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H I E R A R C H I C A L  R E L A T I O N S  AMONG T H R E E - W A Y  M E T H O D S  
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A number of methods for the analysis of three-way data are described and shown to be 
variants of principal components analysis (PCA) of the two-way supermatrix in which each 
two-way slice is "strung out"  into a column vector. The methods are shown to form a hierarchy 
such that each method is a constrained variant of its predecessor. A strategy is suggested to 
determine which of the methods yields the most useful description of a given three-way data set. 
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Introduction 

Three-way data are data that are classified in three ways. Longitudinal data, for  
example,  are three-way, because of repeated observations of  the same variables on the 
same objects. In this example the three ways pertain to three different classes of  entities 
(modes) so they can be called three-mode three-way data (Carroll & Arabie, 1980). In 
other  examples,  like similarities among stimuli as observed by different observers ,  the 
data are classified in three ways using only two modes (stimuli and observers) one of  
which is used twice. Such data are called two-mode three-way data. Related to three- 
way data are scores on different sets of  observation units (objects) on the same varia- 
bles, or conversely,  different sets of variables observed on the same objects. The latter 
will be referred to as multiple data sets. Multiple data sets cannot be considered three- 
way data because the three modes (sets, observation units and variables) are not fully 
crossed,  but it is often possible to derive three-way data from multiple data sets by 
aggregating over  one mode. For  instance, if observations on different sets of  objects are 
made on the same variables, a set of  cross-product matrices between the variables is a 
two-mode three-way data set with two of the ways referring to the same mode. The 
analysis of  multiple data sets is often performed using such derived two-mode three- 
way data. 

Before discussing methods for the analysis of  multiple data sets and three-way 
data, the notation used in the present paper will be described. For  ordinary three-way 
data, the three ways refer to three different modes,  where modes refer to objects,  
variables, and occasions. Of  course,  the modes could pertain to any other  classes of  
entities, but the classes mentioned are the most common.  The elements xij k denote  
entries in the three-way array, where i = 1, . . . ,  n is the object subscript,  j = 1, . . .  
, m is the variable subscript,  and k = I . . . . .  p is the occasion subscript. Matrix X/, 
is defined as the n by m matrix containing the elements of  the k-th frontal slice of  the 
three-way array (i.e., observations on the n objects and m variables at occasion k). For  
multiple data sets, only the case where observations are made on different sets of  
objects on the same variables is treated. Matrix Xk again contains observations on a set 
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of objects and variables at occasion k, but because different sets of objects with pos- 
sibly different numbers of objects are observed at different occasions, the matrices Xk 
do not necessarily have the same orders. If n k denotes the number of objects observed 
at occasion k, the order of matrix Xk is n k by m. For both three-way data and multiple 
data sets, the m by m matrix of sums of cross-products among the variables for occa- 
sion k (called the cross-product matrix) is defined as S k  --  X ' k X k .  Obviously, when Xk 
is centered columnwise, Sk is proportional to a covariance matrix; when the columns 
of X k are standardized, St, is proportional to a correlation matrix. 

A number of methods will be described for the analysis of three-way and multiple 
data sets, and since for the latter, only methods that are applied to derived three-way 
data will be treated, all methods considered here can be referred to as three-way. Of the 
many different methods for the analysis of three-way data, some treat the three modes 
symmetrically; others first provide an optimal representation of the entities of one 
mode, and base the representations of the entities of the other modes on this initial 
(incomplete) representation only. A special circumstance where this asymmetrical ap- 
proach is often applied occurs for three-way data where one mode is time; for example, 
we may have repeated measurement data or multiple data sets resulting from measure- 
ments of different objects at different occasions. One such asymmetrical approach for 
the analysis of time dependent data, STATIS (L'Hermier des Plantes, 1976), proceeds 
as follows. First, data are compared over occasions by a principal components analysis 
(PCA) of the matrices X 1 ,  . . .  , X p  strung out into column vectors (considered as 
variables) belonging to different occasions. This is called the inter analysis because it 
describes relations between (inter) occasions. Next, a more detailed analysis of the 
three-way data is performed describing relations among the objects and variables 
(called the intra analysis) associated with the most strongly related occasions (summa- 
rized in the first principal component over occasions). Symmetrical approaches, like 
CANDECOMP/PARAFAC (Carroll & Chang, 1970; Harshman, 1970) or TUCKALS 
(Kroonenberg & de Leeuw, 1980), pay equal attention to the analysis of inter and intra 
relations. Symmetrical approaches generally yield less optimal representations for the 
first mode but more optimal representations for the others. Finally, asymmetrical tech- 
niques like analyse factorielle multiple (AFM; Escofier & Pagrs, 1983) mainly stress the 
intra relations. 

In the present paper, an asymmetrical view is adopted, stressing interest in inter 
analysis. Methods are described in terms of their adequacy to represent relations be- 
tween occasions, thus focussing on stability versus change over occasions. Of course, 
by reordering the three-way data this focus can be shifted to a different mode. In PCA, 
such an objective is generally described as finding that subspace for a class of entities 
(in our case, occasions) that yields the best description of these entities, and which is 
generally quantified by minimizing the sum-of-squared Euclidean distances between the 
coordinates for the entities and their projections on that subspace. In the sequel, the 
objective of finding a subspace representation of the occasions will be replaced by the 
more general fitting of a model for the three-way data. Minimizing the sum-of-squared 
distances between observed coordinates and model coordinates will be referred to as 
fitting the data to a model in the least-squares sense. 

Apart from the distinction between symmetric and asymmetric approaches to fit- 
ting three-way data to a model, methods may differ in terms of which matrices are 
fitted. Some fit a model directly to the three-way data (direct fitting). Alternatively, 
there are methods that fit a model to derived three-way matrices (e.g., cross-product 
matrices), which may be referred to as fitting derived data. The term fitting derived data 
is preferred over the practically equivalent term indirect fitting (Harshman & Lundy, 
1984b, pp. 137-139) because it clarifies that fitting derived data is not restricted to fitting 
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the derived three-way matrices to the models which are analogously derived from the 
direct fitting models, but may also pertain to fitting the derived data to other three-way 
models. In the following, the direct and derived data fitting approaches will be treated 
separately. A number of three-way methods will be described in terms of fitting a model 
to three-way data, which may be a rather unusual way of presenting the method, but 
such a description will facilitate comparison. 

The main purpose of the present paper is to show that both the direct and derived 
data fitting methods can be related in a simple way because both types form a hierarchy. 
Explicitly, the methods discussed optimize the same criterion function, but those lower 
in the hierarchy optimize this function subject to more severe constraints than those 
higher in the hierarchy, which results in poorer model fits. On the other hand, the more 
severely constrained methods fit a simpler model, yielding an easier interpretation. On 
the basis of these hierarchical relations between the methods, a strategy is suggested to 
find which three-way method in the hierarchy yields the most useful representation of 
a given data set. Similar, but slightly different hierarchical relations have been de- 
scribed by Carroll and Chang (1970, p. 312), Carroll and Wish (1974, pp. 92-96), 
Kroonenberg (1983, pp. 49 if), Harshman and Lundy (1984b), and Lundy, Harshman, 
and Kruskal (1989, p. 128). The hierarchies given here differ from those given elsewhere 
in that they are based on describing all methods as a PCA of occasions. In addition, the 
incorporation of some French three-way methods and orthogonaUy constrained ver- 
sions of CANDECOMP/PARAFAC and INDSCAL in these hierarchies appears new. 

The main part of the paper consists of the description of a number of three-way 
methods, stressing technical aspects on which comparisons between the methods can 
be based. For more substantive and interpretational aspects, the reader is referred to 
the sources mentioned. The methods will be treated in a simplified way, and although 
some methods to be described allow for adaptation of the metrics for the objects and the 
variables, it will be assumed that the matrices defining the metric for variables and 
objects are all equal to the identity. This does not reduce generality because these 
metric matrices may be assumed built into the data matrices X 1 , . .  • ,  X p .  Also, the 
m a t r i c e s  X 1 . . . .  , X o may be centered in various ways before being submitted to a 
three-way analysis. In the descriptions of the three-way methods to be treated, such 
preprocessing procedures are assumed incorporated in the matrices X 1 ,  • • • ,  X p .  In the 
next two sections, the direct and derived data fitting methods will be described. Within 
each section, the order of description corresponds to the order in which the methods 
from a hierarchy from least to most restricted. 

Direct Fitting 

P C A  o f  a D e r i v e d  T w o - W a y  S u p e r m a t r i x  

The first method to be described is PCA of a derived two-way supermatrix (PCA- 
SUP). One of the steps in analyse triadique, a method proposed by Jaffrennou (1978), 
consists of a PCA over occasions. Thus, this step is described as PCA on the matrices 
X1 . . . .  , X p ,  strung out rowwise into p column vectors of order n m .  This PCA is 
equivalent to the method Tucker (1966) uses for finding an approximate solution for the 
occasion components in his three-mode factor analysis model. 

To provide the mathematical description of this method, it is useful to describe the 
model on which the representation for occasions is based. For PCA, this model for the 
three-way data is given by the projection of the variables Vec (X 1 ) . . . . .  Vec (Xp) on 
the subspace spanned by the principal components Vec (F1), . . .  , Vec ( F r )  , where 
Vec (.) denotes the vector containing all the elements of the matrix strung out rowwise 
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into a column vector .  All vectors  are of  order n m ,  corresponding to the p known n × 
m matr ices  X 1 ,  • • • ,  X p ,  and the r unknown n × m matr ices F 1 , . . . ,  F r ,  respect ively.  
The  project ion coordinates  for  the variables on the principal componen t s  are denoted 
by Ckl (also called loadings for the variables on the principal components ) ,  k = 
1 . . . .  , p ;  l = 1, . . .  , r. Hence ,  the PCA model for the th ree-way  data can be 
expressed  as 

-~o* = ~ f,:/tckt, 
/ = 1  

(1) 

w h e r e f i f l  denotes  the element  (i, j )  o f  F t .  PCA-SUP reduces  to fitting the PCA model  
in (1) to the observed  three-way data,  which implies minimizing the loss function 

P C A S U P ( C ,  F I ,  . . . ,  F r )  = 

nm( )2 
Z Z E x , : -  f,j,c , 

i = l  j = l  k = l  I = 1  

{I ~] Vec (Xk) - ckt Vec (FI )  
k = l  1 = 1  

(2) 

ove r  arbi trary matr ices  C and F1,  . . .  , F r ,  where  C is a p x r matrix o f  componen t  
loadings for  occasions ,  and F 1 . . . .  , F~ (n x m) contain componen t  coordinates  for  
the n m  object-variable  combinat ions.  

I f  the columns Vec (X1) . . . .  , Vec (Xp )  are collected in a matr ix  X (rim x p ) ,  and 
the columns Vec (F1),  • • • ,  Vec (Fr)  in a matrix F ( n m  x r) ,  the loss function can be 
rewrit ten as 

P C A S U P ( C ,  F ) =  f i x -  FC'II  z (3) 

Obviously,  minimizing (3) over  arbitrary matrices F and C of  appropr ia te  orders  is 
simply a PCA on the n m  × p matrix X. In PCA-SUP,  the columns of  this data  matrix 
refer  to occasions  and the rows to object-variable combinat ions.  

T U C K A L S - 3  

Tucker  (1966) proposed  a model for three-mode factor  analysis based  on reducing 
the dimensionali ty of  all three modes  to describe the information in the three-way data 
through a limited number  of  factors.  The three modes  are t reated symmetr ical ly .  Tuck-  
e r ' s  model can be given as 

r l  l'2 r 

:~iik = ~, ~ Y'. ai.bjocktg.v~, 
u = l  v = l  / = 1  

(4) 

where r l ,  r2,  and r are the (reduced) dimensionalit ies o f  the componen t  spaces  for  the 
three modes:  aiu,  i = I ,  . . .  , n, u = 1, . .  • , r 1, is the componen t  score of  object  i 
on the u-th objec t -component  (idealized object); bjv ,  j = 1, . . .  , rn, v = 1, . . .  , r2,  
is the loading of  va r i ab l e j  on the v-th var iable-component  (idealized variable);  ckt ,  k = 
1 , . . . ,  p ,  l = 1 . . . .  , r, is the loading of  occasion k on t h e / - t h  occas ion-component  
(idealized occasion),  and the three-way array G is the so-called core of  order  r l  × 
r 2 × r with e lements  guvl denoting relations be tween  idealized objects ,  idealized 
variables,  and idealized occasions.  Note  that C in (1) and C in (4) are not the same 
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matrices in general. The same symbol is used because in both cases C denotes a p x 
r matrix of  occasion coordinates on r dimensions. The model given by (4) is called the. 
Tucker-3 model because it specifies component scores for all three modes in reduced 
dimensionalities. 

Kroonenberg and de Leeuw (1980) have provided a method for the least squares 
fitting of the Tucker-3 model (called TUCKALS-3),  which minimizes the function 

n m p r 

TUCKALS3(A,  B,  G1 . . . . .  Gr,  C ) = ~  ~ ~'~ xij* - aiubjvcklg,,vt 
i=1 j = l  k = l  u = l  v = l  = 

II = E X k - A  ~ cklGIB'  (5) 
k = l  / = 1  

over (columnwise orthonormal) matrices A(n  x r l ) ,  B (m x r2) , and C(p  × r), and 
arbitrary matrices G1, • • • ,  Gr of order r l x r 2. The phrase columnwise orthonormal 
is put between parentheses because this constraint can be imposed on the matrices 
without loss of generality. That is, minimizing the TUCKALS-3 loss function yields the 
same minimum whether or not the matrices A, B, and C are constrained to be colum- 
nwise orthonormal. For computational and interpretational convenience, it seems use- 
ful to impose these inactive constraints. 

To align the description of TUCKALS-3 to that of PCA-SUP, the data matrices in 
(5) and their model description are strung out into column vectors and collected in one 
matrix of  order nm x p.  We then have 

TUCKALS3(A,  B, G, C) = Vec (X,) - Vec A CklGtB' 
k = l  /=1 

~] Vec (Xk) - ( A ® B )  Vec CklG l 
k = l  / = 1  

I[(Vec (X1)l... I V e c ( X p ) ) -  (A ® B )  

(Vec (Gl)l . . .  I Vec (Gr))C'II 2 

= I I x  - ( A  ® B)GC'I[ 2, ( 6 )  

where ® denotes the Kronecker product, matrix G ( r l r  2 × r) is defined__by G - (Vec 
(GI)I - . .  I Vec(Gr)),  and A(n  × r l ) ,  B(m × rE) , and C(p  × r), are columnwise 
orthonormal matrices. Minimizing (6) over A, B, C, and (7 is equivalent to minimizing 
the PCA-SUP loss function (3) over arbitrary C and over all matrices F that can be 
written as F = (A ® B)t~, for certain matrices A, B, and t~ of the orders mentioned. 
Obviously, the set of all such matrices F is a subset of ~nm×r. In PCA-SUP, function 
(3) is minimized over all matrices F in R nmxr. Because TUCKALS-3 minimizes the 
PCA-SUP loss function (3) over matrices F in a subset of  ~n,n × r, TUCKALS-3 can be 
seen as a constrained variant of  PCA on the nm × p matrix X. As a consequence,  
TUCKALS-3 never yields a better fit for X than does PCA-SUP. This description of 
TUCKALS-3 as a constrained variant of  PCA has been provided more or less implicitly 
by several authors (e.g., Weesie & Van Houwelingen, 1983). Moreover, Kroonenberg 
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and de Leeuw (1980) remark that reducing only one of the three modes in TUCKALS-3 
leads to a model that they call the Tucker-1 model, which in fact is equivalent to the 
model fitted by PCA-SUP. Obviously, reducing only the third mode in the Tucker-3 
model is equivalent to setting r 1 = n and r 2 = m, from which it follows that fitting the 
Tucker-3 model with rl < n and r2 < m is a constrained version of fitting the Tucker-1 
model. 

Considering fit, constrained PCA (TUCKALS-3) is less useful than unconstrained 
PCA because constrained PCA yields a poorer fit of the data than unconstrained PCA. 
Explaining the relations between objects and variables, however, TUCKALS-3 yields 
more useful information than unconstrained PCA because TUCKALS-3 provides co- 
ordinates for the objects and the variables, and these coordinates for the objects and the 
variables are linked to the matrix F, which gives coordinates for object-variable com- 
binations. In TUCKALS-3 these coordinates for objects and variables are given by 
matrices A and B. In addition, TUCKALS-3 provides measures that indicate the in- 
teraction-relations between different components for the objects and variables (given in 
the matrices G1 . . . . .  Gr). The latter, however, are difficult to interpret because they 
are relations between idealized objects and idealized variables considered in relation to 
the idealized occasions (indicated by the subscripts of the matrices G1, . . . ,  Gr). 

CANDECOMP/PARAFA C 

Carroll and Chang (1970) and Harshman (1970) independently developed a model 
that decomposes a three-way array in a very simple manner. Harshman called his 
model PARAFAC (PARAllel FACtor analysis), whereas Carroll and Chang christened 
their method CANDECOMP (CANonical DECOMPosition). The CANDECOMP/ 
PARAFAC model is based on a very simple rationale. The model expression for any 
entry in the three-way array X is 

kUk = ~ ailbjlCkl. 
l = l  

(7) 

The elements air, bfl, and ckt are component coordinates of the objects, variables, and 
occasions, respectively, on the/-th CANDECOMP/PARAFAC component. According 
to the model, there are only proportional differences with respect to each of the com- 
ponents, between subjects, variables and occasions. 

The interpretational difficulties in TUCKALS-3 concerning the matrices G 1 , . . . ,  
Gr are overcome by the CANDECOMP/PARAFAC method. For CANDECOMP/ 
PARAFAC, the matrices Gl,  . . . ,  Gr lose their function of relating components for 
different ways to each other, because the model does not allow for relations between 
components for different modes. In fact, CANDECOMP/PARAFAC provides only one 
set of components instead of three as does TUCKALS-3. These components can be 
interpreted as components for all modes simultaneously, which makes interpreting the 
results much easier than for a TUCKALS-3 analysis because in the latter, interpreta- 
tions of components for different modes can only be linked through the elements of Gt, 
l = 1, . . . ,  r. The interpretation of results from TUCKALS-3 is not merely compli- 
cated in itself, it is further complicated by the fact that the solutions of TUCKALS-3 
have rotational freedom. The CANDECOMP/PARAFAC model does not allow for 
rotation of its components and provides unique axes. 

The CANDECOMP/PARAFAC model is fitted to the data by minimizing 
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CP(A, B, A, , . . . ,  Ap)= Z ~'~ Z Xijk -- Z ailbytc~t 

i = I  j = l  k = l  / = 1  

p 

Z Ilxk - AAkB'II=, 
k = l  

(8) 

over  arbitrary matrices A, B, and A 1 , . . . ,  Ap, where matrices A and B are of  order  
n by r, and m by r,  respectively,  and A k is a diagonal matrix of order  r, with the 
elements of  the k-th row of  C on its diagonal (i.e., Akt -= Ckl, for k = 1 , . . . ,  p and 
1 =  1, . . . ,  r).  

To  relate CANDECOMP/PARAFAC to PCA-SUP, (8) is rewritten as 

P 

CP (A, B, C) = ~ II Vec (Xk) - Vec (AAkB')II 2 
k = l  

= ~ Vec (Xk) - Vec atbiA~/ 
k = l  / = 1  

= ~ Vec ( X k ) -  Vec (atbI)Akt 
k = l  / = l  

= Its- ( v e c  ( a lb l ) t  . . .  I Vec (arb; ) )C ' l l  2, (9) 

where X is the nm × p matrix defined above,  a t and bl denote t he / - t h  columns of A 
and B, respectively. Minimizing (9) is equivalent to minimizing the PCA-SUP loss 
function (3) over  C and F ,  subject to the constraint that F can be written as F = (Vec 
( a l b ' l ) I - - -  t Vec (arbr)) .  

In CANDECOMP/PARAFAC the constraints imposed on PCA-SUP are stronger 
than those for TUCKALS-3 ,  provided that the numbers of dimensions for the objects 
(r 1) and for the variables (r2) are larger than or equal to the number  of  dimensions for 
occasions.  This can be seen by verifying that CANDECOMP/PARAFAC can be con- 
sidered as TUCKALS-3  with the matrices G1 . . . . .  Gr constrained such that 9,~t = 
1 when u -- v = l, and 0 otherwise, provided that r 1 -> r, and r z -> r (see Carroll & 
Chang, 1970, p. 312). Of course,  the advantages of the stronger and simpler model fitted 
by CANDECOMP/PARAFAC are offset by the expected loss of  fit for this more heav- 
ily constrained version of  PCA-SUP. 

As in TUCKALS-3 ,  matrices A and B can be constrained to be columnwise or- 
thonormal.  However ,  in the CANDECOMP/PARAFAC model this cannot be done 
without loss of  generality; thus, by constraining A and/or B to be columnwise orthonor- 
mal, the fit for  the CANDECOMP/PARAFAC model will usually decrease.  The method 
that fits the CANDECOMP/PARAFAC model by minimizing (8) while A is orthogo- 
nally constrained will be called ORTCP-A; the variant in which B is orthogonally 
constrained, ORTCP-B; and the variant in which both A and B are orthogonally con- 
strained, ORTCP. Imposing orthogonality constraints on A and/or B is sometimes done 
to avoid degenerate CANDECOMP/PARAFAC solutions (see Harshman and Lundy,  
1984a; Lundy  et al., 1989). 

Obviously,  any variant of  CANDECOMP/PARAFAC that requires A or B to be 
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columnwise orthonormal is a variant of PCA-SUP that is even more constrained than 
CANDECOMP/PARAFAC. Therefore, ORTCP-A, ORTCP-B, and ORTCP are con- 
strained variants of CANDECOMP~ARAFAC, and ORTCP is a constrained variant of 
ORTCP-A and of ORTCP-B. In contrast to imposing orthogonality constraints on the 
matrices A and B, imposing orthogonality on C is not discussed here because the 
resulting method does not have hierarchical relations with the method to be discussed 
next, SUMPCA. 

SUMPCA 
There seems to be no name for the method that consists of simply performing a 

PCA on the sum of matrices X1, • • •, Xp, which can be described mathematically as 
minimizing the function 

SUMPCA(A, B, A) = Xk --AAB' 
k = l  

= tr 

t f 

(k~=lXk) (k~= Xk) - 2 t r  (k~=lXk) AAB' 

+ tr AAB'BAA' 

P P 

= c + p  ~ trXi, X k - 2  ~ trX'kAAB' 
k = l  k = l  

+ tr AAB'BAA' 

P 

= p  Ilxk -A(p-IA)B'[I 2+ c, (10) 
k = l  

over the columnwise orthonormal matrices A(n × r) and B(rn × r), and the diagonal 
matrix A of order r (c is a constant). Matrix A contains object coordinates and B 
contains variable loadings. At the minimum of SUMPCA, matrix A will contain the r 
singular values that correspond to the r principal components of Z~'Xk. 

From (10), SUMPCA can be described as fitting the three-way data to a model 
given by 

r 

3cij, = ~ p-lailbjlAl, (11) 
l = l  

where A l is the/-th element of A. SUMPCA can be related to PCA-SUP, in an admit- 
tedly forced way, by describing it as minimizing the function 

P 

SUMPCA*(A, B, C ) =  ~ l[Xk -AA*B'II 2 
k = l  

: IIvec  Vec 
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= I I s -  (Wec (alb;) I - . - I  Vec (arb'))C'l[  2, (12) 

w h e r e X ( n m  × p) is defined as above,  A* = p -1 A, and Ckl ~ )t~ (see (10)). Minimizing 
(12) reduces to minimizing the PCA-SUP loss function (3) over  C and F,  subject to the 
constraints that C has equal rows, and F can be written as F = (Vec (alh' l) l  • • • t Vec 
(arbr))  for  certain columnwise orthonormal matrices A and B. Clearly, SUMPCA is a 
variant of  PCA-SUP that is even more constrained than ORTCP. 

It is somewhat forced to consider SUMPCA as a constrained variant of  PCA over  
occasions because its constraints have caused any resemblance with PCA over  occa- 
sions to disappear. Whereas all previously treated constrained variants of  PCA-SUP 
had at least the matrix of  loadings for occasions (C) in common with unconstrained 
PCA-SUP,  even this correspondence is lost for SUMPCA. Nevertheless ,  it is treated 
here because it is an interesting extreme of  a series of  variants of  PCA. It provides the 
simplest model for PCA over  occasions because it prescribes all occasions to have the 
same loadings (on each of the components) .  This is of  interest when data are (approx- 
imately) stable over  occasions. 

Fitting Derived Data 

A number of methods for fitting derived data will be described in this section. As 
mentioned, fitting derived data implies the use of  a set of derived matrices, such as S 1, 
• . . ,  Sp,  instead of  fitting the three-way data consisting of  X1, • • •, Xp .  Which derived 
matrices are fitted depends on the presence of more than one set of  objects (and only 
one set of  variables) or more than one set of variables (and only one set of  objects). In 
the first case, the derived data fitting approach is applied to matrices of cross-products  
between variables (often covariances).  In the second, the matrices of  scalar products  
between objects are fitted. Given one set of objects and one set of variables, both 
approaches can be applied. Technically, the second case is analogous to the first, and 
therefore,  in the description of  the methods given here, one set of variables is assumed 
and the cross-product matrices S I, • • . ,  Sp will be fitted to their model descriptions. 

In the derived data fitting methods treated, the models for the matrices S I . . . . .  Sp 
are essentially the same as those for X1 . . . .  , Xp. Therefore,  the description in the 
present  section is analogous to that of  the preceding. The only important difference 
between the models for  Sk and those for X k is that because Sk is symmetric,  the model 
is also chosen to be symmetric by replacing any matrix A in the preceding section by 
B in the present (i.e., the loadings for variables as row entries (in A) must be equal to 
the loadings for variables as column entries (in B)). This replacement  of  B by A in fact  
constrains the models. For  SUMPCA, this constraint is inactive because when applied 
to symmetrical  matrices S l . . . .  , Sp,  minimizing the loss function over  A and B 
automatically yields equal matrices A and B. However ,  for  TUCKALS-3  and CAN- 
DECOMP/PARAFAC,  this is not necessarily the case. For  CANDECOMP/PARAFAC 
this was pointed out by ten Berge and Kiers (1991) who give examples with solutions 
where A and B differ. 

STATIS  

STATIS was developed by L 'Hermie r  des Plantes (1976), based on Escoufier  
(1973), as a method for performing PCA on a set of matrices as if the matrices were 
variables. STATIS is defined by a three-step procedure.  The first consists of performing 
PCA on a set of matrices, considered as variables, which are usually the cross-product  
matrices S l,  • • • ,  Sp.  This first step will be called STATIS-1, to denote it as a separate 
method not necessarily followed by the next two steps of  STATIS.  
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STATIS-1 is in fact PCA-SUP applied to cross-product matrices, and can be de- 
scribed as minimizing the sum of squared differences between the coordinates of the 
occasions (scores sijk) and the coordinates of their projection on a low-dimensional 
subspace (~ijk = Y [ f i j t c k t ) .  This reduces to minimizing 

rl STATIS1 (F, C ) =  Vec ( S k ) -  Ckt Vec (Ft) , (13) 
k = l  1 = 1  

over arbitrary matrices C ( p  × r),  and F1 . . . . .  F r (rn × m ) .  Note that Ft ,  l = 
1 . . . .  , r, is symmetric, which is convenient because Ft is a matrix where the row and 
column entities are the same. Vec (Ft) is the l-th principal component of the variables 
Vec ($1), . . .  , Vec ( S p ) ,  and C contains the loadings ckt of the occasions on the 
components. 

The PCA-SUP model Yci# = E f f i j t c k t  has been described by Kroonenberg and de 
Leeuw (1980) as the Tucker-1 model because it is a variant of the Tucker-3 model in 
which only one mode is reduced. Because STATIS-I fits the symmetric variant of the 
PCA-SUP model, STATIS-1 is also equivalent to fitting the Tucker-1 model. Kroonen- 
berg and de Leeuw also mention that fitting the Tucker-I model to similarity matrices 
(i.e., STATIS-1) "is identical to the procedure developed by Tucker & Messick (1963, 
pp. 336 if)" (pp. 78-79). This statement lacks some precision, however, because al- 
though the procedures are similar indeed, the Tucker and Messick approach is applied 
to vectors containing the dissimilari t ies  (instead of similarities) among the n(n  - 1)/2 
di f ferent  stimulus pairs (instead of all n 2 possible pairs, including double pairs, and 
pairs containing the same stimulus), and would therefore yield different results. 

Like PCA-SUP, STATIS-1 can be described as PCA on the m 2 x p matrix S 
containing the column vectors Vec (Sl) . . . .  , Vec (Sp ) .  If F is the m 2 × r matrix 
containing the column vectors Vec (Fl)  . . . .  , Vec (Fr ) ,  then (13) can be rewritten 

STATIS1 (F, C ) =  IIs- Fc ' l l  2 (14) 

The second step of STATIS consists of defining the compromise matrix as the first 
principal component (Fl)  of the matrices $1,  • • • ,  Sp .  That is, assuming that a k gives 
the first principal component weight for matrix S k , the compromise is given by F 1 = 
E ~ a k S  k = E f f a k X ' k X  k. The third step, which will be called STATIS-3, consists of 
PCA on the compromise matrix defined in the second step. To make this step compa- 
rable to the methods described above, it will be phrased in terms of minimizing a loss 
function. It is readily verified that PCA on matrix F~ is equivalent to minimizing 

I1 II 2 STATIS3(B, A) = ~. a k S k  -- B A B '  
k = l  

P 

k = l  

I I ~ k s k  -- B ( p - ~ A ) B ' I I  z + c, (15 )  

over diagonal matrices A, and B ( m  × r) subject to B ' B  = Ip (in (15), c does not depend 
on B and A). At the minimum of the STATIS-3 function, B will contain the compromise 
component-scores for the objects, and A will contain the corresponding eigenvalues. 
Procedures for interpreting these and other parts of the solution of a STATIS analysis 
are given by, for instance, Gla~on (1981), Lavit (1985, 1988), and LechevaUier (1987), 
but will not be treated here. 



HENK A.L. KIERS 4 5 9  

Three-Mode  Scal ing 

The Tucker-3 model has been described for the matrices X I  . . . . .  X p ,  but obvi- 
ously, the model can also be formulated and slightly adapted for the Sk matrices 
(Tucker, 1972). Fitting this model is called three-mode scaling (see Kroonenberg, 1983, 
pp. 52-53), and reduces to the minimization of the function 

 tlS  cO II 16 
over matrices B ( m  x r ' ) ,  G1,  . . .  , G r (r'  x r ' ) ,  and C ( p  x r), where B and C can 
be constrained to be column-wise orthonormal. In analogy to the case of directly fitting 
the TUCKALS-3 model, three-mode scaling can be described as a constrained version 
of STATIS-1 on the matrices S 1 . . . .  , Sp .  To show this, the loss function (16) is 
rewritten as 

TUCKALS3*(B, G ~ , . . . ,  Gp ,  C ) =  l l (Vec (S~)t . . .  I Vec ( S p ) ) -  ( B ® B )  

( V e c ( G l ) l . . . I  Vec (Gr))C'I[ 2. (17) 

Clearly, minimizing (17) over arbitrary matrices B ( m  × r'), G1, . . - ,  Gr (r' × r ' ) ,  and 
C ( p  × r) is equivalent to minimizing 2 the STATIS-1 loss function (14) over C and F, 
subject to the constraint that F ( m  x r) can be written as F = (B ® B)(Vec 
(G 1 ) I • • • I Vec (Gr) ) ,  for certain matrices B and G 1 . . . .  , Gr of appropriate orders. In 
this way, three-mode scaling can be seen as constrained STATIS-1, where the matrix 
C yields loadings for the occasions. 

I N D S C A L  

When the CANDECOMP~ARAFAC model is applied to S l . . . .  , Sp and slightly 
modified, we find the INDSCAL model for scalar products as described by Carroll and 
Chang (1970). Fitting the INDSCAL model reduces to minimizing 

p 

INDSCAL (B,  A1,  . . .  , Ap)  = ~ IISk - BAI, B'II 2, (18) 
k = l  

overB and the diagonal matrices A l , . . . ,  At, ,  where Akt =-- Ckl. Usually, Ak/is required 
to be nonnegative. It is of interest to mention here that INDSCAL is not only a method 
for derived data fitting, but also for indirectly fitting the ORTCP-A model. The method 
for indirectly fitting the unconstrained CANDECOMP/PARAFAC model, PARA- 
FAC-2 (Harshman, 1972) is not treated because it cannot be seen as a constrained 
variant of STATIS-1 over occasions. 

INDSCAL can be described in terms of PCA on an m 2 × p data matrix S in a 
similar way as CANDECOMP/PARAFAC (see (9)) by rewriting (18) as 

INDSCAL (B, C) = IIS - (Vec ( b l b l ) l . . .  I Vec (b,b'))C'll  2. (19) 

Obviously, minimizing (19) over arbitrary B and (nonnegative) C is equivalent to min- 
imizing the STATIS-I loss function (14) over C and F, subject to the constraint that 
F = (Vec (b I b'l )1 . - .  I Vec (brbr)) for some m x r matrix B (and C is nonnegative). 
In the same way as CANDECOMP/PARAFAC is a constrained variant of TUCK- 
ALS-3 provided that r I -> r and r2 >- r, INDSCAL is a constrained version of three- 
mode scaling provided that r' -> r. 
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The method that minimizes (18) subject to the constraint B ' B  = 1 r is called 
orthogonally constrained INDSCAL, denoted by the acronym INDORT. Obviously, 
the INDORT method is a constrained variant of STATIS-1. 

S U M P C A  f o r  Cross -Produc t  Matr ices  

Levin (1966) developed a method for the simultaneous factor analysis of multiple 
data sets based on PCA of the sum of cross-product matrices $ t ,  • . . ,  Sp .  His method 
is equivalent to one of the stages in Tucker's three-mode principal components analysis 
(Tucker, 1966). As has been shown by Jaffrennou (1978), this in turn is equivalent to 
Jaffrennou's method for analyzing a three-mode array. Finally, Gower's principal co- 
ordinates analysis (Gower, 1966) can be seen to be equivalent to this method as well, 
when one considers the cross-product matrices as similarity matrices. 

The method independently invented by Levin, Tucker, Jaffrennou, and Gower will 
be called SUMPCA for cross-product matrices, or simply SUMPCAc, if it cannot be 
confused with the method described earlier. It can be described mathematically as 
minimizing the function 

II I[ SUMPCAc(B, A) = S~, - BAB' 
k = l  

P. 

= p ~  
k = l  

I l s k  - B ( p - I A ) B ' I I  2 + c, (20) 

over B ( m  × r), subject to B ' B  = I t ,  and over the diagonal matrix A (in (20), c does not 
depend on B and A). Clearly, SUMPCA for cross-product matrices is SUMPCA applied 
to the matrices $1 . . . .  , Sp instead of to X I ,  • .  • , X p .  

Comparison of (15) and (20) shows that STATIS-3 is a weighted variant of 
SUMPCA c. When all weights a I . . . .  , Otp in STATIS-3 are (taken) equal, SUMPCA c 
and STATIS-3 coincide. The weighting by ak in STATIS-3 can also be considered a 
form of data preprocessing, for example, by applying this weighting to Xk (then using 
the square root of ak) .  Viewed in this way, the methods are equivalent but imply a 
different preprocessing. 

SUMPCA for cross-product matrices can be described as a constrained variant of 
STATIS-1 in a similar, somewhat forced, way as SUMPCA has been described as a 
constrained variant of PCA-SUP. SUMPCA for cross-product matrices can be de- 
scribed as minimizing 

P 

SUMPCA~(B, n*) = ~ I l ak  - BA*B'II 2, (21) 
k = l  

over B and A*, where A* --- p -1 A, and subject to the constraint that B is columnwise 
orthonormal. Defining ckl ---- A T, we have analogously to (12), 

SUMPCA~:(B, A*) = ItS - (Vec (blbl)l  . . .  I Vec (brbr))C'll 2. (22) 

Obviously, SUMPCA c is a constrained variant of PCA, in that it minimizes (14) over 
F subject to the constraint that F can be written as F = (Vec  (bl b't)[ • . .  I Vec (brbr)), 
for a certain columnwise orthonormal matrix B, like INDORT, and over C subject to 
the constraint that all rows of C are equal. Clearly, SUMPCAc is a constrained variant 
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of STATIS-1 that is even more heavily constrained than INDORT; when in INDORT 
C is constrained to be nonnegative, SUMPCAc is a constrained version of INDORT 
only if in SUMPCA c the elements of C are nonnegative also, as is always the case 
when $1, . . .  , Sp are positive semi-definite. Again, the additional constraint corre- 
sponds to a simplification of the interpretation of the analysis of the matrices $1, • • -,  
Sp. The results imply that all occasions have the same loadings (on every component), 
and the components do not differentially weight occasions. Therefore, this analysis 
only provides an adequate description of the relations between the occasions when 
there are minimal changes in score patterns over occasions. 

Analyse Factorielle Multiple 

Escofier and Pages (1983, 1984) developed analyse factorielle multiple (AFM) for 
the simultaneous analysis of a number of data sets with the same objects and different 
variables as an alternative to generalized canonical analysis (Carroll, 1968), among 
others. However, AFM can just as well be used when there is only one set of variables 
and different sets of objects (Escofier, personal communication, September 30, 1987). 
AFM is treated only in the latter case even though this may not be the most familiar 
description. It should be noted, however, that objects and variables can be inter- 
changed everywhere. 

AFM consists of two steps. In the first, the data sets X1, • • •,  Xp are normalized 
such that all their first principal components explain the same amount of inertia. This 
reduces to using/3kS k instead of Sk, where/3k is the inverse of the largest eigenvalue 
of Sk. The second step consists of a (two-way) PCA on the total of all sets of objects, 
considered as one set of objects with scores on the set of variables. This is equivalent 
to SUMPCA c when the S k matrices are replaced by ~kSk. Thus, like STATIS-3, AFM 
can be seen as a weighted variant of SUMPCA c. Again, the particular choice of 
weights (ilk) is a form of data preprocessing, and is a strategy that might be useful in 
other three-way methods as well. 

Hierarchical Relations Between Three-Way Methods 

Two sets of three-way methods have been described. The first consists of methods 
for directly fitting the three-way data; the second set parallels the first but is meant for 
fitting derived data. For both sets it has been shown that all methods are constrained 
versions of a PCA over occasions, and are treated in such an order that each method 
is a constrained version of its predecessor. Thus, for the direct fitting methods, we have 
the following hierarchy: SUMPCA is a constrained version of ORTCP; ORTCP is a 
constrained version of ORTCP-A and ORTCP-B; ORTCP-A and ORTCP-B are con- 
strained versions of CANDECOMP/PARAFAC; CANDECOMP/PARAFAC is a con- 
strained version of TUCKALS-3 when r 1 -> r and r 2 >- r; and TUCKALS-3 is a 
constrained version of PCA-SUP. 

In Table 1 an overview is given of the direct fitting methods that form a hierarchy 
as described. For all of these methods, there is an indication of which coordinate and 
parameter sets form the solution. Analogously, for the derived data fitting methods we 
have: SUMPCA for cross-products is a constrained version of INDORT; INDORT is a 
constrained version of INDSCAL; INDSCAL is a constrained version of three-mode 
scaling provided r' >- r, and three-mode scaling is a constrained version of STATIS-1. 
Because STATIS-3 and AFM can be seen as SUMPCA c applied to weighted matrices 
S l . . . .  , Sp, they are not mentioned separately in the hierarchy given in Table 2. The 
weights in STATIS-3 and AFM might be incorporated in the matrices S 1 . . . .  , Sp 
themselves, so that the weighting is considered part of the preprocessing of the three- 
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TABLE 1 

Hierarchy of  Direct Fitting Methods 

method occasion object /variable object variable 
loadings combinations coordinates coordinates 

PCA-SUP C F - 

TUCKALS-3 C ( A ~ B )~ A B 

CANDECOMP/PARAFAC C (alb{..arbr) A B 

ORTCP-A\ , , 
ORTCP-BJ C (alb r .a rbr )  A(col-orth?) B(col-orth?) 

ORTCP C (alb{..arbr) A(col-orth) B(col-orth) 

SUMPCA lc'  (alb{..arbr) A(col-orth) B(col-orth) 

way data. This preprocessing might thus be used in all other methods in the hierarchy 
as well. It should be noted, however, that using the STATIS-3 weights for the matrices 
S l, • • •,  Sp, and subsequently performing a variant of PCA on these matrices strung 
out as vectors, reduces to a kind of double PCA, the usefulness of which is not imme- 
diately clear. The AFM weights, on the other hand, do seem useful in all variants of 
PCA. 

TABLE 2 

Hierarchy of Derived Data Fitting Methods 

method occasion variable/variable variable 
loadings combinations coordinates 

STATIS-1 C F 

th ree -mode  C ( B ~ B ) G  B 
scal  i ng  

INDSCAL C (b~b~..b,.b,.') B 

INDORT C (btb {..brbr' ) B(col-orth) 
SUMPCA f o r  c ross -  lc '  (blb~..brb r') B(col-orth) 
p r o d u c t  mat r ices  
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Suggestions for an Eclectic Approach to Three-Way Analysis 

It has been shown that a number of well-known three-way methods can be ordered 
in a hierarchy. The higher the position a method takes, the better the fit of the model 
for PCA over occasions. Simultaneously, the higher the position, the more parameters 
are involved, and hence, the more complex the model is (i.e., in terms of interpretation, 
not necessarily computationally). The latter statement may not be obvious for the 
methods that take the highest positions in the hierarchies. It may seem that PCA-SUP 
and STATIS-1 in fact use less parameters than TUCKALS-3 and three-mode scaling, 
respectively. However, recalling that PCA-SUP can be seen as a version of TUCK- 
ALS-3 with r I = n and r 2 = m, it is clear that PCA-SUP fits a model with more 
parameters than TUCKALS-3 with r 1 < n and r 2 < rn. Analogously, STATIS-1 fits a 
more complex model than three-mode scaling. A similar description for the hierarchy 
for the derived data fitting methods could be given. In the sequel, only methods for 
direct fitting will be treated while the same reasoning could be made for methods for 
fitting derived data. 

To perform PCA over occasions, one might choose from all of the methods above, 
and usually it is not at all clear which of these methods should be selected to meet the 
representational detail demanded by the researcher. No general statement as to which 
method is the bes t  can be made, and therefore, a researcher has no tool to determine 
which method would be most useful for the analysis of a given data set. However, the 
hierarchies described above might be used to find empirically which method is the most 
use fu l  for data description by means of a PCA over occasions. Obviously, the bes t  PCA 
over occasions is provided by PCA-SUP. For the purpose of solution interpretation, 
however, this method is a bit poor because it yields a rather complicated (and not at all 
parsimonious) representation for the objects and variables. Therefore, the following 
strategy is proposed: 

We start by determining the number of principal components needed to describe 
the relations between occasions. Therefore, a PCA-SUP is performed, and the smallest 
dimensionality that yields a useful description is determined in the usual way. Note that 
the dimensionality may not be completely clear, and several dimensionalities might 
have to be tried. This analysis also provides the fit value for the best approximation of 
the matrices XI,  • • • , X p  for the chosen number of dimensions. The latter helps to 
establish how well a constrained variant of PCA-SUP approximates the best possible fit 
for the present dimensionality. 

Having thus chosen the dimensionality of the solution, the data are then fitted by 
methods that have a simpler model and interpretation. We start with the simplest (and 
most restricted) model, SUMPCA, because if SUMPCA yields an adequate fit of the 
matrices X I  . . . .  , X p ,  this model would be the most favored. Because in SUMPCA all 
occasions get the same loadings on each dimension, one would then conclude that the 
data are quite stable over occasions. When the model does not fit adequately, the next 
method in the hierarchy may be applied, ORTCP. It will always yield a fit that is at least 
as good as the fit by means of SUMPCA, but the representation of the data is a little less 
simple because it provides di f ferent  loadings for the occasions on each dimension. The 
A and B matrices are required to be orthonormal. If this model does not fit well, its 
restrictions may be weakened by dropping one or both of the orthogonality restrictions 
(and thus introducing a little more complexity into the model). The resulting methods 
are ORTCP-A, ORTCP-B, or CANDECOMP/PARAFAC. 

When CANDECOMP/PARAFAC still does not adequately fit the matrices X1, 
. • • ,  X p ,  there is only one more method, TUCKALS-3, available that might provide a 
solution consisting of coordinates for objects and variables that is linked to the principal 
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components for occasions, albeit in a more complex way. When the TUCKALS-3 fit is 
not adequate either, one should either be satisfied with the global description provided 
by PCA-SUP with combined representations for objects and variables linked to each of 
the occasion components, or choose different dimensionality for the occasion compo- 
nents. 

The sketch for how a researcher might empirically determine which method yields 
the most useful description of one's three-way data favors no method in general, and 
depending on the data at hand, a choice must be made from a set of methods. Therefore, 
this strategy may be referred to as "eclectic".  

Example of Direct Fitting 

To illustrate the hierarchical relations between the direct fitting methods, and the 
eclectic approach described above, an empirical data set was analyzed by all the meth- 
ods presented for direct fitting. Because the methods have amply been illustrated in the 
literature, only very little attention is paid to the interpretation of the solutions. The 
data, taken from Doledec and Chessel (1987), see also Sabatier (1987, p. 160), consist 
of a number of  measurements of pollution at several locations of  the river Meaudret in 
France. At six stations along the river (1 is most down-river; 6 most up-river), mea- 
surements were carried out at four occasions (February, June, August, and November) 
on ten biochemical variables: temperature in °C, flux: liters of water passing the station 
per second; acidity (PH); conductivity in/zOhm/s (Cond.); dissolved oxygen in % (Oz); 
biochemical oxygen demand in mg~ O z (BOD); chemical oxygen demand in rag/1 02 
(COD); quantity of NH 4 in mg/l (NH4); quantity of NO3 in mg/1 (NO3); and quantity of 
PO 4 in mg/l (PO4). 

Before analyzing the data, the variables were centered and normalized across 
stations and occasions to a sum-of-squares of one to maintain differences in means over 
occasions. This option has been advocated by Kroonenberg (1989). The data have been 
analyzed earlier by Thioulouse and Chessel (1987) using analyse triadique, and by 
Kroonenberg (1989) using TUCKALS-3, but in both analyses one variable and one 
station were deleted. The complete data set is analyzed here by the methods of PCA- 
SUP, TUCKALS-3, CANDECOMP/PARAFAC, ORTCP-A, ORTCP-B, ORTCP, and 
SUMPCA, for three different dimensionalities (r = 1, 2, and 3, respectively). In 
TUCKALS-3, rl and r 2 were set equal to r. The amount of inertia explained was 
computed, defined by the total sum-of-squares of the model estimates. It is readily 
verified that for each of the methods, the amount of explained inertia equals the total 
sum-of-squares of the data (which is I0) minus the value of the loss function at its 
minimum. Table 3 provides the explained inertia for each of the methods for each of the 
dimensionalities. Note that when r = 1, the explained inertia is equal for the methods 
TUCKALS-3 through ORTCP because then these methods are equivalent. Table 3 
clearly illustrates the hierarchical relations among the direct fitting methods. Note that 
no such relations hold among ORTCP-A and ORTCP-B; these methods have been 
ordered on the basis of the observed function values. 

Applying the eclectic approach sketched above to the present data set, one might 
arrive at the following line of conclusions. First, the dimensionality is determined. On 
the basis of the amounts of  explained inertia of the PCA-SUP solution alone, one would 
tend to choose the two- or three-dimensional solution. First, the two-dimensional so- 
lutions are compared. At the bottom of the hierarchy, SUMPCA explained only 39.5% 
of the inertia, which by no means approximates that of PCA-SUP. Hence, it seems 
worthwhile to ascend the hierarchy and see whether a considerably better fit might be 
attained by one of the other methods. There is a large increase in explained inertia while 
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TABLE 3 

Explained Inertia of Meaudret Data for r--1, 2, and 3 

465 

method explained inert ia  (in percentages) 

r = l  r = 2  r = 3  

PCA-SUP 57.4 75.3 89.9 

TUCKALS-3 ~ 62.5 77.6 

CANDECOMP/PARAFAC t 62.5 73.5 

ORTCP-A 44.4 61.8 69.1 

ORTCP-B 55.5 67.1 

ORTCP 55.0 63.0 

SUMPCA 33.4 39.5 43.5 

ascending from SUMPCA to ORTCP, hardly no increase when going from ORTCP to 
ORTCP-B, but ORTCP-A is considerably better again. The subsequent methods, CAN- 
DECOMP/PARAFAC and TUCKALS-3, hardly improve over this solution which ex- 
plains almost 62% of the inertia. Therefore, the ORTCP-A solution seems the best 
compromise between parsimony and fit for r = 2. This solution will be described in a 
little more detail. 

Table 4 gives the (normalized) coordinates for the variables and stations, and the 
loadings for the occasions, on the first dimension only. These coordinates are ordered 
with respect to their values to facilitate interpretation. Clearly, the first dimension 
contrasts variables measuring "health" of the water versus pollutedness as expressed 
by the variables conductivity, PO4, NH4, BOD, and COD, From the coordinates of the 
stations on this dimension, it is clear that the ordering of the stations along the river is 
almost reproduced exactly: the stations are ordered from least polluted (Station 6) to 
most polluted (Station 2), where only Station 1 is located incorrectly in this ordering. 
This can be explained by considering that the more down-river a station is situated, the 
more pollution one can expect to be collected. Station 1 (the most down-river) takes an 
unexpected position in this order (i.e., station 1 seems to be very little polluted, al- 
though it is the most down-river). An explanation might be based on the peculiar 
position this station has. It is situated just behind a point where two tributaries have 
joined the mainstream. The first axis shows that all through the year there is a gradual 
increase in pollutedness of the river from February until November. During the winter 
months pollutedness seems to decrease rapidly. 

The second dimension, for which the results are given in Table 5, is much more 
difficult to interpret. It seems to focus on details that would require a deeper insight in 
the material under study. It has been verified, however, that this second dimension 
does not merely reflect peculiarities due to the orthogonality constraint on mode A (the 
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TABLE 4 

Coordinates  for  Variables and Stations, and Loa~lings fo r  Occasions 

for  the first  ORTCP-A Dimension 

var iables  s tat ions occasions 

02 - .34  

PH - .28 

NO3 - .20 

Flux - .07 

Temp. .00 

Cond. .32 

PO 4 .33 

Nil 4 .41 

BOD .42 

COD .46 

no.6 -.31 

no.5 -.31 

no.1 - .24  

no.4 - .22  

no.3 .00 

no.2 .83 

February  .32 

June .63 

August .97 

November  1.63 

stations) because the second CANDECOMP/PARAFAC dimension yields practically 
the same results. On the other hand, the interpretational difficulties of the second 
dimension might also indicate that a two-dimensional solution is in fact too limited and 
that the second dimension captures several aspects that had better be described by 
more dimensions. In that case, a three-dimensional solution is called for. Upon inspec- 
tion of the amounts of explained inertia for r = 3 as reported in Table 3, the TUCK- 
ALS-3 solution seems most useful because it explains considerably more of the inertia 
than does CANDECOMP/PARAFAC. The interpretation of this solution is beyond the 
scope of the present paper. 

Discussion 

Methods for direct and for derived data fitting have been described. Although 
fitting derived data can be used both on multiple data sets and on three-way data, the 
use of these methods for ordinary three-way data is not favored. To describe a given 
three-way data set as well as possible, a useful model should be provided and fitted to 
the three-way data themselves, not to their cross-product matrices because fitting de- 
rived data typically does not fit the original data as well as direct fitting methods do. In 
this respect, PCA methods for three-way data differ from PCA for two-way data where 
fitting derived data (of a correlation or covariance matrix) yields the same solution as 
direct fitting of (standardized or deviation score) data. 

Other methods might exist that could be placed in the hierarchies mentioned. 
Recently, Lundy et al. (1989) have proposed a method PFCORE as an extension of 
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TABLE 5 

Coordinates for  Variables and Stations, and Loadings for  Occasions 

for  the second ORTCP-A Dimension 

variables stat ions occasions 

PH .42 

Flux .33 

O 2 .31 

COD -.17 

Temp. -.18 

BOD - .26  

NO 3 - ,33  

NI-I 4 - .33  

Cond. -.34 

PO 4 -.40 

no.3 .66 

no.4 .57 

no.2 .35 

no.5 .29 

no.6 .16 

no.1 .11 

February .32 

June .60 

November -.55 

August -1.15 

CANDECOMP/PARAFAC to be used when this method yields so-called degenerate 
solutions. Degenerate solutions refer to solutions with very large positive or negative 
correlations between some columns of the matrices A, B, and/or C. To avoid these 
degenerate solutions, PFCORE imposes orthogonality constraints on at least one of the 
modes (assume A or B), and next computes a TUCKALS-3 core matrix that is the least 
squares approximation of the core for matrices A, B, and C obtained from ORTCP-A 
(or -B). In this way PFCORE combines the unique axes property of CANDECOMP/ 
PARAFAC with the use of a core matrix as in TUCKALS-3. The fit value for these 
parameters can be shown to lie between those of TUCKALS-3 and ORTCP-A (or -B). 
Because it is not clear how the PFCORE loss function value compares to that of 
CANDECOMP/PARAFAC, it should be located partly outside the hierarchy for direct 
fitting methods, in branches parallel to the main hierarchy. In our eclectic approach 
such branches should be followed only in cases where CANDECOMP/PARAFAC 
turns out to yield a degenerate solution. 

Orthogonality constraints are an essential part of the PFCORE method when it is 
used for explaining and avoiding degenerate solutions. However, application of 
PFCORE need not be limited to these situations, and as a consequence orthogonality 
constraints need not be imposed. Thus, one may compute a TUCKALS-3 core based 
on the A, B, and C matrices from the unconstrained CANDECOMP/PARAFAC so- 
lution. The loss function for the resulting method lies precisely between those of 
TUCKALS-3 and CANDECOMP/PARAFAC. Hence, this method can be placed in the 
hierarchy for direct fitting methods in between TUCKALS-3 and CANDECOMP/ 
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PARAFAC, with an interpretation that is as simple as that of the latter complemented 
by information on its misfit. 

It has been mentioned that the hierarchical relations between TUCKALS-3 and 
CANDECOMP/PARAFAC only hold when r 1 --- r and r 2 >- r. It is not a priori clear 
whether for certain r l < r and/or r2 < r, TUCKALS-3 still yields a better fit than 
CANDECOMP/PARAFAC. This need not affect our eclectic approach, since this is 
based on first applying CANDECOMP/PARAFAC, and only if this solution is not 
useful does one determine the TUCKALS-3 solution with r t --- r and r 2 -> r, which 
never yields a poorer fit. If this solution is useful, one may decrease the values for rl 
and r 2 as long as this does not seriously affect the fit. However, these values of r I and 
r2 should not be decreased so much that the TUCKALS-3 fit becomes equal or even 
poorer than that of CANDECOMP/PARAFAC because then the latter has a better fit 
and only r components to interpret while the former has r + r I + r2 components and 
their relations to interpret. Obviously, similar arguments hold for the comparison of 
three-mode scaling and INDSCAL. 

There are other methods for direct fitting that have not been treated here, for 
example, LONGI (Pontier, Pernin, & Pages, 1985). LONGI has been designed for a 
purpose that differs from the methods described here, which perform PCA on occasions 
considered as variables, and are directed at determining which patterns are common 
over occasions. LONGI, on the other hand, is directed toward a description that 
emphasizes the differences between occasions or objects. 

Three-way data often consist of repeated measurements at different occasions. The 
three-way methods presented in no way use the ordering of the occasions in the time. 
The ordering of the occasions is used as an interpretative feature after the analysis, as 
is done in the example. The relations between the occasions are explored rather than 
imposed. This can be done sensibly only if the data are preprocessed so differences 
over occasions are maintained, as discussed for instance by Bentler (1973), and men- 
tioned by Kroonenberg (1989) in discussing the analysis of  the Meaudret data by 
Thioulouse and Chessel (1987). 

Instead of analyzing repeated measurement data by focusing on a PCA of the 
occasions, a useful alternative might be to focus on a PCA of the variables. For the 
symmetric methods CANDECOMP/PARAFAC and TUCKALS-3 this shift of focus 
does not make any difference, but the results of PCA-SUP might be more revealing: 
Matrix C would give a description of the variables, and F would give a joint represen- 
tation of the objects and time points, which when plotted would provide trajectories for 
the individuals displaying (global) trends over time. At the other extreme of the hier- 
archy, this focus on PCA of variables would change SUMPCA into a probably less 
interesting method analyzing the means over the variables. 

A similar eclectic procedure to choose from a (different) set of methods has been 
proposed by Lundy et al. (1989). They do not merely suggest that comparing fit values 
may help one to choose from different methods, but also give a "yardstick against 
which to compare the increases in fit" (p. 129), based on a comparison with synthetic 
data arrays. A similar procedure might be useful here as well, but has not yet been 
tested. 
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