
PSYCHOMETRIKA--VOL. 56, NO. 1, 147-152
MARCH 1991
COMPUTATIONAL PSYCHOMETRICS

AN EFFICIENT ALGORITHM FOR PARAFAC OF THREE-WAY DATA
WITH LARGE NUMBERS OF OBSERVATION UNITS

HENK A . L . KIERS AND WIM P. KRIJNEN

UNIVERSITY OF GRONINGEN

The CANDECOMP algorithm for the PARAFAC analysis of n × m × p three-way arrays
is adapted to handle arrays in which n > rnp more efficiently. For such arrays, the adapted
algorithm needs less memory space to store the data during the iterations, and uses less com-
putation time than the original CANDECOMP algorithm. The size of the arrays that can be
handled by the new algorithm is in no way limited by the number of observation units (n) in the
data.

Key words: CANDECOMP, PARAFAC.

Harshman (1970) developed a method for factor analysis of three-way arrays,
called PARAFAC (PARAllel profiles FACtor analysis), and proposed an algorithm for
his method identical to the CANDECOMP algorithm proposed by Carroll and Chang
(1970) for fitting their INDSCAL model. The CANDECOMP/PARAFAC problem is
that of minimizing

P

f(A, D1 Dp, B) = Ilgk - ADkB'[[2, (1)
k = l

where X k denotes the n × m matrix which forms the k-th frontal section of the three-
way array, k = 1 p; A, B, and D 1 Dp are matrices containing model
parameters to be estimated, with A of order n × r, B of order m × r, and D k diagonal,
of order r x r, where r is the number of factors to be extracted. The CANDECOMP/
PARAFAC algorithm (Carroll & Chang, 1970) can be described in terms of A, B,
D 1 Dp, and X 1 Xp as follows (see Kroonenberg, 1983, pp. 114-116):

Step 0. Initialize the matrices B and D~ Dp.
Step 1. Compute the start for A according to A = (EkXkBDk)(EkDkB'BDk) -1 .
Step 2. Iteratively update B, D I Dp, A, and evaluate f according to the

steps:
2a. B := ('ZkX'kADk)(~,kDkA'ADk)-1;
2b. Dkl := (A 'A*B 'B) - I (DiagA 'XkB) I , for k = 1 p (with 1 denot-

ing the r-vector with unit elements, and * the Hadamard product);
2c. A := (EkXkBDk)(~kDkB'BDk)-I;
2d. Evaluate f(A, D 1 Dp, B).

If fold _ fnew < e, where e is some arbitrary small value, then go to
Step 3, otherwise repeat Step 2.

The authors are obliged to Jos ten Berge for his comments on an earlier version of this paper. The
research of Henk A. L. Kiers has been made possible by a fellowship of the Royal Netherlands Academy of
Arts and Sciences.

Requests for reprints should be sent to Henk A. L. Kiers, Department of Psychology, University of
Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, THE NETHERLANDS.

0033-3123/91/0300-90204 $00.75/0
© 1991 The Psychometric Society

147

148 PSYCHOMETRIKA

Step 3. Postprocess A, B, and D1 Dp (for instance, normalize A and B to
unit column sums of squares).

The bulk of the computations is done in Step 2, which is typically repeated many times.
Although different program versions may differ with respect to the order of Steps 2a
through 2d, or with respect to the choice of convergence criterion, essentially all
CANDECOMP/PARAFAC algorithms are based on these steps.

The above described algorithm has been proven to converge monotonically (Car-
roll & Chang, 1970) and is known to work well in practice. However, the size of data
sets that can be analyzed using this algorithm is rather limited, because during the
computations, the complete three-way array and the three parameter sets have to be
stored in the working space of the computer (RAM). In many practical situations, the
sample size (number of observation units) poses irresolvable problems for the program
on personal computers, and even on mainframe hardware, data size problems may
occur. One may resort to fitting the covariances instead of the original data and use the
PARAFAC2 algorithm (Harshman, 1972, also, see Harshman & Lundy, 1984b) for that
purpose, but then a different model is fitted, and consequently, a different problem is
solved. The present paper offers an algorithm for fitting the original PARAFAC model
that can handle data sets of any sample size; the only limitations are set by the numbers
of variables and (frontal) sections. It is based on aggregating the data over the individual
observation units. For data with n large compared to m p , this not only saves memory
space, but is also faster, as will be demonstrated below.

Updating the A Matrix Implicitly

When n is large, the original CANDECOMP/PARAFAC algorithm causes storage
problems for X 1 , • • • , X p , and A, which are of orders n × m and n × r, respectively.
The modification of the CANDECOMP/PARAFAC algorithm proposed here avoids the
use of these large matrices, using the much smaller matrices X j X k , X 'gA, and A ' A , j ,
k = 1 p, instead. This modification is based on the fact that during the Steps 2a,
2b, and 2d, matrix A occurs only in the combinations X'kA and A ' A . To check this
statement for Step 2d, we expand f(A, D I O p , B) as:

f(A, D t , D p , B) = ~ tr X ~ X k - 2 tr ~ X]~AD~B' + tr A ' A ~_, D k B ' B D k .
k = l k = l k = l

It is useful to note that after updating A, A (' Z k D k B ' B D k) = (~ , k X k B D k) , and hence, fcan
be simplified as

P P

f(A, D1 D o , B) = ~'~ tr X[~Xk - tr ~'~ X [, A D k B ' . (2)
k = l k = l

When n is large, it takes less space to store the m x r matrices Sk =-- X 'kA , k = 1 ,
p, and the r × r matrix C =--- A ' A than the n × r matrix A and the n × m matrices
X1 X p . However, when A and X 1 X p are not stored anymore, we have to
deal with Sk, k = I p, and C throughout the algorithm. In particular, instead of
updating A (Step 2c), we have to update S k, k = 1 p , and C, as follows:

St, = X/ ,A = (~ , j X / c X j B D j) (~ j D j B ' B D j) --1, (3)

k-- 1 , . . . , p , and

HENK A. L, KIERS AND WlM P. KRIJNEN 149

C = A ' A = (E k D k B ' B D k) - I (Ej~ ,kDjB'Xj ' .XkBDk)(~ ,kDkB'BDk) -1 (4)

Apart from B and DI Dp , both expressions involve the n × m matrices Xk, k =
1, . . . , p. However , these only occur in cross-products Rjk =- X) X k , j , k = 1 , p ,

which are all o f order m × m. Hence the updates for Sk, k = I p, and C can be
computed without using Xk explicitly. As a consequence, replacing Steps I and 2c (for
updating A) by two steps in which S k, and C are updated, and basing the computat ions
in Steps 2a, 2b, and 2d on S k , and C instead of A, modifies the CANDECOMP/
PARAFAC algorithm such that it no longer needs to store the possibly very large
matrices A and Xl Xp. The modified algorithm needs to store the matrices
S k (m × r), C(r × r), and R j k (m × rn), j , k = 1 p (i.e., p m r + r 2 + p 2 m 2 real
numbers), where the original algorithm needs to store X k (n × m) and A (n × r), k =

1, . . . , p (i.e., p n m + nr real numbers), apart from the matrices B, D 1 , . . . , D n, and
possible (small) working arrays. As a result, the modified algorithm requires less RAM than
the original algorithm whenever n > m p + r2(mp + r) -1 , and in particular, when n ~ rap.

The above modifications of the CANDECOMP/PARAFAC algorithm yield the
following " implic i t" algorithm:

Step 1. Read cross-product matrices Rjk , j , k = 1 , p , or read (raw) data
matrices such that cross-product matrices are built while reading the orig-
inal data.

Step 2. Initialize B and D 1 D n .
Step 3. Compute starting values for S k, k --- 1 p, and C, based on (3) and (4).
Step 4. Iteratively perform the following steps, until convergence:

4a. B := (~ , k S k D k) (~ l ~ D k C D k) - l ;
4b. D k l := (C * B ' B) - ' (D i a g S'kB)I, k = 1 , . . . , p;
4c. Update S k according to (3), k = 1 p;
4d. Update C according to (4);
4e. Evaluate f = Zk tr Rkk - ~,k tr S k D k B ' , based on (2).

If fold _ fnew < e for some small value e, go to Step 5, otherwise
repeat Step 4.

Step 5. Postprocess B, and Dj , D e (for instance, normalize (the implicit) A
and B to unit column sums of squares).

Step 6. If the original data are still available, compute A according to A =
E k X k B D k (E k D k B ' B D k) - l (optional).

Computation Times

Apart from the gain in RAM needed when n ~ m p , the implicit algorithm is also
faster than the original algorithm, since the former uses smaller matrices, and multi-
plications with these smaller matrices require fewer operations. To evaluate the differ-
ences in computation time between the two algorithms, we conducted a small compar-
ative study with generated data sets (sampled randomly from a uniform distribution on
[- 1 , 1]) of different orders, crossing three levels of n (12, 24, and 36) with two levels of
m (4 and 8) and two levels o f p (2 and 3). In sum, 60 three-way arrays were generated
(five replications in each cell of the design) and analyzed using both the new algorithm
and our version of the original algorithm, programmed according to the description in
the introduction. In all analyses, r = 2, and the same (rational) start f o rB and D 1
Dp was used. As a consequence, both algorithms yield the same intermediate updates
for B and D1 Dp , and find the same function values after each iteration, within
rounding error. The convergence criterion was e = 0.001, which for our purpose led to

150 PSYCHOMETRIKA

cp

1 4

1 2

1 0

_

_

_

7"
i t ̀ '/

. implicit, n=12,24,36

I ' original, n=12

X original, n=24

I~ , original, n - 3 6
O I I I I I I

0 4 8 12 16 2 0 2 4 28

mp
FIGURE 1

Mean computation times per iteration (cp) as a function of the product of m and p, for both the implicit and
the original algorithm.

sufficient precision, because our interest is in computation times rather than determin-
ing the solution sufficiently accurately. The study was conducted on an Olivetti M24
(8086).

Because analyses of different data sets usually took different numbers of iterations
(ranging from 7 through 112, with a mean of 34.5 iterations), we have computed the
computation times per iteration (cp). For each (n, m, p)-combination, the implicit
algorithm used virtually the same cp over all five replications, as did the original
algorithm. In Figure 1 we report the mean cp over the five replications. The horizontal
axis shows the value of rnp (which in our study was 8 (ra = 4, p = 2), 12 (m = 4,
p = 3), 16 (m = 8, p = 2), and 24 (m = 8, p = 3), respectively). For both algorithms,
and for all three different values of n, the corresponding mean cp has been plotted.
Because cp does not depend on n, for the implicit algorithm the three lines coincide.
Figure I displays dear ly that with increasing n, computation time increases consider-
ably for the original algorithm. The line depicting cp for the implicit algorithm can be
seen as a demarcation line: points above the line refer to cases where the original
algorithm is slower than the implicit algorithm (n > rap), whereas points below this line
(n < rap) refer to cases where the original algorithm is faster. It is readily verified that
n ~ m p at the points where the lines for the different algorithms cross (implying that
they are equally fast).

Imposing Orthogonality Constraints on Matrix A

In certain situations the unconstrained CANDECOMP/PARAFAC method leads
to uninterpretable "degenera te" solutions, with highly correlated columns of A. Harsh-
man and Lundy (1984a) propose to remedy this by constraining A to be columnwise

HENK A. L. KIERS AND WlM P. KRIJNEN 151

orthonormal. That is, instead of minimizing (1) over arbitrary A, they propose to min-
imize (1) over columnwise orthonormal A. The solution to this minimization problem
can be derived as follows (see Kroonenberg, 1983, p. 112, for a similar case). It is
readily verified that minimizing (1) over A, subject to A ' A = Ir, is equivalent to max-
imizing

P

g(A) = tr ~] X k B D k A ' . (5)
k = l

According to Cliff (1966), the columnwise orthonormal A maximizing (5) is given by

A = (EjXyBDi)(~,jEkDjB'X]XkBDI~) -1:z. (6)

To avoid using large matrices in the algorithm, we propose to update S k = X'kA (instead
of A), as follows:

Sk = X/~ (~.,jXjBDj)(~.q ~ k D j B ' X j ' X k B D k) - 1/2

= (~i, j R k j B D j) (~ - , j E k D j B ' R j k B D k) -1/2, (7)

for k = 1 p. This updating procedure only uses B, D 1 Dp , and the Rjk
matrices. The other steps of the algorithm, that is, those of updating B and D 1
D o, and that of evaluating f can be done as in the previous section. It should be noted
that C = A'A, which was updated in each cycle of the algorithm of the previous section,
is constant here, that is C = I r. Using (7) and the procedures for updating B, and
D l, • • • , Dp described earlier, we have an algorithm for PARAFAC with orthogonality
constraints which, once again, does not use any matrices of row- or column-order n. A
PC-program using implicit updatings for A, both unconstrained and orthogonally con-
strained, is available from the second author.

Discussion

The above described modification of the C A N D E C O M P / P A R A F A C algorithm has
been presented as an efficient method for handling three-way arrays with large n.
However, after a proper permutation of the array, the same procedure can be used
when m is large compared to np, or when p is large compared to n m.

The PARAFAC program allows for a large number of preprocessing options.
Above, preprocessing has been assumed to have been incorporated in the matrices Xk
already. If this is not the case, some types of preprocessing (e.g., standardizing the
variables in each frontal section), can simply be incorporated in the process of con-
verting the original data to the Rjk matrices. Other preprocessing procedures, however,
need to be carried out separately. The same holds for handling missing data. In the
original CANDECOMP/PARAFAC algorithm it is possible to iteratively reestimate
missing data from the model, but in our implicit algorithm one is forced to choose values
for missing data in the preprocessing stage.

The above modification of the CANDECOMP/PARAFAC algorithm shows that
the computations of the solution for B, and D 1 D p , do not involve the Xk
matrices, but only the cross-product matrices R j k , j , k = 1 p . As a consequence,
different data sets with the same cross-product matrices yield the same solutions for B,
and D 1 Dp. This parallels the situation of principal components analysis (PCA),
where the loadings depend on the correlation matrix only. As PCA, CANDECOMP/
PARAFAC analyzes first- and second-order moments only.

152 PSYCHOMETRIKA

References

Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an
n-way generalization of "Eckart-Young" decomposition. Psychometrika, 35,283-319.

Cliff, N. (1966). Orthogonal rotation to congruence. Psychometrika, 31, 33-42.
Harshman, R. A. (•970). Foundations of the PARAFAC procedure: Models and conditions for an "explan-

atory" multi-mode factor analysis. UCLA Working Papers in Phonetics, 16, 1-84.
Harshman, R. A. (1972). PARAFAC2: Mathematical and technical notes. UCLA Working Papers in Pho-

netics, 22, 31--44.
Harshman, R. A., & Lundy, M. E. (1984a). Data preprocessing and the extended PARAFAC model. In

H. G. Law, C. W. Snyder, J. A. Hattie, & R. P. McDonald (Eds.), Research methods for multirnode data
analysis (pp. 216-284). New York: Praeger.

Harshman, R. A., & Lundy, M. E. (1984b). The PARAFAC model for three-way factor analysis and mul-
tidimensional scaling. In H. G. Law, C. W. Snyder, J. A. Hattie, & R. P. McDonald (Eds.), Research
methods for multimode data analysis (pp. 122-215). New York: Praeger.

Kroonenberg, P. M. (1983). Three-mode principal component analysis. Leiden: DSWO Press.

Manuscript received 1/22/90
Final version received 7/27/90

