot be determined uniquely. 
That is, any nonsingular transformation of the weight matrix yields the same residuals 
and function value when the pattern matrices are subjected to the inverse transforma- 
tion. Which transformation of the weight matrix is to be preferred remains yet to be 
investigated. 

In contrast to the solutions of ordinary PCA, the solutions of SCA for different 
numbers of dimensions are not nested. That is, the solution obtained for a certain 
number of components does not necessarily comprise all solutions of an analysis in 
which a smaller number of components is used. As a consequence, determining SCA 
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solutions with different dimensionalities requires separate computations for each of the 
dimensionalities. 

In the present paper we have given some information on the performance of the 
two ALS algorithms provided here. On the basis of this information one might conjec- 
ture that the column-wise algorithm is not only more useful for handling large data sets, 
but that the column-wise algorithm is to be preferred to the global algorithm for ana- 
lyzing data sets of any conceivable size. 

For both ALS algorithms presented here convergence to a stationary point is 
guaranteed. However, it cannot be guaranteed that the global minimum will be attained. 
Therefore, it is suggested to run more than one analysis on the same data set with 
different starting configurations for the weight matrix. 
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