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AN EFFICIENT ALGORITHM FOR PARAFAC OF THREE-WAY DATA 
WITH LARGE NUMBERS OF OBSERVATION UNITS 
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The CANDECOMP algorithm for the PARAFAC analysis of n × m × p three-way arrays 
is adapted to handle arrays in which n > rnp more efficiently. For such arrays, the adapted 
algorithm needs less memory space to store the data during the iterations, and uses less com- 
putation time than the original CANDECOMP algorithm. The size of the arrays that can be 
handled by the new algorithm is in no way limited by the number of observation units (n) in the 
data. 
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Harshman (1970) developed a method for factor analysis of three-way arrays, 
called PARAFAC (PARAllel profiles FACtor analysis), and proposed an algorithm for 
his method identical to the CANDECOMP algorithm proposed by Carroll and Chang 
(1970) for fitting their INDSCAL model. The CANDECOMP/PARAFAC problem is 
that of minimizing 

P 

f(A, D1 . . . . .  Dp, B)  = Ilgk - ADkB'[[ 2, (1) 
k = l  

where X k denotes the n × m matrix which forms the k-th frontal section of the three- 
way array, k = 1 . . . . .  p; A, B, and D 1 . . . . .  Dp are matrices containing model 
parameters to be estimated, with A of order n × r, B of order m × r, and D k diagonal, 
of order r x r, where r is the number of factors to be extracted. The CANDECOMP/  
PARAFAC algorithm (Carroll & Chang, 1970) can be described in terms of A, B, 
D 1 . . . . .  Dp, and X 1 . . . . .  Xp as follows (see Kroonenberg, 1983, pp. 114-116): 

Step 0. Initialize the matrices B and D~ . . . . .  Dp. 
Step 1. Compute the start for A according to A = (EkXkBDk)(EkDkB'BDk) -1 . 
Step 2. Iteratively update B, D I . . . . .  Dp, A,  and evaluate f according to the 

steps: 
2a. B := ('ZkX'kADk)(~,kDkA'ADk)-1; 
2b. Dkl := (A 'A*B 'B) - I (DiagA 'XkB) I ,  for k = 1 . . . . .  p (with 1 denot- 

ing the r-vector with unit elements, and * the Hadamard product); 
2c. A := (EkXkBDk)(~kDkB'BDk)-I;  
2d. Evaluate f(A, D 1 . . . . .  Dp, B). 

If fold _ fnew < e, where e is some arbitrary small value, then go to 
Step 3, otherwise repeat Step 2. 
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Step 3. Postprocess A, B, and D1 . . . . .  Dp (for instance, normalize A and B to 
unit column sums of squares). 

The bulk of the computations is done in Step 2, which is typically repeated many times. 
Although different program versions may differ with respect to the order of Steps 2a 
through 2d, or with respect to the choice of convergence criterion, essentially all 
CANDECOMP/PARAFAC algorithms are based on these steps. 

The above described algorithm has been proven to converge monotonically (Car- 
roll & Chang, 1970) and is known to work well in practice. However, the size of data 
sets that can be analyzed using this algorithm is rather limited, because during the 
computations, the complete three-way array and the three parameter sets have to be 
stored in the working space of the computer (RAM). In many practical situations, the 
sample size (number of observation units) poses irresolvable problems for the program 
on personal computers, and even on mainframe hardware, data size problems may 
occur. One may resort to fitting the covariances instead of the original data and use the 
PARAFAC2 algorithm (Harshman, 1972, also, see Harshman & Lundy, 1984b) for that 
purpose, but then a different model is fitted, and consequently, a different problem is 
solved. The present paper offers an algorithm for fitting the original PARAFAC model 
that can handle data sets of any sample size; the only limitations are set by the numbers 
of variables and (frontal) sections. It is based on aggregating the data over the individual 
observation units. For data with n large compared to m p ,  this not only saves memory 
space, but is also faster, as will be demonstrated below. 

Updating the A Matrix Implicitly 

When n is large, the original CANDECOMP/PARAFAC algorithm causes storage 
problems for X 1 ,  • • • , X p ,  and A, which are of orders n × m and n × r, respectively. 
The modification of the CANDECOMP/PARAFAC algorithm proposed here avoids the 
use of these large matrices, using the much smaller matrices X j X k ,  X 'gA,  and A ' A ,  j ,  
k = 1 . . . . .  p, instead. This modification is based on the fact that during the Steps 2a, 
2b, and 2d, matrix A occurs only in the combinations X'kA and A ' A .  To check this 
statement for Step 2d, we expand f(A, D I . . . . .  O p ,  B)  as: 

f(A, D t  . . . .  , D p ,  B) = ~ tr X ~ X k  - 2 tr ~ X]~AD~B' + tr A ' A  ~_, D k B ' B D k  . 
k = l  k = l  k = l  

It is useful to note that after updating A, A ( ' Z k D k B ' B D k )  = ( ~ , k X k B D k ) ,  and hence, fcan  
be simplified as 

P P 

f(A, D1 . . . . .  D o , B) = ~'~ tr X[~Xk - tr ~'~ X [ , A D k B ' .  (2) 
k = l  k = l  

When n is large, it takes less space to store the m x r matrices Sk  =-- X 'kA ,  k = 1 . . . .  , 
p, and the r × r matrix C =--- A ' A  than the n × r matrix A and the n × m matrices 
X1 . . . . .  X p .  However, when A and X 1 . . . . .  X p  are not stored anymore, we have to 
deal with Sk, k = I . . . . .  p, and C throughout the algorithm. In particular, instead of 
updating A (Step 2c), we have to update S k, k = 1 . . . . .  p ,  and C, as follows: 

St, = X/ ,A  = ( ~ , j X / c X j B D j ) ( ~ j D j B ' B D j )  --1, (3) 

k--  1 , . . .  , p ,  and 
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C = A ' A  = ( E k D k B ' B D k )  - I (Ej~ ,kDjB'Xj ' .XkBDk)(~ ,kDkB'BDk)  -1 (4) 

Apart  from B and DI  . . . . .  Dp ,  both expressions involve the n × m matrices Xk, k = 
1, . . . , p. However ,  these only occur  in cross-products Rjk =- X ) X k ,  j ,  k = 1 . . . .  , p ,  

which are all o f  order  m × m. Hence the updates for Sk, k = I . . . . .  p, and C can be 
computed without using Xk explicitly. As a consequence,  replacing Steps I and 2c (for 
updating A) by two steps in which S k, and C are updated, and basing the computat ions 
in Steps 2a, 2b, and 2d on S k ,  and C instead of  A, modifies the CANDECOMP/  
PARAFAC algorithm such that it no longer needs to store the possibly very  large 
matrices A and Xl . . . . .  Xp. The modified algorithm needs to store the matrices 
S k ( m  × r), C(r × r), and R j k ( m  × rn), j ,  k = 1 . . . . .  p (i.e., p m r  + r 2 + p 2 m 2  real 
numbers),  where the original algorithm needs to store X k ( n  × m)  and A ( n  × r), k = 

1, . . . , p (i.e., p n m  + nr real numbers),  apart from the matrices B,  D 1 , . . .  , D n,  and 
possible (small) working arrays. As a result, the modified algorithm requires less RAM than 
the original algorithm whenever n > m p  + r2(mp + r) -1 , and in particular, when n ~ rap. 

The above modifications of  the CANDECOMP/PARAFAC algorithm yield the 
following " implic i t"  algorithm: 

Step 1. Read cross-product matrices Rjk ,  j ,  k = 1 . . . .  , p ,  or read (raw) data 
matrices such that cross-product matrices are built while reading the orig- 
inal data. 

Step 2. Initialize B and D 1 . . . . .  D n . 
Step 3. Compute starting values for S k, k --- 1 . . . . .  p, and C, based on (3) and (4). 
Step 4. Iteratively perform the following steps, until convergence:  

4a. B := ( ~ , k S k D k ) ( ~ l ~ D k C D k ) - l ;  
4b. D k l  := ( C * B ' B ) - ' ( D i a g  S'kB)I,  k = 1 , . . . ,  p;  
4c. Update S k according to (3), k = 1 . . . . .  p; 
4d. Update C according to (4); 
4e. Evaluate f = Zk tr Rkk - ~,k tr S k D k B ' ,  based on (2). 

If  fold _ fnew < e for some small value e, go to Step 5, otherwise 
repeat  Step 4. 

Step 5. Postprocess B, and Dj . . . .  , D e (for instance, normalize (the implicit) A 
and B to unit column sums of  squares). 

Step 6. If  the original data are still available, compute  A according to A = 
E k X k B D k ( E k D k B ' B D k )  - l  (optional). 

Computation Times 

Apart  from the gain in RAM needed when n ~ m p ,  the implicit algorithm is also 
faster  than the original algorithm, since the former  uses smaller matrices, and multi- 
plications with these smaller matrices require fewer  operations. To  evaluate the differ- 
ences in computation time between the two algorithms, we conducted a small compar-  
ative study with generated data sets (sampled randomly from a uniform distribution on 
[ - 1 ,  1]) of  different orders,  crossing three levels of  n (12, 24, and 36) with two levels of  
m (4 and 8) and two levels o f p  (2 and 3). In sum, 60 three-way arrays were generated 
(five replications in each cell of  the design) and analyzed using both the new algorithm 
and our  version of  the original algorithm, programmed according to the description in 
the introduction. In all analyses, r = 2, and the same (rational) start f o rB  and D 1 . . . . .  
Dp was used. As a consequence,  both algorithms yield the same intermediate updates 
for B and D1 . . . . .  Dp ,  and find the same function values after each iteration, within 
rounding error.  The convergence criterion was e = 0.001, which for our purpose led to 
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FIGURE 1 

Mean computation times per iteration (cp) as a function of the product of m and p, for both the implicit and 
the original algorithm. 

sufficient precision, because our interest is in computation times rather than determin- 
ing the solution sufficiently accurately. The study was conducted on an Olivetti M24 
(8086). 

Because analyses of  different data sets usually took different numbers of iterations 
(ranging from 7 through 112, with a mean of 34.5 iterations), we have computed the 
computation times per iteration (cp). For  each (n, m, p)-combination, the implicit 
algorithm used virtually the same cp over all five replications, as did the original 
algorithm. In Figure 1 we report the mean cp over the five replications. The horizontal 
axis shows the value of  rnp (which in our study was 8 (ra = 4, p = 2), 12 (m = 4, 
p = 3), 16 (m = 8, p = 2), and 24 (m = 8, p = 3), respectively). For  both algorithms, 
and for all three different values of n, the corresponding mean cp has been plotted. 
Because cp does not depend on n, for the implicit algorithm the three lines coincide. 
Figure I displays dear ly  that with increasing n, computation time increases consider- 
ably for the original algorithm. The line depicting cp for the implicit algorithm can be 
seen as a demarcation line: points above the line refer to cases where the original 
algorithm is slower than the implicit algorithm (n > rap), whereas points below this line 
(n < rap) refer to cases where the original algorithm is faster. It  is readily verified that 
n ~ m p  at the points where the lines for the different algorithms cross (implying that 
they are equally fast). 

Imposing Orthogonality Constraints on Matrix A 

In certain situations the unconstrained CANDECOMP/PARAFAC method leads 
to uninterpretable "degenera te"  solutions, with highly correlated columns of A. Harsh- 
man and Lundy  (1984a) propose to remedy this by constraining A to be columnwise 



HENK A. L. KIERS AND WlM P. KRIJNEN 151 

orthonormal. That is, instead of minimizing (1) over arbitrary A, they propose to min- 
imize (1) over columnwise orthonormal A. The solution to this minimization problem 
can be derived as follows (see Kroonenberg, 1983, p. 112, for a similar case). It is 
readily verified that minimizing (1) over A, subject to A ' A  = Ir,  is equivalent to max- 
imizing 

P 

g(A) = tr ~] X k B D k A ' .  (5) 
k = l  

According to Cliff (1966), the columnwise orthonormal A maximizing (5) is given by 

A = (EjXyBDi)(~,jEkDjB'X]XkBDI~) -1:z. (6) 

To avoid using large matrices in the algorithm, we propose to update S k = X'kA (instead 
of A), as follows: 

Sk = X/~ (~.,jXjBDj)(~.q ~ k D j B ' X j ' X k B D k )  - 1/2 

= (~i, j R k j B D j ) ( ~ - , j E k D j B ' R j k B D k  ) -1/2, (7) 

for k = 1 . . . . .  p. This updating procedure only uses B,  D 1 . . . . .  Dp ,  and the Rjk  
matrices. The other steps of the algorithm, that is, those of updating B and D 1 . . . . .  
D o, and that of evaluating f can be done as in the previous section. It should be noted 
that C = A'A, which was updated in each cycle of the algorithm of the previous section, 
is constant here, that is C = I r. Using (7) and the procedures for updating B, and 
D l,  • • • , Dp  described earlier, we have an algorithm for PARAFAC with orthogonality 
constraints which, once again, does not use any matrices of row- or column-order n. A 
PC-program using implicit updatings for A, both unconstrained and orthogonally con- 
strained, is available from the second author. 

Discussion 

The above described modification of the C A N D E C O M P / P A R A F A C  algorithm has 
been presented as an efficient method for handling three-way arrays with large n. 
However,  after a proper permutation of the array, the same procedure can be used 
when m is large compared to np,  or when p is large compared to n m.  

The PARAFAC program allows for a large number of preprocessing options. 
Above, preprocessing has been assumed to have been incorporated in the matrices Xk 
already. If this is not the case, some types of preprocessing (e.g., standardizing the 
variables in each frontal section), can simply be incorporated in the process of con- 
verting the original data to the Rjk matrices. Other preprocessing procedures, however, 
need to be carried out separately. The same holds for handling missing data. In the 
original CANDECOMP/PARAFAC algorithm it is possible to iteratively reestimate 
missing data from the model, but in our implicit algorithm one is forced to choose values 
for missing data in the preprocessing stage. 

The above modification of the CANDECOMP/PARAFAC algorithm shows that 
the computations of the solution for B, and D 1 . . . . .  D p ,  do not involve the Xk 
matrices, but only the cross-product matrices R j k , j ,  k = 1 . . . . .  p .  As a consequence, 
different data sets with the same cross-product matrices yield the same solutions for B, 
and D 1 . . . . .  Dp.  This parallels the situation of principal components analysis (PCA), 
where the loadings depend on the correlation matrix only. As PCA, CANDECOMP/ 
PARAFAC analyzes first- and second-order moments only. 
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