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MAXIMIZATION OF SUMS OF QUOTIENTS OF QUADRATIC FORMS 
AND SOME GENERALIZATIONS 

HENK A .  L .  KIERS 
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Monotonically convergent algorithms are described for maximizing six (constrained) func- 
tions of vectors x, or matrices X with columns xl . . . . .  xr. These functions are h~(x) = Ek 
(x'Akx)(X'CkX) -1 , Hi(X) = ~.k tr ( X ' A k X ) ( X ' C k X )  -1, ~'l(X) = ~..k El  (x~AkXl) (x~Ckxl) -2  
with X constrained to be columnwise orthonormal, h2(x) = ~ k  (x 'Akx)2(x 'CkX) - l  subject to 
x'x = 1, Hx(X) = Y-k tr ( X ' A k X ) ( X ' A k X ) ' ( X ' C k X ) - I  subject to X ' X  = 1, and ~2(X)  = 
~..k E l  (x~Akxl)2(x~Ckxl)  -1 subject to X ' X  = 1. In these functions the matrices Ck are 
assumed to be positive definite. The matrices Ak can be arbitrary square matrices. The general 
formulation of the functions and the algorithms allows for application of the algorithms in 
various problems that arise in multivariate analysis. Several applications of the general algo- 
rithms are given. Specifically, algorithms are given for reciprocal principal components analy- 
sis, binormamin rotation, generalized discriminant analysis, variants of generalized principal 
components analysis, simple structure rotation for one of the latter variants, and set component 
analysis. For most of these methods the algorithms appear to be new, for the others the existing 
algorithms turn out to be special cases of the newly derived general algorithms. 

Key words: generalized principal components analysis, generalized discriminant analysis, 
binormamin, simple structure rotation. 

Several techniques for multivariate data analysis involve the optimization of a 
quotient of two quadratic forms. A well-known example is discriminant analysis, where 
the central problem is to maximize 

x ' B x  

f(x) x'Wx (1) 

over x, where B is the matrix of between groups covariances and W is the matrix of 
within groups covariances (see, e.g., Tatsuoka 1971, p. 159). 

The problem of maximizing f(x) has a straightforward solution, when W is positive 
definite (p.d.). This solution is obtained by first reparameterizing y ---- wt/2x, and next 
solving the equivalent but simpler problem of maximizing g(y) = (y' W- ~/2B W -  1/2 y) 
(y,y)-I over y. The latter problem is solved by taking y equal to the first eigenvector of 
W-I/2BW -~12, from which x follows as x = w-l/2y. As an aside, it might be men- 
tioned that the problem has been considered in a wider context by McDonald (1968). 
Furthermore, solutions for the case where W is singular have been developed by 
McDonald, Torii and Nishisato (1979) and de Leeuw (1982). 

In a number of methods, the aim is to maximize a generalization of the function 
f(x). Some such generalizations have the form 
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P X ' A k X  

hi(x) = ~] x ' C k x '  
k=l 

(2) 

where A k and Ck are n x n matrices and Ck is p.d.,  k = 1 . . . .  , p.  f la i l  Ck are equal, 
we can replace them by W -= Ck, and we have hi(x) = x' Y-k Ak x/x'Wx. Hence, in this 
case hi(x) is a functioh-'rf the form of fix), and the maximum is obtained as described 
above. 

Unfortunately, in cases where the matrices Ck differ, no such simple solution is 
available. It is the purpose of  the present paper to propose iterative algorithms for 
maximizing hi(x) and similar functions consisting of  sums of  quotients of  quadratic 
forms. Specifically, apart from the maximization of  hi(x), we will discuss the maximi- 
zation of  

P 

HI (X) = ~] tr ( X ' A k X ) ( X ' C k X ) - I ,  
-"'k-= 1 

(3) 

where X is an arbitrary n × r (r < n) matrix that has full column rank (r), and of 

p r X ~A k X l  

 l(X) = x Ckxj' 
k=l l=l 

(4) 

where xt, l = 1 . . . .  , r, denotes the columns of  X. Without constraint on X, the X 
maximizing hi (X) would consist of  r equal columns, all maximizing h i .  To avoid such 
degenerate solutions, we impose the constraint that X is columnwise orthonormal. In 
fact, we can impose this constraint on HI(X)  as well, without affecting the fit, as is 
readily verified. Similarly, we can impose the identification constraint x'x = 1. It can 
now be seen that Hi  (X) and hi (X) both reduce to hi (x) in case X has only one column. 

In addition to the three problems mentioned above, we will discuss the maximi- 
zation of the functions 

subject to x'x = 1, that of 

P ( X ' A k X )  2 

hE(X) = ~ X ' C k X  
k=l 

(5) 

p 

HE(X) = ff'~ tr (X 'AkX) (X 'A ' kX) (X 'CkX)  -1 
k=l 

over X subject to X ' X  = I ,  and that of  

(6) 

p r ( x , I A k X l ) 2  

k=l t=l x~Ckxi 
(7) 

also subject to X ' X  = I. In these three problems, C k is again assumed to be p.d. ,  and 
Ak can be any square matrix. All problems are summarized in Table 1. 

Most of the above problems have in some form or an other appeared in the liter- 
ature. For  instance, Kaiser and Dickman's (1959) Binormamin method for oblique 
simple structure rotation implies maximization of functions of the form h l (x). Kiers and 



H E N K  A.  L .  KIERS 

TABLE I 
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Summary of the Six Maximization Problems 

Function Maximized Constraint 

P x'Akx 
hl(x ) = F. 

k"~ 1 x'Ckx 

P 
Hi(X) = E t r ( X ' A ~ ) ( X ' C t - X )  q ,  

k = !  

p r 

hi(X)= E E xl'Akxz 
- - k = l ~ = t  xl'CkX I 

P (x'Akx) z 
h2(x) = E 

~= x x'Ckx 

P 
H2(X) = ~ t r ( X ' A t . X ) ( X ' A k ' X ) ( X ' C ~ )  "1 

k = l  

P 
h2(X) = ~ ~ (x~'AkXz)2 

~ ' - ' - ~ C k X l  

none (x'x=l for identification) 

none (X 'X  = I for identification) 

X ' X  = I 

X ' X  = I 

X ' X  = I 

X ' X  = I 

ten Berge (1994) have proposed a method for rotation to simple structure that involves 
the maximization of functions of the form hi(x). Millsap and Meredith's (1988) methods 
for component analysis in cross-sectional and longitudinal data employ the maximiza- 
tion of a function of the form Hi(X) ,  and so do Kiers and ten Berge's (1994) methods 
for simultaneous components analysis. Finally, Nierop (1993) has proposed a method 
for set components analysis which essentially maximizes a function of the form h2(X), 
or its special case h2(x). In the present paper, we will give algorithms for all these 
methods, as well as for some new methods (e.g., a straightforward generalization of 
discriminant analysis), based on the algorithms for the general functions (2) through (7). 

All algorithms to be proposed here are iterative algorithms that update X (subject 
to the constraints at hand) such that the function increases monotonically. To derive 
these algorithms, we will first consider the maximization of  a general function that has 
H 1 and H 2 as special cases (and hence hi and h 2, as well). In the next section, it will 
be shown that this function can be increased by the X that minimizes (or decreases) an 
auxiliary function. In the subsequent sections, it will be shown how H 1 , h 1 and hi can 
be maximized by decreasing the respective auxiliary functions associated with each of 
these functions. The algorithms for maximizing H1, hi and hi are based on the as- 
sumption that Ak is positive semidefinite (p.s.d.). In a subsequent section, it will be 
shown how the algorithms can be modified to handle cases where Ak, k = 1 , . . . ,  p ,  
is not p.s.d. As an aside, it is shown how the functions H1, hi,  and hi can be m i n i -  

m i z e d .  Next, the constrained maximization of H2, h2, and h2 will be discussed. Then, 
some results on convergence properties and the performance of all algorithms will be 
reported. Finally, several applications of the algorithms are discussed. For easy refer- 
ence, a schematic overview of the algorithms is given in Appendix A. 
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Increasing H1 or H 2 by Decreasing an Auxiliary Function 

The algorithms for maximizing H1 and H 2 to be derived below, will be based on 
decreasing an auxiliary function. The algorithms for maximizing hi ,  hi ,  h2 and h2 will 
be based on straightforward variants of this auxiliary function. The auxiliary function 
can be found for H 1 and H E simultaneously when we consider increasing H 1 and H E as 
special cases of decreasing the general function 

P 

H(X) = - ~, tr (X'CkX)-SFk(X)Fk(X)',  (8) 
k=l 

where Fk(X) is a matrix function of X. When s = 1 and Fk(X) = X'A~/2 (assuming 
that A k is p.s.d.), we obtain H(X) = - H i ( X ) ;  s = 1 and Fk(X) = X 'AkX yields 
H ( X )  = - H 2 ( X ) .  Therefore, a procedure that decreases H(X) can be used to increase 
both H1 and H2. It remains to find such a procedure. This will be based on "majoriza- 
tion'" (see, for instance, de Leeuw & Heiser, 1980; Kiers, 1990; Meulman, 1986). 

Let the current X be denoted by X0. Then, to decrease H, we have to find a matrix 
X such that H(X) -< H(X0). Suppose we have a function G(X) such that H(X) < G(X) 
for allX (i.e., G(X) majorizes H(X)), and H(X 0) = G(X0). Also, suppose that we have 
a procedure for updating X 0 by Xm such that G(Xm) --< G(X0).  Then this procedure 
decreases H, because H(Xm) - G(X m) --< G(X 0) = H(X0).  Hence, if we can find a 
function G such that H(X) < G(X) for all X (subject to the constraint at hand), and 
H(X0) = G(X0), and if we know how to minimize (or at least decrease) G, we can 
construct an algorithm that monotonically decreases H(X). Such a function G(X) can 
be derived as follows. 

From the inequality 

II(X'CkX)-½SFk(X) - (X'CkX)½s(xbCkXo)-SFk(Xo)ll 2 >_ 0 ,  ( 9 )  

where it is used that X o has full column rank, it follows that 

tr ( X ' C k X ) - S F k ( X ) F k ( X )  ' >  2 tr ( X ' o C k X o ) - S F k ( X o ) F k ( X )  ' 

- tr (X'CkX)s(XbCkXo)-~Fk(Xo)Fk(Xo)'(X'oCkXo) -~. (10) 

Defining Wk =- Fk(Xo)'(X'oCkXo) -s, which is independent of X, we obtain, after 
summing over k, and multiplying by -1 ,  

p 

n ( x )  = - 

k = l  

tr (X' CkX) -SFk (X)Fk (X)' 

p P 

- - 2  ~'~ tr W~Fk(X)' + ~ tr W'kWk(X'CkX) s= G(X). 
k=l 

( 1 1 )  

It is important to note that, for the thus defined function G(X), we have G(X 0) = 
H(X0). In fact, the function G(X) depends on X0, because Wk is different for different 
values of X0. For that reason it would have been better to denote it as Gx0(X), but to 
enhance readability, it has been chosen to maintain the simplified notation G(X). From 
the above reasoning, it follows that by minimizing or decreasing G(X) we can decrease 
H(X). For Fk(X) = X'A~/2 we denote G(X) as GI(X), hence 
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with W k 
hence 

p P 

Gl(X) = - 2  ~ tr W'kA~/2X + ~ tr W'kWkX'CkX, (12) 
k=l  k=l  

= All2Xo(X'oCkXo)-I; for Fk(X) = X'AkX  we denote G(X) as G 2 ( X  ), 

P P 

G2(X) = - 2  ~ tr X'AkXWk + ~ tr W'kWkX'CkX, (13) 
k=l  k= l  

with W k , , , -1 = XoA kXo(XoCkXo) 
In the next section, it will be shown how HI(X),  with A k assumed to be p.s.d., 

k = 1 . . . . .  p,  can be increased by minimizing G I(X). The maximization of hi(x) will 
be considered as a special case of that of Hi(X).  The maximization of hi(X) will be 
treated by decreasing, rather than minimizing, an auxiliary function based on G1 (X). 

Algorithms for Maximizing HI(X),  hi (x)  and hi(X) 

In the previous section, it has been described that we can increase Hi (X)  by 
minimizing the function GI(X) defined in (12), provided that A k be p.s.d., k = I . . . . .  
p. In the next section, it will be shown how it can always be arranged that A k is p.s.d. 
In the present section, it will be shown how GI(X) can be minimized, and how this 
leads to an algorithm for maximizing Hi(X)  and its special case h~(x). Along similar 
lines, an algorithm will be derived for maximizing hi (X). To facilitate programming the 
algorithms, all algorithms are summarized schematically in Appendix A. 

An Algorithm for Maximizing H l (X) 

As has been shown in the previous section, the function G I(X) majorizes - H i  (X) 
= - Z k  tr (X'AkX)(X'CkX) -1 . To see how G1(X) can be minimized, we express it 
a s  

P p 
G,(X) = ~ IIC;'/2A~/2- c2/Zxw'kll 2 -  Z IIC;'/2A2/Zll 2 

k---I k=l  

P 
--E 

P 

II Vec (C~-~/2A~/2) - (Wk ~ CJ '2) Vec (X)ll 2 - ~ IIC~-~/2A2Z2112 
k=l  k---I 

/wl II 2 
- Wp ®~Clp'2] Vec (X) - 

' V e c  ( C l l / 2 A  ~/2), 

V e c  - 1/2 1/2 (Cp Ap ) 

P 
iic~-l/2ml/2112, 

k=l  

(14) 

where ® denotes the Kronecker product, and Vec denotes a matrix strung out columnwise 
into a vector; the second equality is obtained from the relation Vec(ABC) = 
(C' ® A)Vec(B) (see, e.g., Henderson & Searle, 198I, p. 273). Finding the minimum of (14) 
over X is a regression problem (where Vec(X) contains the regression weights) and is 
solved by 
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Vec (X) = (Wl Wk) ® Ck 
k=l 

P 

(W~ ® C2/2) Vec (C~I/2A~/2) 
k=l )-' 

= (W'kWk)®Ck 
k=l 

P 
t,"~ l / 2 r - l / 2 A  1/2111 x 

~_~ ~l... k L., k t x  k v v  k I  Vec 
k=l 

(WiWk) ® Ck ~ Vec 1/2 = (Ak Wk), 
k=l k=l 

(15) 

assuming that inverses exist, or else using generalized inverses. From expression (15) 
for Vec (X), we obtain the X that minimizes GI(X) by taking as its columns the 
subcolumns (of n elements) of Vec(X). Thus, we have a procedure for minimizing 
Gl(X) and hence for increasing HI(X) monotonically. If H1 is bounded above, this 
procedure must converge to a stable function value of H1. Indeed, the function H1 is 
bounded above, as can be seen as follows. For each term of HI we have 
tr (X 'CkX) - I (X 'AkX)  = tr Y'kCkl/2AkCkl/2 Yk, where Yk --CI/2x(X'CkX) -1/2" 
Because Yk is columnwise orthonormal, tr Y'kCkl/2Ak--~kl/2y k is smaller than or equal 
to the sum of the first r eigenvalues of  Ckl/EAkCk 1/2 

As has already been mentioned, we can impose X ' X  = I without loss of generality. 
This is because orthonormalizing X does not affect the function value (as is readily 
verified). If desired, one can even orthonormalize X during the iterative process, im- 
mediately after updating X. 

It has been mentioned in the introduction that X should have full column rank (r), 
because otherwise H 1 is not defined. In the above algorithm this constraint has not been 
effectuated, and, in fact, it is conceivable that a low rank matrix X is found during the 
iterations. However, this is very unlikely to happen in practice. 

An Algorithm for Maximizing hi(x): The Special Case Where X is a Vector 

In the special case where X has only one column, Ht(X) reduces to hi(x) = 
, - 1 !/2 Y-k tr (x'Akx)(x'Ckx)-t,  Wk reduces to w k = (xoCkxo) A k x o, and the update for 

x can be derived from (15) as 

X = 

)1 
wlwkC~ ~ (A~/2wk) 

k = l  k = l  

= (xbCkx0) -2(x~)AkX0)Ck 
k=l k=l 

( ( X b C k X 0 )  - I A k ) X 0 .  ( 1 6 )  

Hence, iteratively updating x according to (16) increases hl (x) monotonically and con- 
verges to a stable function value of hi (x). Again, if desired, x can be normalized to unit 
sum of squares, either after each update, or after convergence. 

An alternative, but, as we will see, unreliable, procedure for obtaining an algorithm 
to maximize hi(x) is based on the normal equation for hi.  Taking the derivative of hi 
with respect to x, and setting this equal to zero we obtain as a necessary condition for 
the maximum of h 1 (x) that 
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.(, 1 ) ~ ~ A k  x =  \ (x ,Ckx)  2 Ck X. 
k=l k=l 

(17) 

There  are two simple ways of  "explici tat ing" x in this implicit equation for x. The first 
is to express x as 

X'AkX l 
X = (X,CkX)2 C k  - -  A k  X. (18)  k=1 / \k=l x'Ckx 

Because (18) must hold at every  stationary point of  h l ,  one might conjecture that an 
iterative procedure  in which one computes a new x according to the right-hand side of  
(18), iteratively, will converge to a stable solution for x that satisfies (I8), and, hopefully 
gives the x that maximizes h 1 , or  at least finds a local maximum. As a matter  of  fact,  
this procedure for updating x is the very same as the algorithm, based on (16), for which 
we have proven monotone convergence above. Hence ,  indeed the conjecture that such 
an algorithm can be used to find local maxima holds true. However ,  this is just  a mat ter  
of  coincidence, because,  rather than "explici tat ing" x as in (18), we might just  as well 
explicitate x as 

1 x 'Akx  
x = ~ Ak (19) k=l x 'Ckx  (x,Ckx) 2 Ck x. 

This expression suggests an algorithm in which x is updated iteratively according to the 
right-hand side of  (19). This algorithm has been programmed and it was found that it 
neither increased function hi monotonically,  nor always converged.  In fact, a (random) 
data set was found for which the algorithm oscillated between two different function 
values. It can be concluded that building an algorithm on the basis of  the normal 
equation alone is a hazardous enterprise, which may lead to nonconvergent  algorithms. 

An Algorithm for Maximizing K 1 (X) 
The maximization of  the function h i (X)  = •l hi(x/)  = Xk Zl  tr (X~AkXl) 

(X)CkX/)-1, subject to X'X = I, can be handled via the minimization of  a majorizing 
function, as follows. Because h i (X)  is not a special case of  H I (X ) ,  we cannot  use the 
minimization of  GI (X)  for that purpose. However ,  it is easy to derive a majorizing 
function, by summing functions that majorize - h  1 . Specifically, the function - h i  (X) is 
majorized by 

r p r p r 

g , ( X ) - - - - Z  G l ( x l ) = - - 2  Z Z W'ktA~/2x, + Z Z w'ktwk, x)Ckxt, 
l=l  k = l  l=l  k=l l=l  

(20) 

where wkt ---- (x)0 CkXlo ) -IA/~/2 X/0, and x/0 denotes the current  x t . It is readily verified 
that ~ 1 (X0)  = ~ 1 (X0)"  Hence,  we can decrease K! by iteratively minimizing or, which 
is simpler here, decreasing gl .  To see how we can decrease g l ,  we first rewrite it as 
follows. Le t  W k be defined as the n × r matrix with columns wkt, and D k as the r × 
r diagonal matrix with elements wk/wkt on the diagonal, l = I ,  . . .  , r ,  k = I ,  . . . ,  p ,  
hence D k = (Diag (X'oAkXo))(Diag (X'oCkXo))-2. Then we can rewrite ~I(X)  as 
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P P 

~l(X) = - 2  ~'. tr W'kA2/2X + ~, tr X'CkXDk.  
k=l k=i  

(21) 

The problem of decreasing gl (X) over columnwise orthonormal X can be handled by 
a procedure described by Kiers and ten Berge (1992). Specifically, they have proved 
that we decrease gl by taking X as PQ', where P and Q are taken from the singular 
value decomposition (SVD) 

P P P 

M =  2 X p k X o D k -  2 X CkXoDk + 2 E A1/2Wk = PDQ',  
k = l  k = l  k = l  

(22) 

and Pk is taken larger than or equal to the first eigenvalue of Ck (see Kiers & ten Berge, 
pp. 374-375). Note that in (22) we use A~/2 , but in the algorithm we do not need to 
compute A2/2 explicitly, because the term in which it appears, A~/2Wk, equals 
AkX0(Diag (X'oCkXo)) -1, and thus involves Ak itself rather than its square root. On 
the basis of (22), one can construct an algorithm for iteratively updating X such that 

l (X) increases monotonically, and, because hi (X) is bounded above, the algorithm 
must converge to a stable function value. 

It is interesting to note that, in the special case where Ck = I, k = I, . . . ,  p, 
we have hi(X) = tr X' Xk AkX,  and the algorithm reduces to computing M = 
2 ~-.k XoDk - 2 Y k XoDk + 2 Y k A 1 / 2 W k  = 2 Y-k AkX0(Diag (X~X0)) -1 = 2 Zk 
A k X  o, obtaining its SVD M = PDQ',  and setting X = PQ',  iteratively. This is 
equivalent to the Bauer-Rutishauser algorithm (see Kroonenberg & de Leeuw, 1980, 
pp. 74-75) applied to Y-k Ak, a generalization of the power method for computing the 
first r eigenvectors of a symmetric matrix. 

In the present section, it has been assumed throughout that A k is p.s.d., k = 
1 . . . .  , p. In the next section, it will be shown how we can modify the algorithms such 
that they can be used for maximization in cases where Ak is not p.s.d. Moreover, it will 
be shown how the procedures can even be modified to minimize the functions at hand. 

Maximizing and Minimizing HI(X),  ht(x) and hi(X), when a k is not p.s.d. 

The assumption that Ak is p.s.d., k = I . . . .  , p, was crucial in the derivations of 
the algorithms in the previous section. Nevertheless, it is fairly simple to find algo- 
rithms for the maximization of these functions when A k is not p.s.d., as will be shown 
in the present section. As a by-product, it will also be shown how we can minimize 
rather than maximize these functions. First, the case where Ak is not p.s.d, but merely 
symmetric will be treated. Next, we turn to the case where Ak is not even symmetric 
(but merely square). Finally, we will consider the minimization of the functions at hand. 

Case 1: A k Symmetric but not p.s.d. 

We can rewrite HI(X) as 

P P 

Hi(X) = ~ tr (X'(Ak - akCk)X)(X'CkX) -1 + r ~ ak,  
k = l  k = l  

(23) 

for arbitrary scalars ak, k = 1 . . . .  , p. We choose oL k such that T,, - (A ,  - akC,)  
is p.s.d., k = 1, . . . ,  p. The second term of HI(X) is constant and the first is of the 
same form as HI(X) but now involving p.s.d, matrices -(k. Hence, the algorithm 
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derived in the previous section can, after replacement of A k by A~ k, be used to maxi- 
mize Hi(X) .  Obviously, for the maximization of hi(x) and hi(X) the same replacement 
can be used. 

It remains to find out how to choose a k such that A k - CtkC k is p.s.d. As above, 
it is assumed that Ck is p.d., hence we can write (A k - akCk)  = CI/2CkI /E(Ak - 
a C )C-1 /2C 1/2 which is p.s.d, as soon as C~I/2(A k - a k C k ) C ~  l/z k k k k , :-  
( C ~  I/2AkC ~- 1/2 _ akl)  is p.s.d. The latter matrix is p.s.d, if we choose ak smaller than 
or equal to the smallest eigenvalue of C k l / 2 A k C ~  1/2. Clearly, i f A k  is p.s.d, we can 
take a k equal to 0. 

Case 2: Ak  Asymmetric 

I fAk is asymmetric, we first write At, as (Sk + N k ) ,  where Sk = ½ (Ak + A~,), 
1 - A~), called the "skew-symmetric called the "symmetric part" of Ak, and Nk = :(Ak 

part" o fA k. Then HI(X)  can be rewritten as 

P 

HI (X) = 
k=l 

P 

tr ( X ' A k X ) ( X ' C k X ) - I  = E tr (X ' (Sk  + N k ) X ) ( X ' C k X ) - I  
k=l 

p p 

= ~] tr ( X ' S k X ) ( X ' C k X )  -1 + ~ t r  (S'NkX)(S'CkX) -1. 
k=l k=l 

(24) 

As is readily verified, the trace of the product of a symmetric and a skew-symmetric 
matrix is zero. Hence, the second term in the right-hand side of (24) vanishes. There- 
fore, without affecting the function value, we can replace Ak by Sk in Hi (X) ,  and, 
obviously, also in hi(x) and hi(X).  I fSk is p.s.d., we can proceed as with the original 
H1, hi and hi functions. I fSk is not p.(s.)d., we can replace it by Sk - akCk to make 
it p.s.d., as in Case 1. 

Case 3: Minimizing Hi ,  hi and hi 

Minimizing H I(X), hi(x) or Hi(X) is equivalent to maximizing the same function 
with A k replaced by - A  k, k = 1, . . . ,  p. If - A  k is p.s.d, we can proceed as in the 
previous section. If - A  k is not p.s.d, and maybe not even symmetric, we use the 
approach described for Cases 1 and/or 2. 

In the present section, it has been shown how the algorithms for maximizing 
HI(X),  hi(x) and hi(X) can be modified to handle cases where A k is not p.s.d., and 
thus we have completed the description of the algorithms for maximizing Hi (X), h 1 (x) 
and hi(X).  In the next section, we will propose algorithms for maximizing H2(X), 
h2(x) and hz(X). Here, no assumptions will be made with respect to the matrices A k at 
all. 

Maximizing H 2 ( X ) ,  h2 (x  ) a n d  h 2 ( X )  

Maximizing H2(X ) 

As has been mentioned above, we consider maximization of the function H2(X) = 
Y-k tr ( X ' A k X ) ( X ' A ' k X ) ( X ' C k X )  -1 subject to X ' X  = I. Without constraints, the 
function has no maximum. Obviously, X ' X  = I is not the only possible constraint. An 
alternative, and at first sight meaningful constraint is tr X ' X  = I. However, it can be 
proven that, subject to this constraint, the function has no maximum either, but only a 
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supremum. Still other constraints are conceivable, but we limit ourselves to the con- 
straint X ' X  = I. 

As has been mentioned above, to decrease -H2(X)  we can decrease G2(X), see 
(13). The function G2(X) can be written as 

P P 

G2(X) = - 2  ~ t r A k X W k X ' +  ~, tr CkXW'kWkX' ,  
k = l  k = l  

(25) 

where W k = X'oA'kXo(X'oCkXo)-l .  To minimize G2(X) subject to X ' X  = I, a closed- 
form solution does not seem available. However, it is readily seen that G2(X) is a 
special case of the general function considered by Kiers and ten Berge (1992). Hence, 
we can use their procedure to decrease G2(X). Specifically, according to Kiers and ten 
Berge (pp. 374-375), we first have to compute the matrix 

P 

M =  2 ~'~ 
k = l  

p p P 

AkXo - ~ ( - 2 A k ) X o W k  - ~ (--2Akl 'XoW'k + 2 ~ pkXoW'kWk 
k = l  k = l  k = l  

P 

k = l  

CkXo W'k Wk, (26) 

where Ak is taken larger than or equal to the first eigenvalue of the symmetric part of 
( - 2 A  k) ® (W~) and Pk is taken larger than or equal to the first eigenvalue of Ck, k = 
1 . . . .  , p. Next, we compute the SVD M = PDQ' and update X as X = PQ' .  

We have now described a procedure for monotonically increasing H2(X) subject to 
X ' X  = I (as summarized in Appendix A). If HE(X) is bounded above, this procedure 
converges monotonically to a stable function value. It can be proven as follows that, 
subject to X ' X  = I, HE(X) is indeed bounded above. Defining Yk ---- C1/2X(X'CkX) -1/2, 
which is columnwise orthonormal, and using the SVD C~ 1/2A--kk -- UAV', we have, for each 
term of HE, tr (X'CkX)-I(X'AkX)(X'A'k X) = tr Y'kCkl/2AkXX'A'kCkl/Ey k = 
tr Y'kUAV'XX'VAU' Yk. According to a result by ten Berge (1983), this trace is smaller than 
or equal to the sum of the first r diagonal elements of the fixed matrix A 2, from which it 
follows that HE(X ) has a fixed upper bound. Hence, the above algorithm must converge to 
a stable function value. An alternative way of proving that HE(X) is bounded is by noting 
that H2(X ) is a continuous function on a compact set. 

An Algorithm for Maximizing h2(x): The Special Case Where X is a Vector 

In the special case where X = x, the function H2 reduces to h2(x) = 
# ,~t t 1 Zk tr (x Akx) (x Ckx)- , and the update for x (subject to x'x = 1) can be obtained by 

applying the above algorithm for maximizing H2(X). However, an alternative proce- 
dure, employing a closed-form solution for minimizing (rather than merely decreasing) 
G 2 is possible now. Specifically, in this case, Wk reduces to the scalar w k = 
(xb CkX0)-I(XbAkXo), and we have to minimize the majorizing function 

p p 

g2(x) = - 2  ~ x 'wkAkx  + ~ XtWkCkX,2 
k = l  k = l  

(27) 

subject to x'x = 1. The minimum of g2(x) is obtained by taking x as the first eigenvector 
of the symmetric part ofY k (2wkA k - w2Ck).  Because the function h2(x), constrained 
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by x'x = 1, is bounded above, we obtain a monotonically convergent algorithm by 
iteratively updating x in this way. The algorithm is summarized in Appendix A. 

An Algorithm for Maximizing h2(X) 

The maximization of h2(X) -- ~'-I h2(x/) = ~"k ~'l (XlAkXl)2(XlCkXl) -1 can be 
handled by minimizing a function that majorizes -hE(X). Such a function is given by 

r p r p r 

g2(X) ~ E g2(x/)= - 2  E E X~wkIAkXl + E E X'tw2,Ckx', 
l=l k=l  / = !  k = l  l=l 

(28) 

see (27), where wkl = (x)oCkXlO)-1 (X,loAkXlO)" This function can be rewritten as 

p P 

~2(X) = - 2  ~ tr X'AkXWk + ~ tr X'CkXW 2, 
k=l k=l  

(29) 

where Wk denotes the diagonal matrix with diagonal elements wkt. This function is a 
special case of the one examined by Kiers and ten Berge (1992), and can be decreased 
using their procedure. Specifically, we take 

p p P P 

M= 2 • AkXo + 2 Z (Ak + A'k)XoWk + 2 Z pkXoW~- 2 ~_~ CkXoW~, 
k = l  k = l  k = l  k = l  

(30) 

where A k is taken larger than or equal to the first eigenvalue of the symmetric part of 
( -2Ak)  ® (Wt), and Pk is taken larger than or equal to the first eigenvalue of C k, 
k = 1 . . . . .  p. Next, we use the SVD M = PDQ' and update X by taking X = PQ'. 
Again, the boundedness of the function guarantees that the procedure of iteratively 
updating X in the above described way converges to a stable function value. 

In the special case where Ck = I, k = 1 . . . . .  p, we have h2(X) = 
Xk Y t (X~AkXt) 2 , which is the function maximized by INDSCAL subject to column- 
wise orthonormality of X (e.g., see, Kiers, 1991, p. 203). In that case, M = 2AkX 0 + 
2 Y-k (Ak + A'k)XWk. If, moreover, Ak is p.s.d., we can take Ak = 0, k = I, . . . ,  
p, obtain M as 4 ~k AkXWk, and obtain X as PQ' from the SVD M = PDQ'. This 
algorithm is equivalent to the one derived by ten Berge, Knol and Kiel's (1988). 

Convergence Properties and Performance of the Algorithms 

In the descriptions of the algorithms given above, it has consistently been men- 
tioned that the algorithms converge monotonically to a stable function value. This, by 
itself, does not imply that the parameter matrices converge to an accumulation point, 
nor even that (X i+ 1 _ X i) tends to zero as i ---> o0. In Appendix B, it is proven that, 
under mild assumptions, the differences between update and predecessor indeed con- 
verge to zero. This implies that X converges to a single limit point or a continuum of 
limit points (Ostrowski, 1969, p. 203). By straightforward but tedious matrix algebraic 
manipulations, it can be verified that these limit points satisfy the first order necessary 
conditions (stationary equations) for the maximization problems at hand. As a result, all 
limit points are local maxima, local minima, or saddle points. Because our algorithms 
increase the function value, they can hit local minima only if they happen to land in a 
matrix X that satisfies the stationary equations exactly, which can be excluded for all 
practical purposes. The algorithm may converge to a saddle point, but this also seems 
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unlikely to happen in practice, since small perturbations may be sufficient to make the 
algorithm find a function value above the saddle point and hence cause the algorithm to 
continue, after having slowed down near the saddle point. For these reasons, the 
algorithms will in most cases converge to local maxima. Whether these are also global 
maxima has to be found out by using several restarts. In the small simulation study 
reported below, it is studied how severe the local minimum problem is for each of the 
algorithms. 

The algorithms proposed in the present paper have all been programmed in 
PCMATLAB, according to their description in Appendix A. The algorithms were 
tested on a PC with an 80486 processor, by applying them to 40 data sets. Specifically, 
matrices A1 . . . .  , Ap and C1, • • • ,  Cp were constructed using p = 2 o r4  and n = I0 
or 20, with five replications in each condition. The matrices Ak were random p.s.d. 
matrices (constructed as the inner product moments of  random n x n matrices) and the 
matrices Ck were random p.s.d, matrices to which the matrix I n w a s  added to prevent 
near singularity. The data were analyzed (using r = 3 or 6) by all algorithms using one 
"rational start," which was based on the maximum of t r  (X' Y.k AkX) (X '  Y-k CkX)  -1,  
and four random starts. Each run was considered converged if consecutive function 
values differed by less than .0001%. In Table 2 the average computation times and 
numbers of  iterations (in all conditions) for one run of an algorithm are reported. In 
addition, it was studied how often the algorithms hit local maxima. Although we do not 
know whether or not a function value is the global maximum, a simple comparison of 
function values does indicate whether a function value is likely to be a local maximum. 
We considered a value a local maximum if it differed more than.  1% from the highest 
function value for this data set. The incidence rates of such local maxima are reported 
in Table 2 as well (where each cell pertains to 25 runs of the algorithm, of which at most 
20 can lead to what we called a local maximum). It can be seen that the incidence rates 
range from 0 to 10. The average numbers of iterations are between 17 and 493. The 
computation times, ranging from 3 to 92 seconds, depend primarily on the sizes of the 
arrays. The 'rational' start did not systematically outperform the other starts. 

Application to Some Practical Optimization Problems 

Application 1: Reciprocal PCA 

Nierop's (1993, p. 95) "Reciprocal PCA" problem consists of maximizing 

x ' - ~  x'] ' (31) 

over x, where Sk denotes a p.s.d, matrix. We will assume that Sk is p.d. here and solve 
the problem as follows. This problem is equivalent to minimizing Y~k (x'x)(x'Skx) -1 , 
which is a special case of hi (x). This minimization, in turn, is equivalent to maximizing 

P X ' A k  X 

f l (x)- -  ~'~ x ' S k x '  
k = l  

(32) 

where ,(k = ( - I  - akSk) and ak is I taken smaller than or equal to the smallest 
eigenvalue of S~1/2(-I)Sk-1/2 = - - S k "  , thus rendering ,4to p.s.d. This eigenvalue is 
equal to the negative of the largest eigenvalue of S~  1 . The largest eigenvalue of Sk-l, 
in turn, is equal to the reciprocal of the smallest eigenvalue ofSk.  Clearly, fl is a special 
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TABLE 2 

Performance of the Algorithms 

Incidence Rates of Local Maxima (out of 20) 

n p ?" ~l 1 H 1 ~I 2 H 2 

10 2 3 1 1 3 3 
10 2 6 3 0 0 2 
1 0 4 3  9 9 5 5 
1 0 4 6  5 2 3 0 
20 2 3 4 6 10 5 
2 0 2 6  9 0 4 3 
2 0 4 3  3 9 3 5 
20 4 6 6 0 10 6 

Average Numbers of  I terat ions 

n p r hi H1 h2 H2 

10 2 3 130.0 30.4 138.7 46.2 
10 2 6 308.1 17.6 147.0 27.9 
10 4 3 159.1 43.4 108.0 58.4 
10 4 6 288.7 44.7 177.6 72.4 
20 2 3 351.9 56.1 407.7 120.4 
20 2 6 492.5 44.6 390.3 112.5 
20 4 3 274.3 69.7 188.4 122.2 
20 4 6 406.2 60.9 332.5 146.9 

Average Computation Times (in Seconds) 

n p r hi H1 h2 H2 

i0 2 3 5.1 3.7 8.6 3.3 
i0 2 6 18.8 5.7 12.4 3.1 
10 4 3 12.5 10.5 15.2 8.1 
10 4 6 32.1 24.7 25.7 13.3 
20 2 3 24.4 14.8 43.5 13.6 
20 2 6 49.1 45.9 46.5 16.5 
20 4 3 35.3 31.2 36.8 28.5 
20 4 6 71.4 91.5 72.2 38.7 
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case of hi,  so we can use the algorithm for maximizing h 1 after replacing A k by ( - I  - 
akSk), and Ck by S k, k = 1 . . . .  , p. 

Application 2: Binormamin 
Harman (1976, p. 312) discussed Kaiser and Dickman's (1959) binormamin method 

which is a method for oblique simple structure rotation. It was proposed as "an attempt 
to correct for the " too oblique" bias of the quartimin criterion and the " too  orthogo- 
nal" bias of  the covarimin criterion" (Harman, p. 312). Harman has not given an 
algorithm for this procedure. It is possible to construct an algorithm rather easily, as 
follows. The binormamin method consists of minimizing the criterion 

r r Ij 2 /32 n j~l 
f2(T)= ~ ~ ~ tU]Pt[ Jqtl[ [U:Pt tT"):qt1-1 

I":/ l":/J' p=l q~p =1 "= 

where Vjp denotes element (j ,  p) of the obliquely rotated reference structure matrix, 
and hj denotes the communality of variable j .  If the unrotated reference structure is 
denoted by S, and, after division by hj, its j-th row is denoted by aj, then Vjp/hj = 
a)tp, and we can write f2 as 

r ] 
f2(T) = ~ ~ (a)tp)2(a)tq) 2 (a)tp) 2 (a)tq) 2 , (34) 

p=l q~p j=l JLj=l j=l 

which has to be minimized over the columns of T, subject to tp tp 1, p I, . .  , r. 
The problem can be handled by updating one column of T, say tp, at a time. For column 
tp, the problem is to minimize 

f2(tp) = ~ (aj'tp)2(ajtq) (ajtp) 2 (a)tq) 
q~p =1 j=l j~-I 

= ~ t'p ~, (a)tq)2(aja))tp t• (a)tq) ajaj' tp 
q~p j=l =1 j=l 

r 

= ~_~ (t'pAqtp)(t'pCqtp) -1, (35) 
q~p 

where Aq and Cq are defined implicitly by (35). Clearly, (35) is a special case o fh  1 , and 
can be minimized over tp by first replacing Aq by Aq = (-Aq - aqCq) and then using 
the update described in (16). Alternately updating all columns of T in this manner, we 
have an algorithm for monotonically decreasing f2(T). 

Application 3: Generalized Discriminant Analysis 
A straightforward generalization of discriminant analysis to the situation with more 

than one group of individuals, with scores on the same variables, is as follows. Let B k 
denote the between groups covariance matrix and W k the within groups covariance 
matrix for the k-th group. If it is desired to find a discriminant function that is common 
over groups (in that it employs the same discriminant weights), we have to maximize 
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P x'BkX 
f3(x) = ~ X, Wk x ,  

k = l  

(36) 

which is a function of the form ht (x). Since the interpretation of a discriminant function 
is based on the discriminant weights, the above problem seems a promising method for 
simultaneous discriminant analysis in more than one group of individuals. This method 
will be particularly interesting in cases where it is assumed that the same discriminant 
functions ought to rule in the different groups. If the maximum of (36) is (almost) equal 
to the sum of function values obtained in separate discriminant analyses, it can be 
concluded that the different groups indeed support the same discriminant functions. 

If more than one discriminant function is to be found, we may consider maximizing 

p r t ~:Bkxl 

"¢3(x1 = x' tWkXt'  

subject to X ' X  = I. Unfortunately, this is no longer a straightforward generalization of 
discriminant analysis, because in discriminant analysis the discriminant components, 
rather than the discriminant weights, are taken columnwise orthonormal. This is not to 
say, of course, that the resulting method is meaningless. Future research is needed to 
study the properties of these generalizations of discriminant analysis. 

Application 4: Variants of  SCA 

Some special cases of H 1 have appeared in the literature. Specifically, Millsap and 
Meredith's (1988) simultaneous components analysis (SCA) consists of maximizing 
Y k tr X'C2X(X'CkX)  -1, where Ck denotes a covariance matrix. Kiers and ten Berge 
(1989) have provided an alternating least squares algorithm for their problem. The 
function at hand is the special case of HI where A k = C2; the Kiers and ten Berge 
algorithm is the corresponding special case of our present algorithm. Millsap and 
Meredith considered some variants of the SCA problem as well, for instance, that of 
maximizing Y.k tr X' Ck Gk CkX(X' CkX) - 1 (p. 126), where Gk denotes a p.s.d, weight 
matrix. Obviously, this function also is a special case of H z, and hence our procedure 
gives a monotonically convergent algorithm for maximizing this function. A third spe- 
cial case is Kiers and ten Berge's (1994) variant of SCA, called SCA-S, which consists 
of maximizing Zk tr X'X(X 'C~  IX)-1.  The algorithm they proposed is a special case 
of the one proposed here for maximizing Hi .  

Application 5: Simple Structure Rotation for SCA-S 

The aim of Kiers and ten Berge's (1994) SCA-S method is to obtain components in 
p different data sets (with the same variables) such that the resulting structure matrices 
(S k) are proportional to each other, and hence proportional to a single matrix, denoted 
as S. Their solution is determined only up to an oblique rotation. To exploit this 
rotational freedom, they proposed to rotate S such that the resulting matrices S k have 
optimal simple structure, and developed an iterative algorithm for obtaining this rota- 
tion. One step of their algorithm amounts to maximizing 

~ t~Altt 
f4(T) = t~B,tt ' 

k = l  = 

(37) 
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where A t = S ' D I S ,  D l is a binary diagonal matrix, B k = S ' R ~  1 S ,  and Rt~ denotes the 
correlation matrix for set k. Each column of T is constrained such that t)tt = I, hence, 
the problem of maximizing f4 can be separated into r separate problems of maximizing 

p t = S '  t~Altt 

fs(t/) _~_r_t,l B k tl , 
(38) 

for I = 1, . . .  , r. Clearly, the function f5 is a special case of hi. In fact, Kiers and ten 
Berge proposed to maximize (38) by a special case of the presently proposed algorithm 
for maximizing hi.  

Application 6: Set  Components  Analysis  

Nierop (1993, p. 41) has discussed a problem which is a special case of that of 
maximizing ~2(X). His problem amounts to maximizing 

p r ¢ t~,~, X ",2 ~Xl k l) 

fr(X)--- E ~ x ) s 2 x l  , 
/¢=! 1=1 

(39) 

where Sk denotes a matrix H'kHk and Hk contains scores of observation units on the 
same set of  variables, measured in the k-th sample. This function is the special case of  
~2 with A k = Sk and Ck = S 2 • It can be verified that our algorithm for maximizing h2 
is closely related, but slightly different from the procedure for updating X used by 
Nierop (pp. 151 If). 

Discussion 

In the present paper, we have considered only the functions HI and H2 (and their 
variants) as special cases of the general function - H ( X ) .  Other special cases where 
Fk(X) = ( X ' A k X )  2 and or where s = 2 can also be handled by decreasing G(X). 
Suggestions on how G(X) can be decreased in those cases can be obtained from the 
author. 

The performance of the present algorithms seems quite satisfactory. There is a 
mild local maximum problem, but when a large number of restarts is taken, the chance 
of hitting a local optimum is small. The 'rational' start employed in the simulation study 
did not outperform the random starts. However,  in specific contexts it may be possible 
to obtain other, more rational starts than the one considered here, and these may 
further enhance the chance of finding the global maximum. In general, the algorithms 
require considerable, but not prohibitive numbers of iterations. As with other majoriza- 
tion based algorithms, it can be expected that the algorithms converge linearly, with a 
relatively slow convergence rate. This was confirmed by the iterative processes for the 
first runs of  the algorithms when applied to the data sets of our simulation study. 

We have hinted at rotational or even transformational indeterminacy in the solu- 
tions for the Hi and H2 maximization problems. It can easily be seen that X in H1 can 
be determined only up to a nonsingular transformation, and that the X in H2 can be 
determined only up to an orthonormal rotation, because such transformations cancel in 
the function formulas. For the X that yields the maximum of hi or h2 it seems that such 
transformations are generally not allowed. In fact, in the analyses of the 40 data sets 
from the simulation studies, considering the first three starts only, we found that when- 
ever two equal function values were found (as happened in 37 cases for both algo- 
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rithms), the corresponding solutions were equal as well (up to permutation). Unfortu- 
nately, attempts to prove this type of uniqueness have failed so far. 

Dinkelbach (I967) has described a procedure for maximizing a quotient of two 
functions which is, at first glance, similar to certain of the problems discussed in the 
present paper. Specifically, he has shown that one can monotonically improve f(x)/g(x), 
where f and g are, for instance, quadratic forms, by taking x such that it maximizes 
fix) - f(x 0)(g(x0)) -lg(x). However, his method cannot be generalized straightforwardly 
to that of maximizing a sum of quotients of such functions. Moreover, even in the case 
of maximizing only one quotient his procedure differs from ours. Specifically, if f(x) = 
x'Ax and g(x) = x'Cx, his algorithm boils down to taking the first eigenvector of A - 
(xbAx0)(x~ Cx0)-IC.  Our algorithm for maximizing h 1 for p = 1 updates x according 
to (15) as x = ( x b C x o ) ( x b A x o ) - l C - I A x o ,  possibly normalized to a unit sum of 
squares. This method comes down to the well-known power method applied to C -  1A. 
Clearly, Dinkelbach's method is much more involved since it requires the full compu- 
tation of a first eigenvector in each iteration. 

Appendix A 

A Summary of the Algorithms for Maximizing the Six Functions of Table 1 

Maximization o f  H 1 

1 t 1. Ak := ~ (Ak + At,) ,  k = 1, . ; ; ,  p 
2. a k := max (0,/~1 (Ck l /2AkCf f~L) ) ,  where ~1(') denotes "smallest eigenvalue 

of,"  k = 1 . . . . .  p 
3.  A k " =  A k - C t k C  k 

4. Initialize X (e.g., randomly) and e (e.g., 0.000001) 
5. Hi := Y P tr ( X ' A k X ) ( X ' C k X )  -1 k = l  

Iterative part 

6. X 0 := X; H~ ld := H 1 
, . _  , - I  t , - 1  _ 7. W k W  k .-- (XoCkXo)  (Xo AkXo) (XoCkXo)  , k - 1 . . . . .  p 

8 .  P , - 1  P , - 1  Vec (X) := (Yk=l ( W k W k ) ® C k )  ~'k=l Vec (AkXo(XoCkXo)  ) 
9. X := Mat (X), where MSVVy--denotes the inverse operation of Vec (.) 
10. (optional:) orthonormalize X by the Gram-Schmidt procedure 
11. H 1 := Y-~=I tr ( X ' A k X ) ( X ' C k X ) - I  
12. If H 1 - H~ ld > H 1 e go to Step 6, else consider the algorithm converged 
13. After convergence, compute the value of the original function as H 1 + 

r ~ .  k a k . 

Maximization o f  h 1 

Steps 1 through 3 as in the maximization of H l 

4. Initialize x (e.g., randomly) and e (e.g., 0.000001) 
5. h 1 := Y P (X'AkX)(x'Ckx) -1 k = l  

Iterative part 

6. x 0 : = x ; h ~  ld : = h  1 
X " - -  P t - 2  , - 1  P ~ - 1  

7 .  " - -  ( ~ k = l  ( X 0 C k X 0 )  ( X o A k X o ) C k )  ~ ' k = l  ( x 0 C * x 0 ) ,  , , z  A k X o  
8. (optional:) normalize x to unit length: x := x/(x x) 
9. h 1 := E~= 1 (X'AkX)(X'CkX) -1 
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10. I f  h I - h~ ld > h i e go to Step 6, else consider the algorithm converged 
11. After convergence,  compute the value of  the original function as h I + Y-k ak.  

Maximization o f  h i 

Steps 1 through 3 as in the maximization of  H 1 . 

4. Pk :=  Al(Ck),  where Ai(') denotes "first  eigenvalue o f , "  k = 1, . . . ,  p 
5. Initialize X (e.g., randomly,  such that X ' X  = I) and e (e.g., 0.000001) 
6. hi := Y-~'=I tr (Diag (X'AkX))(Diag ( X ' C k X ) ) - 1  

Iterative part  

7. X0 :=  X; ff~ld := hi 
8 .  D k :=  (Diag (X'oCkXo))-2 Diag (X'o AkXo) ,  k = 1, . . .  , p 
9. M :=  ~--ff=l pkXoDk --Eff=l CkXoDk ~ff=i AkXo(Diag(X'oCkXo ) ) - I  
I0. SVD of  M: M = PDQ'  
11. X :=  PQ'  
12. hi := ~ff=l tr (Diag (X'AkX))(Diag (X 'CkX) )  - i  
13. If  K l - ~ l d  > hi e go to Step 7, else consider the algorithm converged 
14. After convergence,  compute  the value of  the original function as hi + r Y-k ak.  

Maximization o f  H 2 

1. Initialize X (e.g., randomly,  such that X ' X  = I) and e (e.g., 0.000001) 
2. H 2 := Y-~=l tr ( X ' A k X ) ( X ' A ' k X ) ( X ' C k X )  -I  
3. Pk :=  AI(Ck), k = 1 , . . . , p .  

Iterative part 

4 .  X 0 :=  X; H~ ld := H 2 
5. W k := X'oA'kXo(XtoCkXo) -1 , k = 1, . . .  , p 
6. At, :=  A l ( ( - A k )  ® W~ + (-A~,)  ® Wk), k = 1, . . . ,  p 
7. M :=  ~ ' = l  AkX0 + Y~=I A k X o W k  q- ~'P=I A'kXoW'k + ~~=1 pkXo w 'kwk  

-Y-.P=i CkXoW'kWk 
8. SVD of  M: M = PDQ'  
9. X : = P Q '  
I0. H 2 := ~ff=i tr ( X ' A k X ) ( X ' A ' k X ) ( X ' C k X )  -1 
11. If  H 2 - H~ ld > H2e go to Step 4, else consider the algorithm converged.  

Maximization o f  h 2 

1. Initialize x (e.g., randomly,  such that x 'x = 1) and e (e.g., 0.000001) 
2. h E := ~-P=I (X'AkX)2(X'Ck x ) - l  

Iterative part 

3. X 0 := X; h~ ld := h 2 
4. Wk :=  xbAkx0(xbCkx0) - l ,  k = I . . . .  , p 
5. M := ~ = 1  (wk(Ak + A'k) -- w2Ck) 
6 .  x : = first eigenvector  of  M 

7. " -  P h2 . -  Y-k=l (x'Akx)2(x'Ck x) - l  
8 .  I f  h2 - h~ [d > h2 e go to Step 3, else consider the algorithm converged.  
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Maximization of  h2 
1. Initialize X (e.g., randomly, such that X ' X  = I) and e (e.g., 0.000001) 
2. Pk :=  AI(Ck),  k = 1 , . . . ,  p. 
3. hE := Y'~=I tr (Diag (X'AkX))Z(Diag (X 'CkX) )  -1 

Iterative part 

4. X0 := X; ~ l d  := hE 
5. Wk := (Diag (X'oAkXo))(Diag (X'oCkXo)) -1,  k = 1, . . . ,  p 
6. At, := A1 ((-At , )  ® Wk + ( - A ~ )  ® W~:), k = 1 . . . .  , p 
7. M := ]2kP=l AkX 0 + Y~=I (ak + a k ) X o W k  + Y-P=I PkXoWk 2 -- X~=I 

CkXo Wk 
8. X : = P Q '  
9. hE := Z~'--A tr (Diag (X'AkX))Z(Diag (X 'CkX) )  -1 
10. If h2 - ~ ld  > h2e go to Step 4, else consider the algorithm converged. 

Appendix B 

Convergence Properties of the Algorithms for Maximizing HI,  hi,  hi ,  Hz, hz and h2 

In this appendix, it will be proven that, under mild assumptions, all algorithms 
proposed in the present paper have the property that the difference between update and 
predecessor converges to zero. As has been mentioned, this type of convergence does 
not yet imply that the vectors x or the matrices X converge to a stable solution, but, 
from a result by Ostrowski (1969, p. 203) it does follow that X converges to either a 
stable point, or to a continuum of limit points. Also, on the basis of the convergence of 
differences, it can be proven that at convergence the normal equations are satisfied. 

Before proving that the differences between update and predecessor converge to 
zero, we introduce a simplified notation, as follows. First of all, we treat all maximi- 
zation problems as minimizing the negatives of the functions, and denote the latter as 
H(X), as was already introduced in (8). In fact, H(X) of (8) has - H i ( X ) ,  -hi(x) ,  
- H z ( X )  and -hz(x) as special cases, but in the present appendix, we use H(X) also to 
cover -h i (x)  and -h2(x). To further simplify our notation, we write h i -= H(x i ) ,  where 
X i denotes the values of X after iteration i. Hence, the monotone convergence of the 
algorithms implies that h i+1 < h i and L i m i ~  h i, denoted as h =, is a fixed, but 
unknown value. 

In the derivations of the algorithms, it has been seen that all algorithms involve the 
minimization or decrease of a majorizing function G(X). In the algorithms for maxi- 
mizing Hi (X) ,  hi(x) and h2(x), the majorization functions GI(X),  gl(x) and g2(x), 
respectively were minimized. In the other algorithms, for maximizing K 1 (X), h2(X) and 
H2(X), the employed majorization functions were decreased according to Kiers and 
ten Berge's (1992) procedure, which itself, in turn, is based on minimizing a majorizing 
function. The functions minimized by the latter procedure, denoted here as ~I(X),  
kE(X) and K2(X), respectively, majorize fgl(X), ~,2(X) and GE(X), respectively, and 
thus indirectly majorize the negatives of the original functions. To describe these ma- 
jorizing functions in a general notation, we denote the primary majorizing functions as 
G(X), with gi _~ G(xi) ,  and the secondary majorizing functions as K(X), with k i =-- 
K(xi ) .  

In terms of the above notation, it follows from the majorization inequalities em- 
ployed that, for all algorithms, we have H(X i+1) -< G(X i+1) --- K(X i+l) -< K(X i) = 
G(X i) = H(x i ) ,  hence 

hOO_<... < hi+l ___ gi+l < ki+l < k i = gi = h i ' (40) 
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where the k.functions are used only in three of  the six problems. It follows from (40) 
that 

L i m  (g i  - g i + l )  = 0 ,  (41) 
i - - ~  

and 

L i m  ( k  i+1 - g i + l )  = 0.  (42) 

Result (41) will be used for the algorithms involving one majorizing function only; result 
(42) will be used for the algorithms involving both majorizing functions. It will be shown 
for all algorithms that it follows from either (41) or (42) that 

Lim ( X  i+i - X i) = 0,  (43)  
i---*~ 

hence that the differences between update and predecessor  converge to 0. 

P r o o f  o f  (43) f o r  the A l g o r i t h m s  f o r  M a x i m i z i n g  HI ( X )  a n d  h l (X) 

In the algorithm for maximizing H I ( X ) ,  the majorization function is GI (X) ,  as 
given by (14). In order to use (41), we will elaborate (g/ - g/+l) .  First, we  note that 
GI (X  i) can be written as 

gi= GI ( X  i) = c + IIs - T i Vec (xi)ll 2, (44) 

where c and s are constants,  defined implicitly in (14), and 

wl ® c l'] 
T i = ~ , 

® 

where W~ - A I I 2 x i ( x i ' c k  X i )  -1. The expression for GI (X  i+1) is relatively simple, 
because we can use that Vec(X i+ I ) = ( T  i , T i) - 1 T i 's, assuming that T i has full column 
rank. Then we find gi+l = c + II s - T i ( T i ' T i ) - I  Ti'sll 2, and we have 

g i _  g i + l  = [IS - T i V e c  (Xi)l[ 2 _ IIs - T i ( T i ' T i ) - I T / ' s l [  2 

= V e c  ( x i ) ' T i ' T  i V e c  ( X  i) - 2 s ' T  i V e c  ( X  i) + s ' T i ( T i ' T i ) - l T i ' s  

= I l T i ( T i ' T i ) - l T i ' s -  T i V e c  (x i ) [ [  2 

= liT i Vec ( X  i+l) - T i V e c  (xi)II 2 

= (Vec ( X  i+1 - x i ) ) ' T i ' T i ( V e c  ( X  i+l - x i ) ) .  (45) 

Because  Limi__,® (gi - gi+l)  = 0, we have Limi__,® ( e i ' T i ' T i e  i) = O, with e i ~ Vec 
(X i+1 - -  x i ) .  I f  T i '  T i is nonsingular and does not tend to a singular matrix either, it 
follows that Limi__,~. ( e i ' e  i) = Limit® (tr ( X  i+1 - x i ) ' ( X  i+l - x i ) )  = O, hence 
Lim/__,® ( X  i+l - X z) = O, which has to be proven. We will now show why this is 
indeed the case, under mild assumptions. The t e r m  e i '  T i '  Tie  i can be elaborated as 
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P 
e i ' T i ' T i e i  = E e i ' ( ( x i ' c k x i ) - l X i ' A k X i ( x i ' c k x i ) - I  ~ C k ) e i  

k=l  

p 

= ~'~ tr (C~/2(X i+1 - x i ) ) ( ( x i ' c k  x i ) - l X i ' A k x i ( X i ' c k x i )  -1) 
k=l 

• ( ( X  i+ t  - x i ) t c ~ 1 2 ) .  (46) 

Each term in the right-hand side of  (46) consists of  the sum of  r quadratic forms. We will 
focus on these quadratic forms now. Assuming that X i is columnwise orthonormal (as 
will be justified later), defining the columnwise orthonormal matrix Y~ - C~/ZXi(X i' 
C k X  i) -lrz, and denoting the smallest eigenvalue of  a matrix by )tmi n ('), we have, for every 
vector z, 

z '  ( ( x i '  c k X i )  - l  X i t  A k X i ( x i '  c k x i  ) - I ) z  

. t v i t t " , - 1 / 2 v i  v i t r - - 1 / 2 A  t",--1/2vi v i , t " , - - l / 2 v i .  
= L .,'x ""k ~tkZk ""k " t k " k  ~tk~ k t_, k ~ L 

t , , ~ - l / 2 A  ..-,-l/2xz t . , . i t f , - 1 / 2 v i v i t l ~ - l / 2 v i . x  
:> A m i n ~  k ,rx k (~ k ) ~ Z At "-" k ~t k ~t k ~ k ..x ,~ ! 

t , r , -  1/2 x ,,-~ - 1/2~ ~ / v i t , , ' , - l / 2 v i v i t f , - 1 1 2 v i x l _ t _ ~  
> Amin~A-~k "takt-'k )Amint"x ~'k " k ' k  '-'/, ~ j~L L), (47) 

where we used twice that z 'Sz -> Amin(S)(z'z), for any symmetric matrix S. Next,  we 
t t  1/2 t t t  1/2 t t ,  1/2 t 2 can use that Amin(X" C~" Y~Y~ Ck- X ' )  = ( O r m i n ( g "  C k- g~)) , where O'.min(') 

denotes the smallest singular value of  the matrix between parentheses. Because X ~ and 
i t r 1/2 ~ 1/2 Y~ are columnwise orthonormal, we h a v e  O'min(X" C k- Y~) ~ O'min(Ck-- ), and it 

follows that 

Z' ( X  i' C k X i )  - 1x i ,  A k X i ( x i ,  C k X i )  - 1 z > A rain ( C k  I]2A k C k  1/2) 

( O r m i n ( C k l / 2 ) ) 2 ( Z ' Z )  ~- C k ( Z ' Z ) ,  ( 4 8 )  

where c k is a nonnegative constant, implicitly defined by (48). Note that, because Ck 
is p.d.,  the constant Ck is positive unless Amin(Ak) = 0. Combining (46) and (48), we 
have 

p 

e i ' T i ' T i e i  > E 

k=l 

ck t r  ( C I / 2 ( X  i+l - x i ) ) ( ( X  i+l - x i ) ' c l / 2 ) ,  (49) 

a n d  i t  f o l l o w s  f r o m  Limi~0o ( e i ' T i ' T i e  i) : 0 t h a t  Limi__,oo (Y-k l'k~ IIIl"""'kl/2tvi+ll,'x --  x i ) [ [  2)  

= 0. As soon as one of  the constants c k is strictly positive, we have Limi_,oo 
(HC~/2(X i+l - xi)[[ 2) = 0. Hence, because C k is p.d.,  L i m i ~  ( X  i+1 - X i) = O. 

The assumption that at least one c k is positive will usually be satisfied. This is because 
for all c k to be zero, we must have Amin(Ak) = 0 for all k. It is very unlikely to have 
A m i n ( A k )  : 0 for all k ,  in practice, and, moreover, it can always be avoided by adding 
eCk to Ak, see (23), which does not change the maximization problem (where e is a 
small positive value). 

It has been shown above that Limi__,oo ( X  i+l - X i) = 0 assuming  that X i is 
columnwise orthonormal. Of course, this is a very strong assumption. However,  in the 
description of our algorithm it has already been mentioned that we can, without affect- 
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ing the function value, orthonormalize X (assuming that it has full rank) after updating 
it. It follows that, if X i has come about by orthonormalizing the i-th least squares 
update o f X  (.(i say), then Limi__,~ (,(.i+l _ X i) = 0. We can express X i+l in terms 
o f X  i+1 as X i+l = GS(,(i+1) where GS(-) denotes applying the Gram-Schmidt trans- 
formation. Obviously, as ,(i+ ! tends to X i, ~ i+ 1 tends to a columnwise orthonormal 
matrix, and X i+1 = GS(.I~ "i+1) tends to.Y~ i+1 . Hence, from Limi__,~ (~I~ ' i+1 - - X  i )  = 0 
it follows that Limi__,~ (X i+1 - X i) = O. 

For h I (x), we can use the proof given above, because the algorithm is a special case 
of the algorithm for maximizing HI (X). 

Proo f  o f  (43) for  the Algori thms for  Maximizing hi (X), H2(X) and h2(X) 

The algorithms for maximizing hi(X),  H2(X) and h2(X) are based on decreasing 
the functions ~I(X), G2(X) and ~2(X), respectively, by the majorization approach 
given by Kiers and ten Berge (1992). Specifically, the functions are majorized by func- 
tions kl (X), K2(X) and ~2(X), respectively. Without giving these functions explicitly, 
we will only give the expression for k i+1 - gi+l, that can be derived directly from 
Kiers and ten Berge (pp. 372-373). Specifically, their formulas (3) and (4) give the 
inequalities that constitute the inequality k(X i+1) --> g(xi+l) .  Hence, the difference 
k(Xi+ 1 ) _ g(Xi+ 1 ) can be derived by computing the differences in right- and left hand 
side of inequalities (3) and (4), as will be elaborated below, for each problem separately. 

For the problem of maximizing hi(X),  we have 

P 
k i + l  _ g i+ l  = k ( X i + l )  _ g ( X i + l )  = ~ P k  t r  EiD~E i' 

k=l 

P P 
- E i ' C  ~ i D i - X ~  k) k , (50) ~'~ tr kC, k--7_, tr D i k l / 2 E i ' ( p k l - C  ~EiD ill2 

k=l k=l 

where E i = (X  i+ 1 _ x i ) ,  D~ = Diag (X  i 'AkXi) (Diag  ( x i '  c k x i )  ) - 2  which is p.s.d., 
and Pk is a value larger than or equal to the first eigenvalue of Ck. From the choice of 
Pk it follows that (pkI  - C~) is p.s.d., or even p.d., if Pk is larger than the first 
eigenvalue of C k. Hence each term in (50) is nonnegative. Therefore, it follows from 
(42) that Limi_~ (tr D~ l /2Ei ' (pk l  - Ck)EiD~ 1/2) = 0, for every k. If (pk I -- C k) is 
p.d. for a certain k (as can always be arranged by choosing Pk larger than the first 
eigenvalue), it follows at once that Limit® (trEiD]~E i') = 0. If (PkI - Ck) is not p.d. 
for any k (as is the case when Pk is chosen equal to the largest eigenvalue of  Ck,  k = 
1 . . . . .  p),  it follows from (42) that the columns of EiD~ 1/2 are orthogonal to the 
columns of  (pk l  - Ck),  for every k. In practice, it is highly unlikely that the matrices 
(pkI  - Ck) have a nonempty intersection of their null spaces. Hence, it can be assumed 
that, even when (pkI  - Cg) !s not p.d., k = I . . . . .  p,  we still have Limi.~= .(EiD~ 1/2) 
= 0, hence Limi_~ (tr EZD]~E t ') = 0. Having proven that L i m i ~  (tr E~D]~E i') = 0, 
it still remains to be proven that Lim. /~  (tr E i E  i') -- O. To do so, we study .the 
matrices D~: From the definition of D]~, it follows for its j-th diagonal element, d]k = 
(x] 'Akx j ) (xJ '  Ckx]) -2 , that 

d j  k >. Amin(Ak) (A  l ( C k ) ) - 2  ~_ Vk ' (51 )  

hence tr (EiD~E i') >- v k tr (E l 'E l ) .  Assuming that A k is nonsingular for at least one 
k, and hence that ~'k > 0 for this k, it follows from Limi_.,~ (tr EiD~E i') = 0 that that 
Limit® (tr E i ' E  i) = O. 
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For the problem of maximizing H2(X), we have from Kiers and ten Berge's (1992) 
formulas (3) and (4) that 

p P P 
k / + l _  g i + l =  ~ A~ tr Ei 'E  i -  ~ tr E i ' ( - 2 A k ) E i W ~  + ~ Pk tr E i w ~ ' W ~ E  i' 

k=l k=l k=l 

P P 
- Z tr Ei'CkEiW~tW~ = e it ~ ( ~ I  - (--Ak ® W~' - A'k ® Wik))e i 

k=l k=l 

P 
+ ~ tr W ~ E i ' ( p k I -  Ck)EiW~ ', (52) 

k=l 

where W~ = X i ' A ' k X i ( s i ' c k x i )  -1 , A.~ is taken larger than or equal to the first 
eigenvalue of  ( - A  k ® W]~' - A'k ® W]~), E i and Pk are defined as before, and e i -: 
Vec (Ei ' ) .  Because all terms in (52) are nonnegative, it follows from (42) that, for 
instance, L i m i ~  (tr W~Ei ' (pk  I -- Ck )E iW~ ') = 0, for all k. Assuming that the 
matrices (pkI  - Ck),  k = I, . . . ,  p ,  have an empty intersection of  null spaces, it 
follows that Lim/__,~ (tr W i ~ z ' i ' E i W ~  ') • k.~ = 0. In order to use the latter result, we need 
an expression for z 'W~ 'W~z  for arbitrary vectors z. Recalling the definition of the 
columnwise orthonormal matrix Y~ ==- C 1 / 2 x i ( x i ' c k x i )  -112, see (47), we have for 
every z 

Z t it i W k WkZ --- z , ( X i , C k  x i )  - l ( x i ' m k x i ) ( x i ' A t k X i ) ( x i ' c k  s i )  -1 z 

= Z ' X  i' C k 1/2 y~ y~, C k  1/2 A k x i x i t a  ~k C k  1/2 y~ y~,  C k  1/2 X i  z 

>_ ( z 'X i 'C;1 /2y~y~ 'c ; l /2Xiz )Amin(Y~ 'C;1 /2Akx ix i 'A 'kC; l /2y ik ' )  

t it -1/2 i it - I /2  i it -1/2 i 2 
> (Z Z)Amin(X C k YkYk  C k X )( trmin(Y k C k A k X  )) 

= (Z 'Z ) (O-min (S i ' f k l / 2y~)2 (O 'min (y i k ' f k l / 2AkS i ) )  2 

>- (Z 'Z) (O'min( fk l /2) )2( tYmin( fk l l2mk))  2, (53)  

which is strictly larger than 0 for at least one k, if the corresponding At, is nonsingular. 
Hence,  from timi__,~ (tr ~ i  ul i t ,~7 i E, i r.t , ,k  , ,k  ~ ) = 0, we have Limi._,~ (tr E i E  i ')  = O. 

For  the problem of  maximizing h2(X), we can derive analogously to the derivation 
of  (52) that 

P 
ki+l gi+l ei'~ (A~/- ( - - A k  ~ i , --  = " W k  --  A k  ~ W ~ ) ) e  i 

k=l 

P 
+ ~ tr W ~ E i ' ( p k I -  Ck)EiW~, 

k=l 
(54) 

where W~ = Dia.g (x . i 'AkXi ) (Diag  ( x i ' c k x i ) ) - 1 .  As above, it follows from (43) that 
Limi__,~ (tr W]~E' 'E '  W]/) = 0, and similarly, assuming that at least one of  the matrices 
Aka is nonsingular, it follows that Limi t® (tr E i E  i ')  = O. 
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Proof of (43) for the Algorithm for Maximizing h 2 (x) 

The algorithm for maximizing h 2 (x) is based on global minimization of the function 
g 2 ( x ) ,  s e e  (27), subject to x'x -- 1. The minimum is found by taking x equal to the last 
eigenvector o f X k  (w~2Ck - w~(A k + A'k)), where w]~ = x i ' A k x i ( x i ' C k x i )  - 1 ,  k = 
1, . . . ,  p .  Elaborating ( g i  _ gi+ 1 ), we find 

t ) ) gi __ gi+l  = X it X (Wk) 2ok -- wk(Ak + Ark) xi -- l~tnm ((w~)2Ck --~w~(Ak +Atk))  • 
\k= 1 

(55) 
- -  i 2 i , Let S i = ~ k ( ( W k )  C k - W k ( A  k + A k )  - -  Am/), where A m abbreviates the expression 

with Amin(') in (55). Using that x i+1 is an eigenvector of  S* associated with eigenvalue 
O, we have 

g i  g i + l  = (x i+ l  -- x i ) , S i ( x i+ l  _ x i ) .  (56) 

Assuming that the last (zero) eigenvalue of  S i has multiplicity one and that S i does not 
tend to a matrix for which the last eigenvalue has multiplicity larger than one (as can be 
expected to hold in practice), it fol lows from Limi~o  (gi _ g i+ l )  = 
Limi~o~ (x i+ 1 _ x i ) ,S / (x  i+ 1 _ xi))  = 0 that (x i+ 1 _ x i) tends to a vector proportional 
to the last (uniquely determinable) eigenvector of  S i. Hence Limi.-,~o (x i+1 - x i - 
/.fix i+1) = 0 for an unknown scalar ~ i .  As a consequence ,  Limi__,oo ((I - /~i)x/+l - 
x i) = 0, and it follows from the unit length constraints on x i+l and x i that (1 - /.fl)2 
tends to 1, hence that/.~i tends to 0 or 2. As a result, we have either Limi__,~ (x i+1 - 
x i) = 0, or Limi--,~ ( - x  i+1 - x i) = 0. The latter can, however,  be avoided by 
determining eigenvectors always such that, for instance, the first nonzero element is 
positive. 
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