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Several methods have been developed for the analysis of a mixture of qualitative and 
quantitative variables, and one, called PCAMIX, includes ordinary principal component anal- 
ysis (PCA) and multiple correspondence analysis (MCA) as special cases. The present paper 
proposes several techniques for simple structure rotation of a PCAMIX solution based on the 
rotation of component scores and indicates how these can be viewed as generalizations of the 
simple structure methods for PCA. In addition, a recently developed technique for the analysis 
of mixtures of qualitative and quantitative variables, called INDOMIX, is shown to construct 
component scores (without rotational freedom) maximizing the quartimax criterion over all 
possible sets of component scores. A numerical example is used to illustrate the implication that 
when used for qualitative variables, INDOMIX provides axes that discriminate between the 
observation units better than do those generated from MCA. 

Key words: multiple correspondence analysis, INDSCAL, varimax, quartimax, orthomax, 
discrimination between objects. 

Introduction 

In principal componen t  analysis (PCA), as well as in factor  analysis,  the solution 
for the loadings of  variables on components  is determined only up to a rotation, and 
therefore,  the loading matrix is typically rotated to simple structure. Kaiser  (1958) has 
discussed a number  of  simple structure criteria, all defined in te rms of  optimal  pat terns  
of  small and large loadings (in an absolute sense). For  a detailed discussion of  the 
rationale behind simple structure rotation, the reader  is referred to Ha rman  (1976). 

In PCA, the rotation of  a loading matrix is paralleled by a rotation of  the compo-  
nent score matrix. Explicitly, if Z denotes the n x m matrix of  s tandardized scores of  
n observat ion  units (objects) on m variables,  and X (n x r) the matrix with s tandardized 
componen t  scores on r components ,  then the m x r loading matr ix  is given by A = 
n - I z ' x .  Thus,  rotating the component  scores matrix X by an orthogonal  matr ix  T 
implies that  the loadings corresponding to these rotated componen t  scores are given by  
A T = n -1Z 'XT ,  and the loadings corresponding to the rotated componen t  scores  can be 
obtained by  applying the same rotation to the original loadings. 

Strictly speaking, ordinary PCA can be applied only to quanti tat ive variables;  
however ,  as an analogue for  the multivariate analysis o f  a set o f  qualitative variables,  
multiple cor respondence  analysis (MCA) is one of  the best  known al ternatives (see, 
e.g. ,  Tenenhaus  & Young,  1985) that also constructs  coordinates  for  the observa t ion  
units (objects) in a low-dimensional space.  When each qualitative variable is repre-  
sented by means  of  a set o f  binary indicator variables specifying for  each  ca tegory  
whether  an object  belongs to it (1) or  not (0), MCA can be formulated as a PCA of  the 
total set o f  these indicator variables with respect  to some predefined metrics.  Thus ,  jus t  
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as in PCA, object coordinates can be seen as component scores determined up to a 
rotation only. 

Apart from techniques for the analysis of solely qualitative or quantitative varia- 
bles, several methods have been proposed for the analysis of mixtures. One type has 
been proposed independently by several authors (de Leeuw, 1973; de Leeuw & van 
Rijckevorsel, 1980; Escofier, 1979; Nishisato, 1980, pp. 103-I07), and although the 
suggestions differ slightly in the way in which quantitative variables are transformed, 
essentially the same approach is used to handle qualitative variables. Of these, the one 
method of concern here is equivalent to the approach of de Leeuw and van Rijckevorsel 
(1980) and will be called PCAMIX. Explicitly, PCAMIX can be described as follows: 
Suppose n is the number of objects and m is the number of variables; if thej-th variable 
is qualitative, let Gj denote the n x mj indicator matrix for thej-th variable, where mj 
is the number of categories of variable j. Dj is defined as the diagonal matrix of fre- 
quencies of the categories of this variable, and the n × n matrix J as the centering 
operator J = (I - l l ' /n) ,  where 1 is the vector of order n with unit elements. Given this 
notation, a so-called quantification matrix for a qualitative variable is defined as 

sj = J a j D f l a j J .  (1) 

When the j-th variable is quantitative and the column vector zj contains the standard- 
ized scores of the n objects on variable j,  a quantification matrix is defined by 

Sj = n- lz j z j .  (2) 

In terms of (1) and (2), PCAMIX can be described as the method that maximizes 

m 

fiX) = ~ tr X'S jX ,  (3) 
j = l  

over X, subject to X'X  = nit, where X (n × r) contains (standardized) object coordi- 
nates (or component scores). The solution is given by the first r eigenvectors of ILjSj. 
Clearly, given only qualitative variables, the quantification matrices are all of the form 
in (1), and the PCAMIX solution for the object coordinates given by the eigenvectors 
of ~jJGjDf- 1G)J, which is the well-known solution for MCA. Alternatively, given only 
quantitative variables, the quantification matrices are all of the form in (2) and the 
PCAMIX solution for the component scores is given by the eigenvectors of n -  1Zjzjz~i, 
which is equivalent to the well-known PCA solution. 

From (3), it is evident that rotating X does not change the function value since for 
any T for which T' T = TT' = It, f(XT) = fiX). The choice of such a rotation may depend 
on many different criteria, but it is standard practice in PCAMIX as well as in the 
special case of MCA, to use as components those that successively account for the 
maximum inertia, given by the terms x}ZjSjxt, where x t denotes the/-th column of X, 
l = 1 . . . .  , r. As is the case in ordinary PCA, this may yield components that are 
difficult to interpret. The present paper describes techniques for rotation of the com- 
ponent scores such that certain criteria possibly leading to a good interpretation of the 
components are optimized. 

In PCAMIX the relation between the loadings and component scores known for 
PCA, A = n - lZ 'X ,  does not generally hold, when A contains loadings (defined in some 
way) for the qualitative and quantitative variables on the axes. As a consequence, 
rotating the component scores is no longer equivalent to rotating the loading matrix, 
and if one wishes to rotate the component scores so the loadings of the variables on the 
components have optimal simple structure, the standard simple structure rotation tech- 
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niques cannot be used. The techniques to be developed are for the rotation of the 
c o m p o n e n t  s cores  so the l oad ings  of the variables have optimal simple structure, and 
will be considered generalizations of orthogonal simple structure rotations for PCA. 

Recently, Kiers (1988, 1989c, pp. 61-70) proposed an alternative to PCAMIX, 
denoted as "INDORT for a mixture of qualitative and quantitative variables", or 
briefly, INDOMIX. Like PCAMIX, this method yields object coordinates, but does so 
by optimizing a criterion that differs from that of PCAMIX. We will show that IN- 
DOMIX optimizes the quartimax criterion, one of the simple structure criteria to be 
described shortly. INDOMIX and the PCAMIX quartimax rotation technique differ, 
however, since the latter optimizes the quartimax criterion only over rotations of the 
PCAMIX component scores, while INDOMIX optimizes the quartimax criterion over 
all possible sets of component scores. Therefore, the INDOMIX solution always attains 
a quartimax value at least as high as that attained by the quartimax rotation of the 
PCAMIX component scores. This explains why the loadings of the variables obtained 
by INDOMIX are more clearly clustered than those of PCAMIX, and when applied to 
sets of solely qualitative variables, INDOMIX tends to yield solutions with clusters of 
objects that, per axis, are more clearly separated and denser than those possibly found 
in an MCA solution. Apart from giving a formal explanation of this phenomenon, it will 
also be discussed by means of an illustrative data set. 

A Definition of Squared Loadings in PCAMIX 

Like PCA, PCAMIX finds component scores for objects on several components. 
In ordinary PCA, the loadings of variables on components are given by the correlations 
between the variables and the components. In PCAMIX it is possible to define loadings 
for the quantitative variables in the same way; explicitly, the loading of the quantitative 
variable j on component l can be given by ajt = n-lz~xl, the product-moment corre- 
lation between variablej and component l, where x t is the/-th column of the component 
score matrix X. For qualitative variables, however, the product-moment correlation 
cannot be used, and instead, another coefficient has to be chosen to express the cor- 
relation between a qualitative variable and a (quantitative) component. One such index 
is the discrimination measure (Girl, 1990) defined as the contribution of a component to 
the inertia of a variable that is accounted for, and formally by Cjl ~ n - l x ' l S j X l ,  with Sj  
defined as in (1). This measure can be interpreted as the squared correlation between 
variable j when it is optimally quantified and component l (Girl, 1990, p. 96), or alter- 
natively, as the well-known correlation ratio r/2. In both interpretations, the measure cjt 
is considered a squared correlation, and thus, the squared loading of variable j on 
component I. 

To have the same notation for qualitative and quantitative variables, cjt is defined 
for a quantitative variable as the squared loading of variablej on component t: c jr = a jr 2 
= n - 2 ( z ) x / )  2 = n - l x ) ( n - l z j z ) ) x l  . Using the definition of Sj  in (I) and (2), cjl = 
n - l x } S j x t  for both qualitative and quantitative variables. It is of interest to note that 
PCAMIX can be formulated as the method that maximizes nXj tCj l ,  with cjt defined as 
above, over X subject to X'X = n l  r . 

Simple Structure Rotations for PCA 

Kaiser (1958) described several simple structure criteria, as well as procedures to 
optimize these criteria over orthogonai rotations of the loading matrix, included in the 
orthomax family of orthogonal rotations (Clarkson & Jennrich, 1988; Crawford & Fer- 
guson, 1970; Jennrich, 1970) to be discussed here. The orthomax family of simple 
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structure rotations for PCA can be described as the set of techniques maximizing the 
orthomax criterion (denoted by the acronym ORMAX) expressible in terms of the 
squared loadings of the variables on the axes. If the loading for variable j on axis l is 
given by aft, j = 1 . . . .  , m,  l = 1 . . . . .  r, the ORMAX criterion is given by 

O R M A X =  ~ ~ a j 4 " l - - Z l X  1 a~ (4) 
j = l  l=1  ~ = j = t  

Although in principle 3' can be any scalar, we assume 0 --< 3' -< 1. The lower value of 
3' = 0 yields the quartimax criterion (QMAX) 

m r 

QMAX = Z Z a4 jl, 
j = l l = l  

originally proposed by Ferguson (1954); the higher value y = 1 yields the varimax 
criterion (VMAX) proposed by Kaiser (1958): 

V AX ) = -- __ ajl 
j = l  /=1  m l = l  j = l  

Techniques for optimizing these criteria have been discussed by various authors, 
but only the method for maximizing the orthomax criterion given by ten Berge, Knol, 
and Kiers (1988) is mentioned here. I fA is the m × r matrix of component loadings, a) 
thej-th row of A, and Ej = ( ~ A ' A  - maja)), fo r j  = 1 , . . . ,  m, with 6 defined so 3' = 
6(2 - ~), the problem of maximizing the orthomax function is equivalent to simulta- 
neously diagonalizing the set of Ej matrices in the least squares sense, or equivalently, 
maximizing Xj tr(Diag T'EjT)  2 over orthonormal matrices T. For simultaneously diag- 
onalizing a set of matrices, an algorithm proposed by de Leeuw and Pruzansky (1978) 
can be used. 

Simple Structure Rotations for PCAMIX 

As noted earlier, PCAMIX rotated component scores do not correspond to a 
loading matrix that can be found by rotating the original loading matrix, and thus it does 
not suffice to express the simple structure criteria for ordinary PCA in terms of the 
original loadings and a rotation matrix. Instead, these criteria will be expressed in terms 
of the squared loadings of the variables on the rotated components. 

The orthomax criterion given in (4) can be expressed in terms of the squared 
2 by cjt for all j and h PCAMIX loadings by replacing ajl 

m r  3" ( ~ ) 2  

ORMAX X X c~ = - --  cst (5) 
j = l  1=1 m l = l  j = l  

Substituting n-1  x )S j x t  for Cjl in (5), gives 

for(X)  =- nZORMAX = ~ (x/Sjxt) 2 - 3' ~ x[Sjx t  
j = l  I = l  ITI l= l  j = l  
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(xlS~x~)2 _ V y,  (x;zjSjxt)2. 
j = l  l = l  m l = l  

(6) 

The problem of maximizing for(FT) over orthonormal matrices T, where F (n x r) is the 
unrotated PCAMIX component score matrix, will be translated as the simultaneous 
diagonalization of a set of matrices, as in ten Berge et al. (1988) for the orthomax 
rotation of a PCA loading matrix. Letting the/-th column of T be tl, 

m r  
for(FT) = ~ ~ (t~F'SjFtl) 2 - y (Y~jt[F'SjFtl) 2 

j = l  l = l  m l = l  

=E 
j = l  / = 1  

( t i (F 'S jF-  8m-lEkF'SkF)tl)  2, (7) 

with 8 chosen so 28 - 8 2 = y. For 8 = y = 1, the right-hand side of (7) follows since 
the variance can be written as an average squared deviation from the mean. If 8 ¢ 1, 
the second equality in (7) follows from 

m r 

E E  
j = l l = l  

( t [ (F 'S jF-  8m-lEkF'SkF)tl)  2 

(t[F'SjFtl) 2 + ~, 
j = l  / = 1  j = l  / = 1  

(tiSm -l•kF' SkFtl)2 

m 

- 2  ~, ~ (tIF'SjFtt)(tISm-lY.kF'SkFtt) 
j = l  l = l  

m r  

~ (t[F'SjFt[) 2 + rn 82m-2(t[EkF'SkFtl) 2 
j = l  / = 1  / = t  

- 2  8rn -1 ~ (tIEjF'SjFtt)(tI~kF'SkFtl) 
I = l  

m r r r 

= ~ ~ (t[F'SjFtt)2+ 82m -1 ~, (t;EjF'SjFtl) 2 -  2 8m -1 ~ (t[EjF'SjFtt) 2 
j = l  l = l  l = l  / = 1  

m 

j = l  / = 1  

(t[F'SjFtl) 2 + m -i ( 8  2 - -  28) ~ (t[EjF'SjFtl) 2. 
/ = l  

Because F contains the PCAMIX solution, the columns of F are the first r eigen- 
vectors of YTSj, normalized to sums of squares of n; hence, F'~jSjF = nA, where A is 
the diagonal matrix with the first r eigenvalues of EjSj on its diagonal. Using this result, 
(7) can be rewritten as 
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m r 

for (FT)  = ~ ,  ~] ( t [ ( F ' S j F -  6 m - l n A ) t l )  2 (8) 
j = l / = l  

If ~ is defined by 

ff.j =- ( m F ' S j F -  6 n A ) ,  

for j = 1, . . .  , m, (8) can be rewritten as 

for (FT)  = m 

m 

-2 E tr T 'E j  T(Diag T'/~j T). 
j = l  

As ten Berge (1984, p. 348) has shown, maximizing this function over orthonormal 
matrices T is equivalent to the problem of simultaneously diagonalizing the set of 
matrices El . . . .  , E m in the least squares sense, and thus, the algorithm proposed by 
de Leeuw and Pruzansky (1978) can be used, or any other that simultaneously diago- 
nalizes a set of symmetric matrices. 

As mentioned above, ten Berge et al. (1988) have shown that the problem of 
maximizing the orthomax function over orthogonal rotations of a PCA loading matrix 
is equivalent to the problem of simultaneously diagonalizing the matrices Ej = ( r A ' A  - 
maja)), where A is the m x r PCA loading matrix, and a) is the j-th row of A. In the 
special case where PCAMIX is applied to a set of solely quantitative variables, the 
procedure for the orthomax rotation of the PCAMIX solution is equivalent to the 
simultaneous diagonalization of a set of/~: matrices proportional to the E, matrices. 
Explicitly, when all variables are quantitative, Sj = n -1ZjZ) and/~j = ( m n  - ' l F ' z j z ' F  - 
6nA), where A is the diagonal matrix with eigenvalues of n - I E j z j z ) .  Thus, a~ = n - t z ) F ,  

1 , , , , , 2 , , 1 , and ran -  F zjzjF = mnajaj .  Because A A = ~,jajaj = n -  F ~, jz jz jF = n -  F ~, jSjF = 
A, matrix Ej can be written as Ej = (mna ja )  - 8nA 'A)  = - n E j ,  which shows that the 
orthomax rotation procedure for ordinary PCA is a special case of the orthomax rota- 
tion procedure for PCAMIX. 

Because the quartimax criterion and the varimax criterion are special case of the 
orthomax criterion, we immediately have a quartimax and varimax procedure for ro- 
tating the PCAMIX solution by setting y to 0 or 1, respectively. The/~  matrices do not 
explicitly contain y, but depend on y because ~ depends on y. For the quartimax 
procedure, we obtain y = 0 when 6 = 0 (or 6 = 2, which is less convenient and therefore 
ignored); for the varimax procedure, taking ~ = 1, we have y = 1. 

INDOMIX 

Although PCAMIX is the best-known method for the analysis of a set of qualitative 
and quantitative variables, Kiers (1988, 1989c) has recently suggested INDOMIX as an 
alternative approach for the analysis of such sets of variables, as a compromise be- 
tween PCAMIX and another method for the analysis of mixtures of qualitative and 
quantitative variables developed by Saporta (1976). The latter strategy analyzes mix- 
tures of qualitative and quantitative variables by means of an ordinary PCA on certain 
correlation measures between the variables, and yields loadings for the variables (op- 
timally representing the variables) without giving component scores for the objects. 
The compromise is directed at optimally representing the variables (as Saporta's 
method does) while at the same time providing component scores for the objects (as 
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PCAMIX does), and as shown below, optimizes the quartimax criterion over all pos- 
sible sets of component scores. 

INDOMIX is based on applying a constrained variant of INDSCAL (Carroll & 
Chang, 1970) to the quantification matrices Sj  defined above; explicitly, we minimize 
the INDSCAL loss function 

m 

w j )  = l iar  - xwjx' l l  2, 
j = l  

over X (n × r) and diagonal matrices W l ,  • • • , Win, where X is constrained such that 
X ' X  = nlr (see Kiers, 1989c; also see Kiers, 1989a, for details on an efficient INDOMIX 
algorithm for large data sets). For arbitrary but fixed X, the Wj matrices that minimize 
o(X,  Wj)  are given by Wj = Diag(X 'S jX) ;  thus, minimizing o(X,  Wj)  reduces to maxi- 
mizing 

m ~ rg/ r 

g(X) = tr (Diag X ' S j X )  2 "~ Z (X'lSjXl) 2 = n2  Z Z Cj~, (9) 
j = l  j =  1 1=1 j = l  1=1 

subject to X ' X  = nI  r (see Kiers, 1989b). Since maximizing g(X) is equivalent to max- 
imizing the quartimax function, INDOMIX maximizes the quartimax function over 
component score matrices X, subject to X ' X  = nI  r. INDOMIX differs from quartimax 
rotat ion in that the latter maximizes the quartimax function over rotations T of the 
component score matrix F. The class of matrices X over which INDOMIX maximizes 
the quartimax function consists not only of all rotated versions F T  of F, but also all 
matrices X with columns outside the column-space of F for which X ' X  = n l  r. Thus, the 
maximum of g(X) is always at least as large as the maximum of g(FT) since INDOMIX 
maximizes the quartimax criterion over all possible component score matrices, yielding 
a quartimax value at least as high as the maximum possible quartimax value obtained 
by rotation of the PCAMIX solution. In turn, INDOMIX yields solutions that have a 
simpler structure than the optimally rotated PCAMIX solutions when simple structure 
is considered in the quartimax sense. 

The quartimax criterion was one of the first analytic simple structure criteria, and 
is not the most prevalent in ordinary PCA. As Kaiser 0958) pointed out, the quartimax 
criterion tends to give a solution with one general component, quite contrary to the 
purpose of achieving maximum simple structure. This tendency does not seem to be 
present in INDOMIX, however, and in practice it is found that even though INDOMIX 
maximizes only the quartimax function, INDOMIX tends to provide solutions with a 
high amount of simple structure in terms of the varimax criterion as well. Nevertheless, 
it does seem useful to also discuss methods that maximize the orthomax criterion for 
any 3' over all possible sets of component scores, in the same way as INDOMIX 
maximizes the quartimax criterion. 

The orthomax function (6) can be rewritten as 

r r 

for(X)  = ~ ,  ( x [ S j x t )  2 -  - -  y ~ ( x [ E j S j x l )  2 
m 

j = l  / = 1  / = !  

m r 

= ~ ~ (xi(Sj - 6 m - l ~ , k S k ) x t )  2, 
j = l  1=1 

(10) 
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with 8 again chosen so 28 - 82 = 3'. The last step in the derivation of (10) is based on 
a reasoning similar to that used in deriving (8). Clearly, choosing 8 = 0 (or 8 = 2), we 
have for(X) = g(X). However, (10) can be defined for any other 3+ between 0 and I 
(corresponding to 8 = I -+- (I - 3')1/2), and in particular, the varimax function (3" = 1) 
is maximized over all component score matrices X by maximizing 

h ( X )  = 
j=1 t=l  

(x~(Sj - m-lY~Sk)xl) 2, 

over X subject to X ' X  = n l  r. Thus, this method applies orthogonally constrained 
INDSCAL to the matrices (Sj - m - l X k S k ) ,  which are centered with respect to the 
mean of these matrices. 

Ten Berge et al. (1988) have provided an algorithm for maximizing function (9) that 
converges monotonically if the Sj are positive semidefinite. Their algorithm might also 
be used for maximizing (10), with Sj replaced by (Sj - 8 m - 1 ~ k S k ) ,  but monotone 
convergence is no longer guaranteed. An algorithm for which monotone convergence is 
guaranteed has been described by Kiers (1990), and is a slightly adapted version of the 
ten Berge et al. algorithm. 

Given the above discussion, it is apparent that several methods are now available 
for finding components for mixtures of qualitative and quantitative variables maximiz- 
ing the orthomax simple structure criteria (for the loadings of the variables on the 
components). One approach is to perform PCAMIX first and then rotate the component 
scores to optimize the simple structure criteria over orthogonal rotations of the 
PCAMIX component scores. Sets of components are found that account best for the 
inertia as measured in PCAMIX, and among these components, that set yielding the 
greatest simple structure value. The other approach, the generalization of INDOMIX 
maximizing for(X) in (10), seeks components that have the best possible simple struc- 
ture at the cost of a possible loss (which tends to be rather small in practice) in 
explained inertia. 

We might note briefly that generalized INDOMIX (maximizing (10)) applied to a 
set of solely quantitative variables provides an alternative to ordinary PCA. This 
method will provide orthomax values at least as high as the orthomax values of rotated 
PCA loadings, and therefore, when the main objective is to find components with a 
clear simple structure in terms of any of the orthomax criteria, and maximally account- 
ing for the inertia is less important, generalized INDOMIX might be a useful alternative 
to ordinary PCA. Although the explained inertia is no longer maximized by generalized 
INDOMIX, it cannot be very small either, as can be seen in the case of varimax (8 = 
1): Function h(X) is proportional to the sum of column-variances of the elements of C, 
m - l ~ , j E l ( C j l  - -  m - l ~ , k C k l )  2 , which cannot be maximal if the explained inertia, 
n~.,flcfl, is very small. 

Relations Between INDOMIX and Simple Structure Rotations of PCAMIX 

The generalization of INDOMIX to maximize the orthomax function over all pos- 
sible component score matrices always yields an orthomax function value at least as 
high as the one obtained by the orthomax rotation of the PCAMIX solution. As we 
indicate in Results 1 to 3 below, INDOMIX also yields values of other orthomax criteria 
at least as high as the ones attained by optimally rotated PCAMIX solutions. As no- 
tation, the component score matrix of the INDOMIX solution is denoted as X 1, the 
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unrotated PCAMIX solution as F, and the optimally rotated PCAMIX solution as F T  o 
where T o is the rotation matrix optimizing the simple structure criterion at hand. 

Result  1. ORMAX(XI) >- ORMAX(F). 

Result  2. VMAX(XI) > VMAX(F). 

Result  3. ORMAX(XI) -> ORMAX(FT 0) = ORMAX(F), if 

(a) r = I, or 

(b) m = 2, and both variables are qualitative (i.e., when PCAMIX is equivalent to 
correspondence analysis). 

Proo f  1. The ORMAX function (5) can be rewritten as 

ORMAX(X) = n-2g(X) - n-2 Z k(X), 
m 

where 0 -< 3' - 1, and k(X) is defined as 

k(X) = ~ (x iXjS jx j )  2 
I = l  

If an eigendecomposition of ZjSj  is given by EjSj = K A K ' ,  then k(X) can be rewritten 
a s  

k(X) = ~ ( x i K A K ' x t )  2. 
l = l  

From the Cauchy-Schwarz inequality, it follows that 

( x [ K A K ' x l )  2 = [ (x[KAK') (Xl )  ] x <_ n (X l 'KA  2K'Xl),  

and 

• (x[KAK'._Xl) 2 <- n ~ (x[KA2K'Xl) = n tr X ' K A Z K ' X .  
I = 1  I = l  

(11) 

k(X) = ~ ( x I K A K ' x t )  2 <- nZtr A 2. 
l = l  

(I2) 

Inequality (12) provides an upper bound to k(X) that is attained by choosing X as 
n 1/2K r, the matrix with the r standardized eigenvectors of EjSj belonging to the first r 
eigenvalues of EjSj. This is precisely the unrotated PCAMIX solution F for the com- 

It is readily verified (ten Berge, 1983) that the right-hand side in (I 1) is smaller than or 
equal to the sum of the first r values in n 2A2 If A r denotes the diagonal matrix with the 
first r values in A, then 
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ponent  scores.  Therefore ,  k(F) _> k(X1), and because 3' >- 0, -yk(Xl )  >- -3&(F). 
Combining this result with g(Xl) -> g(F) proves ORMAX(XI) -> ORMAX(F).  [ ]  

Proof2. Result 2 follows immediately from Result 1 for 3' = 1. []  

Proof3. (a) I f r  = 1, rotation o f F  reduces to a possible reflection of  the one column 
in F,  which does not affect the squared loadings. Hence,  ORMAX(FT0) = ORMAX(F),  
and Result 3 follows at once from Result I. (b) If m = 2 and both variables are 

I (Nishisato & Sheu, 1980, p. qualitative, it can be shown that F'SIF  = F'SzF = ~nAr 
471). Hence ,  for(FTo) is the maximum over  T of  

2 r 

! 8nAr)tt) 2 for(FT) = ~ ~ ( t [ ( F ' S j F -  ~ 
j = l l = l  

as follows from (7). Substituting F'S1F = F'S2F = ½nAr in (13) yields 

for(FT) = ~ (t/(½(1 - 8)nAr)tl) 2 
j = l  1=1 

(13) 

Analogous to the proof  of  (I2), we have 

2 r 2 

for(FT) = ~ ~ (t/(½(l - 8)nAr)tt) 2 <- ~_, ¼(1 - 6)2n 2 tr Ar 2 
j = l  / = 1  j = l  

= ½(1 - 6)2n 2 tr Ar 2. ( I4)  

The right-hand side of  (14) gives an upper bound to for(FT), attained for T = I. That  is, 
for(FTo), the maximum over  T of  for(FT), is equal to for(F); hence,  O R M A X ( F T  o) = 
ORMAX(F) .  With this equality, ORMAX(Xt)  --- ORMAX (FT o) = ORMAX(F)  fol- 
lows immediately from Result 1. [ ]  

It is of  interest to mention that for the VMAX criterion, Result 3b implies for m = 
2, that VMAX(F) = VMAX(FT 0) = 0. The fact that VMAX(FT0) = 0 follows at once 
upon substitution of  8 = 1 in (14), and implies that the correspondence  analysis solution 
(MCA with m = 2) gives a varimax function that is always zero,  and cannot  be in- 
creased by rotating the solution. In addition, it can be concluded that for  m = 2, the 
MCA loadings on a component  are the same for both variables. 

Result 3 has been included because it proves VMAX(XI) -> VMAX(FT 0) in some 
special cases. Although this result does not generally hold for m > 2, r > 1, it is often 
found that VMAX(XI) >- VMAX(FT0) in practice. Because INDOMIX maximizes the 
sum of  squares of  the cjl values (which will f rom now on be called loadings instead of  
squared loadings), the loadings (eft) tend to be either large or small for  each INDOMIX 
dimension. Dimensions that do not account  for a considerable part of  the inertia are 
usually discarded, and therefore,  one typically has at least some high loadings for each 
INDOMIX dimension. On the other  hand, it is very unlikely that all variables load 
highly on a component  because this can only happen when all variables are related 
strongly to each other.  As a consequence,  the INDOMIX solution typically consists of  
dimensions with some high and some small loadings. Such a pattern of  loadings con- 
tributes much to the VMAX value. Since (rotated) PCAMIX typically finds less ex- 
t reme loadings, the VMAX value tends to be smaller than for the INDOMIX solution. 



HENK A. L. KIERS 207 

The above reasoning implicitly indicates how cases with VMAX(X~) < 
VMAX(FT0) can be constructed: Data consisting only of strongly related variables will 
provide one (or more) components with high loadings throughout and other compo- 
nents with small loadings, both in INDOMIX and unrotated PCAMIX. Clearly, both 
solutions will have a small VMAX value, but after varimax rotation of the PCAMIX 
solution, small and large loadings will be distributed more evenly over the dimensions, 
typically increasing the VMAX value of the PCAMIX solution above that of the IN- 
DOMIX solution. Examples constructed in this way can be obtained from the author. 
Moreover, Result 4 describes a class of cases in which INDOMIX never yields a higher 
VMAX value than rotated PCAMIX. 

Result  4. If r = rank(YTSj), then ORMAX(XI) -< ORMAX(FT0). 

ProoJ~ If r = rank(EjSj), then both F and X 1 span the complete column-space of 
EjSj, which follows at once from the normal equations for the respective maximization 
problems (Kiers, 1989c, p. 103). Because F and X1 are both columnwise orthonormal, 
X~ = FTfor some orthonormal matrix T. As a consequence, ORMAX(Xt) = ORMAX(FT) 
- ORMAX(FT0), where the inequality follows from the optimality of T 0. [] 

Comparison of MCA and INDOMIX for Qualitative Variables with Respect to 
Discriminatory Capability 

INDOMIX attains values of several simple structure criteria at least as high as 
those attained by optimally rotated PCAMIX solutions. As a consequence to be devel- 
oped below, MCA (i.e., PCAMIX applied to a set of solely qualitative variables) finds 
object coordinate axes that appear to discriminate between the objects as well as 
possible in terms of all variables, whereas in INDOMIX (INDOQUAL when applied to 
solely qualitative variables) each axis tends to discriminate between the objects mainly 
in terms of a subset of the variables, and for different axes, different subsets may be 
involved. 

Each qualitative variable defines a set of disjoint groups of objects that fall in 
different categories of the qualitative variable. Thus, for each variable and axis, the 
group averages can be computed on that axis. The variance of these group averages is 
called the between-groups-variance, or because the groups are defined by the catego- 
ries, the between-categories-variance. For both MCA and INDOQUAL, the solution 
for the matrix of object coordinates X is centered columnwise, and as a consequence, 
the between-categories-variance of x / with respect to the categories of variablej can be 
given as 

mj 

2 = n - I  O'B(jl ) Z n g ( x ~ J )  2 = n - l x ] G j D T 1 G j x l  = n - l x ] J G j D j I G j J x l  = eft ,  (15) 

9=1 

where ny denotes the number of objects in category 9 of variable j ,  x~ j denotes the 
average value of x t in category 9 of variablej (see, e.g., Tenenhaus & Young, 1985, p. 
98). Thus, the loading of variablej on axis / is equal to the between-categories-variance 
for axis I with respect to the categories defined by variablej. This between-categories- 
variance can also be considered as the amount of discrimination, provided by axis l, 
between the objects that fall in different categories of variable j ,  and the loading cjt 
indicates how strongly axis t discriminates between the objects in terms of the catego- 
ries of variable j. 

This interpretation of the loadings provides the basis for our statement that the 
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INDOQUAL axes discriminate between the objects better than do the MCA axes. As 
noted below, the difference between INDOQUAL and MCA is an immediate conse- 
quence of the fact that INDOQUAL provides a solution with better simple structure 
than MCA, at least in terms of the QMAX criterion, and typically, also in terms of the 
VMAX criterion. INDOQUAL loadings usually have a simpler structure than MCA 
loadings, even after optimal rotation of the MCA solution, and thus, INDOQUAL finds 
loadings that are overall more diverse than those resulting from MCA. Because the 
loadings are bounded between zero and one, INDOQUAL loadings tend to the extreme 
values of zero and one more than MCA loadings. From (I5) it also follows that IN- 
DOQUAL yields more extreme between-categories-variances than MCA, implying that 
the INDOQUAL coordinate axes discriminate between objects better in terms of the 
categories of  certain variables (those with large between-categories-variances), and at 
the same time, worse in terms of other variables than MCA. In this way, it can be said 
that INDOQUAL finds axes each of  which seek to discriminate between the objects, to 
a larger extent than MCA, in terms of (possibly different) subsets of  variables. Because 
INDOQUAL seeks to discriminate the objects in terms of fewer variables than MCA, 
INDOQUAL will succeed better in actually discriminating between the objects. MCA 
tries to discriminate between the objects as well as possible in terms of all variables. 
When certain variables define completely different groupings of objects, the MCA axes 
will tend to make compromises by discriminating between the objects a little worse in 
terms of both variables. On the other hand, INDOQUAL will optimally discriminate 
between the objects in terms of either one of these opposite variables, and will possibly 
discriminate between the objects in terms of the other variable by means of a different 
axis. 

In addition, it can be said that a subset of variables that load highly on an axis 
consists of variables that, at least in one respect, are rather strongly related to each 
other. If all variables in a subset load highly on an axis, this axis discriminates the 
categories of each of these variables well, which is only possible if the partitions 
(groupings) defined by the different variables overlap highly. This is another way of 
saying that the qualitative variables involved are highly related with respect to the 
partition of objects into groups that are best discriminated by the axis. In short, IN- 
DOQUAL finds axes that discriminate between the objects better than MCA overall, 
and does so by discriminating between the objects in terms of the categories of subsets 
of variables that have highly overlapping partitions. 

Although INDOQUAL finds loadings that tend more to zero and one than those in 
MCA, this does not imply that each axis of INDOQUAL always has loadings that are 
larger than those of MCA. In practice, INDOQUAL often yields a solution with load- 
ings that do not only have a simpler structure than those of MCA, but that also consist 
of  certain values that are higher than the highest MCA loadings for a corresponding 
MCA axis. As a consequence, INDOQUAL yields a solution in which, with respect to 
each axis, objects separate more clearly than in MCA into (denser) clusters of  objects 
representing the categories of  those highly loading variables. 

An Illustrative Analysis of Empirical Data 

The empirical data to be analyzed in the present section is from Hartigan (1975, p. 
228), and consists of 24 objects such as screws and nails that are classified according to 
5 qualitative variables (whether they have a thread, type of head, head indentation, kind 
of bottom, and whether made of brass). In addition, their length (in half inches) is 
measured, and considered a qualitative variable with five categories (I through 5 half 
inches). Although the data are of little practical interest, they serve to illustrate the 
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TABLE 1 

MCA Loadings Before and After Vaximax Rotation 

209 

Before Vaximax Rotat ion After Varimax Rotat ion 

Dimension Dimension 

1 2 3 1 2 3 

Thread 0.93 0.02 

Head 0.95 0.64 

Head indentation 0.94 0.67 

Bottom 0.55 0.02 

Length 0.29 0.82 

Brass 0.06 0.03 

~jcj~ 3.72 2.20 

0.00 0.95 0.00 0.00 

0.73 0.96 0.64 0.72 

0.07 0.95 0.73 0.00 

0.00 0.50 0.05 0.01 

0.70 0.24 0.79 0.79 

0.47 0.09 0.00 0.47 

1.97 3.69 2.20 2.00 

explained inertia (~,jzcjz) 7.90 

vaximax function value 2.05 

quartimax function value 5.83 

7.90 

2.23 

5.97 

clustering phenomenon, because the objects are well-described in terms of predefined 
clusters (those of screws, bolts, nails, and tacks), whereas this clustering does not refer 
directly to a qualitative variable in the analysis. 

The MCA solutions and the INDOQUAL solutions for r = 3 will be compared, 
with the MCA solution considered both before and after varimax rotation (see Table 1 
for the MCA loadings). The varimax rotation only changes the loadings slightly, mainly 
those of the fifth variable, and these changes lead to increasing simple structure as 
expressed by the varimax and quartimax function values. The amount of explained 
inertia is equal in the two solutions. We also applied a quartimax rotation, which 
provided practically the same results as the varimax rotation (with loadings never 
deviating more than .1). Table 2 gives the loadings found by INDOQUAL, where 
obviously the INDOQUAL components and those on the rotated MCA solution have 
high loadings for the same variables, although the loadings in the INDOQUAL com- 
ponents are higher. This is reflected by the varimax and quartimax function values 
being higher for INDOQUAL than for the rotated MCA solution, and in the better 
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TABLE 2 

INDOQUAL Loadings 

Dimension 

1 2 3 

Thread  0.99 0.00 0.00 

Head 0.99 0.40 0.95 

Head indentat ion 0.99 0.87 0.00 

Bottom 0.41 0.04 0.00 

Length 0.17 0.77 0.88 

Brass 0.06 0.00 0.07 

~jc jl 3.61 2 .08  i .  90 

explained inert ia  (~,jlcjz) 7.59 

var imax funct ion value 2.84 

quar t imax funct ion value 6.34 

simple structure of INDOQUAL obtained at the cost of a (small) loss in explained 
inertia as compared to the MCA solution. 

In both the INDOQUAL and the MCA solutions, the first component is highly 
correlated with the first three variables that are most important in distinguishing screws 
and bolts from nails and tacks. The component scores on these axes are pictured in 
Figure ! by means of plots for the objects on the first axis of both solutions using a stem 
and leaf diagram in which the component scores of the objects are divided into 30 
intervals. Because it is of interest to see how well the original clustering in the data 
appears in the solution, the objects are indicated by the letters T (tack), N (nail), S 
(screw), and B (bolt). It should be noted that the component scores are normalized here 
to unit sums of squares (instead of sums of squares equal to n). Obviously, the objects 
are clustered more clearly with respect to the first INDOQUAL component than with 
respect to the first MCA component, and the original categories appear as partly sep- 
arated clusters where nails and tacks now form one cluster. The bolts and screws form 
different clusters, but are not well-separated. With respect to the second and third axes, 
similar plots could be made; one would again find a clearer clustering with respect to the 
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MCA I N D O Q U A L  
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FIGURE 1 
for the scores on the first MCA and INDOQUAL components. 

I N D O Q U A L  c o m p o n e n t s  t h a n  w i t h  r e s p e c t  t o  t h e  M C A  c o m p o n e n t s ,  d e m o n s t r a t i n g  

t h a t  t h e  I N D O Q U A L  a x e s  h a v e  a b e t t e r  d i s c r i m i n a t o r y  c a p a b i l i t y  t h a n  t h e  M C A  a x e s .  
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