
PSYCHOMETRIKA--VOL. 62, NO. 2, 251-266 
JUNE 1997 

W E I G H T E D  LEAST SQUARES FITTING USING ORDINARY LEAST 
SQUARES A L G O R I T H M S  
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A general approach for fitting a model to a data matrix by weighted least squares (WLS) is 
studied. This approach consists of iteratively performing (steps of) existing algorithms for ordinary 
least squares (OLS) fitting of the same model. The approach is based on minimizing a function that 
majorizes the WLS loss function. The generality of the approach implies that, for every model for 
which an OLS fitting algorithm is available, the present approach yields a WLS fitting algorithm. 
In the special case where the WLS weight matrix is binary, the approach reduces to missing data 
imputation. 
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Many methods for multivariate analysis involve fitting a model to a data matrix. Often, 
the model is fit in the ordinary least squares (OLS) sense. That  is, let X denote a given n × 
m data matrix and let M denote an n x m model description for these data. Then least 
squares fitting of this model to the data consists of minimizing 

f (MIX)  = llx - MH 2 --- Z 2 (xii - mij) 2 (1) 
i=l j=t 

over M, subject to certain constraints on M. For instance, in case of principal components 
analysis (PCA), M is constrained to have rank r, where r is a fixed value, usually smaller 
than min(m, n). One way of dealing with this constraint is by writing M = AB' for an n × 
r matrix A and an m x r matrix B, and reformulating the problem as that of minimizing 

g(A, BIX) = II x - AB'll 2. (2) 

In various applications, it is desired to fit a model by minimizing a weighted least 
squares (WLS) loss function. For instance, Bailey and Gower (1990, also see ten Berge & 
Kiers, 1993) propose to approximate a symmetric matrix by a matrix of low rank while 
using differential weighting for the diagonal elements. Gabriel and Zamir (1979) approx- 
imate an asymmetric matrix by a matrix of low rank (as in (2)), while using differential 
weighting for all elements. Similarly, differential weights for the elements are used by 
Carroll, De Soete and Pruzanksy's (1989) procedure for WLS fitting of an N-way array by 
a multilinear model, and by R. A. Harshman's (Personal Communication, October 14, 
1994) procedure for fitting the trilinear model to a three-way array (which, in fact, gen- 
eralizes one of Gabriel and Zamir's procedures). A different type of application of WLS 
is in Verboon's (1994; see also Verboon & Heiser, 1992, 1994) series of methods for robust 
multivariate analysis: He proposes to minimize certain robust loss functions by iteratively 
minimizing a WLS loss function. 

Besides the above explicit applications of WLS, some methods exist that are implicitly 
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based on WLS. For instance, a common approach for fitting data which contain missing 
values (e.g., Commandeur, 1991; Girl, 1990; ten Berge, Kiers & Commandeur, 1993) 
consists of setting the missing data elements initially at arbitrary values, and, in the loss 
function, assigning zero weights to the residuals that belong to these elements. Such loss 
functions can be minimized by a "missing data imputation" approach, which is a special 
instance of the EM algorithm (Dempster, Laird, & Rubin, 1977): By alternately fitting the 
model to the full data set (including estimates for the missing values), and replacing the 
missing elements by the current model estimates for these elements, the weighted loss 
function is decreased monotonically (and assumed to be minimized at least locally). An- 
other implicit application of WLS fitting is maximum likelihood estimation in cases where 
the residuals are assumed to be independently normally distributed with zero mean and 
prespecified variance (see Verboon, 1994, pp. 38-40). In such cases maximum likelihood 
estimation is equivalent to WLS fitting with the weights taken equal to the inverse of the 
standard deviations. Also, WLS is sometimes used for maximum likelihood fitting in cases 
where the variance is not prespecified. In such cases the weights are adjusted in each 
iterative cycle. This is done, for instance, in the Carroll et al. (1989) procedure. 

In all these methods, a WLS loss function is minimized. Let the weights (which are 
considered fixed and nonnegative here) be collected in an n × rn matrix W. Then the WLS 
loss function can be described generally as 

h(MlX, W) = II(x - M)*wll  2 =  w2(xi  - m i i )  2, 
i=1 j= l  

(3) 

where * denotes the Hadamard (or elementwise) product. Here, as in (1), M represents a 
large variety of models that are obtained by various choices of constraints on M. The 
problem of minimizing the WLS function (3) is often much more complicated than that of 
minimizing the OLS function (1). Although special algorithms are available for some of 
the above mentioned WLS problems, there is a multitude of models for which WLS 
algorithms have not (yet) been proposed. Rather than resorting to general gradient based 
optimization techniques, which usually depend heavily on the availability of a good starting 
configuration, in the present paper an approach is used that is based on OLS. Specifically, 
a general procedure is offered that can be used to obtain algorithms for WLS fitting of every 
model for which an OLS fitting algorithm is available. This procedure decreases h(MIX, W) 
monotonically, until a (possibly local) minimum is obtained. This is achieved by iteratively 
decreasing f(MtX ), where X is a matrix that depends on X, W and the values of M at the 
current iteration. It will be shown how X must be taken in order to ascertain that by 
decreasing f(MIR) the function h(MIX, W) is decreased as well. In this way, the compli- 
cated WLS problem is solved by iteratively solving a, usually much simpler, OLS problem. 

The main feature of the present approach for WLS fitting is that it allows one to fit 
every model by WLS for which an OLS fitting algorithm is available. The general idea of 
this approach, to be called iterative OLS here, has recently been described by Heiser 
(1995; see section 8.4, which also contains references to earlier work); in his terminology, 
iterative OLS solves a least distance problem in a nonidentity metric by repeatedly solving 
an unweighted problem by standard methods (p. 177). It is not claimed that the iterative 
OLS approach is the best one for every WLS fitting problem. Special purpose WLS fitting 
algorithms (for certain special models) are likely to be more efficient than the present 
general algorithm. Similarly, it is conceivable that the general method and the special 
purpose algorithms differ in sensitivity to local optima. To give some insight in these 
matters, the iterative OLS algorithm will be compared to some special purpose WLS 
algorithms. Specifically, we will compare the iterative OLS approach to Gabriel and 
Zamir's (1979) criss-cross multiple regression algorithm for WLS fitting of the PCA model, 
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and to Verboon's approach for WLS orthogonal Procrustes rotation. Also, we sill study the 
value of the iterative OLS method for WLS fitting of the DEDICOM model a case where 
no special purpose algorithm seems to be available. We wilt start, however, by describing 
the iterative OLS procedure. 

WLS Fitting by Means of Iterative OLS 

The main purpose of the present paper is to investigate a general approach for WLS 
fitting (that is, minimizing (3)), in cases where an algorithm for OLS fitting (minimizing or 
decreasing (1)) is available. We wilt study an algorithm, which, starting from certain initial 
values for M, updates the values in M iteratively. Suppose, at iteration i, the values in M 
are given by Mi. Then, given Mi, a function k(MtMi, X, W) will be defined that majorizes 
h(MlX, W) and "touches it" at M = M i (i.e., k(MiIMi, X, W) = h(MilX, W)). The majorizing 
function, which is simpler than the original one, is minimized (or at least decreased) over 
M to obtain an update for M. The crucial result that we will use is that, by minimizing such 
a majorizing function, we decrease the objective function, as has been shown, for instance, 
by de Leeuw and Heiser (1980) and Heiser (1987). This majorization principle underlies 
the general WLS algorithm investigated here. 

To find the majorizing function k(MtMi, X, W), the objective function h(MIX, W) is 
written as a special case of the function for which Heiser (1987, p. 344) derived a ma- 
jorizing function. Upon definition of D w as the diagonal matrix with on the diagonal the 
elements of Vec(W), where Vec(W) denotes the vector with the columns of W below each 
other, the function h(MIX, W) can be rewritten as 

h(MIX, W) = II(X - M)*Wll 2 = l [ D w ( V e c ( X )  - Vec(M))[I 2. (4)  

Heiser (1987, p. 345, Eq. (19)) derived a function tha t majorizes and touches a function of 
Z of the form tr(Y - Z)'M(Y - Z), the fact that in his case Z ' Z  = I is irrelevant for his 
result. Clearly, (4) is of the same form as Heiser's function, hence we can use his ma- 
jorization function here. In our case, this majorizing function is 

K(MIM,, X, W) -- ~ +/311Vec(M,) +/3-IDa(Wee(X) - W e e ( M i ) )  - Vec(M)ll 2, (5) 

where a is a constant, and/3 is the largest eigenvalue of D 2, which is the maximum of the 
2 2 squared elements of W, denoted as Wm. Substituting Wm for/3 in (5), and writing Vec( • ) s 

as matrices again, we obtain 

k(MIMi, X, W) = a + w~{IMi + w,T 2w(g)*x - w,~ 2W(2)*Mi - MI[ 2 = a + w~f(MlX,), 
(6) 

where Xi = (Mi + wm2W(2)*X - wm2W(2)*Mi), and W (2) denotes W*W. Thus, we have 
obtained a function that majorizes and touches the WLS function h(MlX, W), and that 
itself is related in a simple way to f(Ml:~i), the loss function corresponding to OLS fitting 
of the same model M to a matrix Xi rather than X. 

When a (closed-form) solution is available for the OLS problem, that is, for mini- 
mizing, or at least decreasing, f(MIXi) and hence k(MIMi, X, W), we can construct an 
algorithm for monotonically decreasing h(MIX, W), as follows. Let M i denote the current 
values for M, and let Mi+ 1 denote the values for M that minimize (or decrease) f(M[Xi) 
and hence k(MIMi, X, W). Then we have 

h(Mi+ 1IX, W) - k(M~+ llMi, X, W) < k(M~IMi,X, W) = h(M~[X, W), (7) 

hence, by updating M in this way, the function h is decreased. By iteratively minimizing or 
decreasing f(M]Xi), we have a monotonically decreasing sequence of function values, 
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which must converge because the function value is bounded below by zero. Thus, we have 
a monotonically convergent algorithm for WLS fitting. Hence, as soon as we have a 
procedure for OLS fitting of a particular model, we can construct an algorithm for WLS 
fitting of the same model by iterative application of the OLS procedure. It should be noted 
that this procedure cannot be guaranteed to lead to a global minimum of the WLS loss 
function. To avoid the chance of taking a locally optimal solution for a globally optimal 
one, it is recommended to run the algorithm from several different starts and assume that 
the best of the resulting solutions gives the global optimum. 

Schematically, we can summarize the iterative OLS procedure as follows: 
Step 1. Initialize M i as Mo; set i = 0 and compute h0 = h(M01X, W). 
Step 2. Compute Xi = (Mi + wm2W(2)*X-wm2W(2)*Mi). 
Step 3. Compute Mi+ 1 as the M that decreases or minimizes I1 i - MII  2 subject 

to the constraints on M. 
Step 4. Compute hi+ 1 = h(Mi+IIX, W); if h i - hi+ 1 > e*h i (for a prespecified 

small value e) set i = i + 1 and go to Step 2; else consider the algorithm 
converged. 

A particularly simple choice for initializing M is by setting M0 = 0, despite the fact that this 
choice will often not satisfy the constraints on M. After one iteration, the constraints on M 
will be satisfied, and M1 will be the OLS solution for fitting M to Wm2W(Z)*X, hence this 
procedure implicitly amounts to starting the iterative OLS algorithm by the OLS solution 
for a weighted version of the data. An alternative possibility is to initialize M by the OLS 
solution for the unweighted data. 

Missing Data Imputation 

A common application of WLS is in the context of handling missing data, where unit 
weights are used for nonmissing values, and zero weights for missing values. It will now be 
shown that, when such binary weights are employed, the algorithm described above re- 
duces to a common missing data imputation algorithm. In other words, the above algo- 
rithm is a direct generalization of the missing data imputation procedure. 

In a missing data imputation algorithm, we start by certain estimates for the missing 
data, fit the model to the complete data (including the estimates for missing data), adjust 
the missing data by equating them to their model estimates, fit the model to the updated 
data, etcetera. By defining W as the binary matrix with zeros indicating missing values, this 
procedure can be described more formally as: 

Step 1'. Initialize M i as M0; set i = 0 and compute h 0 = h(M0[X, W). (The 
function value is computed as the sum of squared residuals for the non- 
missing values.) 

Step 2'. Compute Xi = W*X + ~¢C*Mi, where W c contains the binary comple- 
ments of W. (Missing values are set at their current model estimates.) 

Step 3'. Compute Mi+ 1 as the M that decreases or minimizes tIXi - Mt[ 2 subject 
to the constraints on M. (The model is fitted to the updated data matrix.) 

Step 4'. Compute hi+ 1 = h(Mi+IIX, W); if h i - hi+ 1 > e*h i set i = i + 1 and 
go to Step 2; else consider the algorithm converged. 

Comparing this algorithm to the iterative OLS algorithm described above, the only 
difference is between Steps 2 and 2'. However, when the iterative OLS procedure is used 

2 1 and Step 2 reduces to "Compute ~'~i (Mi + W*X - with a binary matrix W, then w m = = 
W*Mi)", which is readily verified to be equivalent to Step 2'. Thus, it follows that, in the 
special case where W is binary, the iterative OLS procedure reduces to a missing data 
imputation procedure. 

The iterative OLS algorithm has now been seen to incorporate missing data imputa- 
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tion as a special case. However, it is known that, at least in certain special cases (e.g., see 
ten Berge & Kiers, 1989), missing data imputation is not a very efficient procedure. In the 
remainder of this paper, we will consider some aspects of the performance of iterative OLS 
in a variety of model fitting problems. 

WLS fitting of the PCA model 

The first problem to be considered is that of fitting the bilinear model M = AB' (as 
in (2)) to a data matrix, with weights taken arbitrarily. This problem was described by 
Gabriel and Zamir (1979), and they proposed to handle it by (iterative) criss-cross algo- 
rithms. We used the criss-cross multiple regression approach, which they found to perform 
best. The idea of this approach is that first the matrix A is updated by means of rowwise 
weighted least squares regressions, next, matrix B is updated by rowwise weighted least 
squares regressions, then again A is updated, etc. This dearly differs from the iterative OLS 
approach studied here, since that approach updates A and B simultaneously, via PCA of 
the matrix ~. 

Both algorithms for this special case were programmed in PCMATLAB and applied 
to 30 (randomly constructed) data matrices X (ten of size 100 x 20, ten of size 500 x 20, 
and ten of size 100 x 20), using 30 different, randomly constructed weight matrices W of 
corresponding sizes. The random elements of X were drawn from the uniform [-.2,.8] 
distribution, those of W from the uniform [0, 1] distribution. The former choice was made 
to ensure that the expected PCA solutions are neither dominated by a size factor (as they 
would when all data values were nonnegative) nor reflecting a complete absence of rela- 
tions between columns of X (as they would when data values were taken from a symmetric 
distribution). The choice for the weights had no special motivation, except that it was 
ensured that weights are nonnegative. For the analysis of the first twenty data sets (of sizes 
100 × 20 and 500 × 20), we took the dimensionality equal to 3. For the other ten (100 × 
20) data sets, dimensionality 6 was taken. In each analysis we used the OLS PCA solution 
as a start. The convergence parameter e was set to 10 -6. 

For each analysis, the final loss function value, as well as the total number of floating 
point operations (flops; as defined in PCMATLAB) were recorded. In 28 out of 30 cases 
the resulting function values differed less than t%, and were therefore considered equal. 
In the two other cases, the iterative OLS procedure led to the lowest function value, and 
apparently, the criss-cross regression algorithm led to a local minimum. 

To see to what extent these differences are caused by the fact that only one start is 
used, we reanalyzed each data set by both methods, using a random start for A and B, and 
for each method inspected the best out of the two function values. It turned out that the 
criss-cross algorithm in five cases yielded a function value that was more than 1% lower 
than in the original analyses, and the iterative OLS algorithm did so in four cases. The net 
result is that, in 29 cases the two algorithms yielded virtually equal function values, and in 
only one case the iterative OLS algorithm led to a function value that was more than 1% 
lower than that resulting from the criss-cross algorithm. It can be concluded that the 
methods hardly differ in terms of sensitivity to local minima, and it can be expected that 
this difference will further diminish when more than one additional randomly started run 
is used. 

As far as computational efficiency is concerned, the methods do differ considerably: 
The iterative OLS algorithm required 3 to 4 times more flops than the criss-cross algorithm 
did. This is in line with our experience that alternating least squares algorithms usually 
converge faster than majorization based algorithms. It can be concluded that there is little 
reason to replace the criss-cross regression by our procedure. It can likewise be expected 
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that Harshman's generalization of criss-cross regression to WLS fitting of the trilinear 
model is better than iterative OLS. 

The present conclusion of the superiority of criss-cross regression may suggest that 
iterative OLS does not have much practical value for cases where WLS fitting algorithms 
already exist. However, in the next example, it will be seen that our algorithm is consid- 
erably more efficient than the existing one. 

Orthogonal Procrustes Rotation by WLS 

The orthogonal Procrustes rotation problem (Green, 1952) can be seen as fitting a 
model M = XT, with X fixed and T constrained to be orthonormal, to a particular (target) 
matrix Y. In the context of robustifying Procrustes rotation, Verboon (1994, pp. 52-55) 
described two procedures for Procrustes rotation by WLS. The first procedure handles the 
situation where all rows get the same weight (see Verboon & Heiser, 1992), which has a 
straightforward solution. The second procedure handles WLS with elementwise differen- 
tial weights. This case can be described as minimizing 

cr(TIX, Y, W) = tI(Y - XT)*WII 2 (8)  

over T, subject to T'T = I, where X and Y are given n x m matrices and W is an n x m 
matrix of weights (which are, in fact, the square roots of Verboon's (nonnegative) weights). 
It should be noted that, in Verboon's context, the weights depend on the residuals (Y - 
XT), but this is ignored in the present context. Verboon has reformulated the function as 

n 
cr(TlX, Y, W) = ~II(Y; - xfT)Wi[I 2, (9)  

i=1 

where x; and y; denote the horizontal (row) vectors corresponding to the i-th rows of X and 
Y, respectively, and Wi denotes the diagonal matrix with the elements of row i of W on its 
diagonal. Verboon's algorithm for minimizing (9) is a special case of Kiers' (1990) general 
majorization algorithm, as follows. By expanding (9) as 

n 
cr(TlX, Y, W) = c - 2 tr W~yix[T + ~ tr xix~TW2T ', 

i=1 i=1 
(10) 

it is written in the same way as Kiers' general function. According to Kiers (1990, p. 421), 
to decrease (10), T can be updated as PQ', where P and Q are taken from the singular 
value decomposition (SVD) 

n n n 
-[]- - (2 2 ~ , ) - ' ( - 2  ~] , 2 x i Y i W  i -'1- 2 £ xix~']]-W/2) = PDQ' ,  

i=l i=l i=l 

(11) 

where T denotes the current T, and ot i is taken (larger than or) equal to the largest 
eigenvalue of xix~ ® W2; the matrices P, D and Q defined by the SVD are orthonormal, 
diagonal, and orthonormal, respectively. It follows that 3, = ~ioti can,be taken as 3' -= 
~i~iX~Xi, where//,i denotes the maximum squa~d element of row i of W. Expression (11) 
can be simplified as 

( ~  n 2) 
7]- ~t- 3"-1 x i y ~ W  2 -- £ XiXff'~-W = P D Q ' .  ( 12 )  

i=1 i=1 
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Upon noting that y/~¢] and x~ TW ] contain the rows of W(2)*Y and (W(2)*XT), respectively, 
we can rewrite (12) as 

-[]" + T - 1 X ' ( W ( 2 ) * Y )  - T - I X ' ( W ( 2 ) * X ~ )  = PDQ'.  (13) 

Hence, in Verboon's algorithm the update for T is given by PQ' from the SVD in (13). 
The iterative OLS procedure studied in the present paper gives an alternative algo- 

rithm for WLS Procrustes rotation. Specifically, using the iterative OLS approach, an 
update for T is found by minimizing 

[]XT - w m 2(W(2)*(X[[ )  + w m 2W(2)*Y + XTI[ 2, (14) 

where w m is the maximum of the squared elements of W. The minimum of (14) over T is 
obtained by taking T = Pt)', where P and t) are taken from the SVD 

X ' X T  - Wr~ 2 X ' ( W ( 2 ) * X T )  + Wr~ 2 X ' ( W ( 2 ) * Y )  = IS I ) l )  ' ,  (15) 

see Cliff (1966). 
Verboon's algorithm and the iterative OLS algorithm (based on (13) and (15), re- 

spectively) differ in only two respects: First, where the update in (13) has Y, the one in (15) 
has X'XT, and second, the 3' in (13) is replaced by W2,n in (15). This difference is similar to 
that between Kiers' (1990) majorization algorithm and Kiers and ten Berge's (1992) re- 
fined majorization algorithm. For that case it could be proven that the refined majorization 
function is closer to the object function than Kiers' original majorization function, and it 
was seen that the refined majorization approach tends to converge more quickly. Here, 
Verboon's algorithm is essentially based on Kiers' majorization function, and the iterative 
OLS algorithm is based on a function differing only slightly from Kiers and ten Berge's 
majorizing function. For that reason, we may expect the iterative OLS algorithm to con- 
verge more quickly than Verboon's algorithm. 

In a small simulation study, the performance of the two algorithms was compared. 
Forty pairs of matrices X and Y were constructed (of sizes 20 x 4, 20 x 8, 40 x 4 and 40 x 
8). The elements of the matrices X were randomly drawn from the uniform [-.2,.8] 
distribution. Rather than taking Y completely at random, it was chosen to construct Y from 
X by rotating X by a random rotation matrix, and adding a random matrix (from the 
uniform [-.2,.8] distribution). For every pair (X, Y), a random weights matrix W was 
chosen (from the uniform [0, 1] distribution). For each of the 40 triples (X, Y, W), a WLS 
Procrustes analysis was done, using Verboon's algorithm and the iterative OLS algorithm. 
For each analysis, we used a rational start for T (based on the OLS Procrustes solution), 
and ten random starts; in all cases the convergence criterion e was set to 10 -6. The best of 
the eleven runs was considered "the solution" of the method at hand. The best of the two 
solutions (that is, obtained by Verboon's method and by the iterative OLS algorithm) was 
considered the "globally optimal" solution, even though it is conceivable that even in as 
many as 22 runs the global optimum is still not found. 

It turned out that Verboon's algorithm was (on the average) more than ten times as 
slow as the iterative OLS approach, and that in all cases the WLS solution had a lower (and 
hence better) function value. Hence, indeed the algorithm resembling refined majorization 
turned out to he more etficient than Verboon's one (based on ordinary majorization). The 
differences in function value were small in all cases except one. In the latter case Verboon's 
solution probably was a local minimum, whereas in the other cases, the differences are 
probably due only to the fact that Verboon's algorithm takes smaller steps: In the vicinity 
of the optimum Verboon's algorithm stops earlier than the iterative OLS algorithm, be- 
cause the convergence criterion is satisfied earlier. The only advantage of Verboon's 
algorithm over the iterative OLS algorithm was that its individual runs led to local optima 
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less frequently: With Verboon's algorithm, the rational start led to a local optimum only 
once, and random starts led to local optima only 38 (out of 400) times, whereas with the 
iterative OLS algorithm, the rational start led to a local optimum 4 times (out of 40) and 
the random starts did so 75 (out of 400) times. However, as mentioned above, the best 
solution out of eleven runs with Verboon's algorithm was never better than that obtained 
by the iterative OLS algorithm, and in fact, in one case the eleven runs of Verboon's 
algorithm missed the global optimum. On the basis of our simulation, it can be concluded 
that the iterative OLS approach is far more efficient than Verboon's method, and, pro- 
vided that a multistart procedure is used, at least as reliable in avoiding local optima. 

As has been mentioned, Verboon's algorithm is based on ordinary majorization, and 
the iterative OLS algorithm is similar to refined majorization. The difference between 
these algorithms can also be described as follows: Verboon's algorithm is based on ma- 
jorizing a function of T, whereas the general WLS algorithm is based on majorizing a 
function of M = XT. The former approach requires, as we have seen, elaborating the 
function at hand as a function of T, whereas the latter can be adopted without such 
elaboration. In fact, all fitting problems discussed by Verboon (1994) could have been 
solved by using the majorization of a function of M (rather than of the unknown param- 
eters determining M), where M denotes the model at hand, because the iterative OLS 
approach can be used for any technique for which an OLS solution is available. 

WLS fitting of the DEDICOM Model 

Above, we have discussed WLS fitting problems for which algorithms have already 
been proposed in the literature. We will now discuss fitting a model for which this is not 
the case. The DEDICOM model (Harshman, 1978) represents an asymmetric but square 
data matrix X (n x n) as 

X = ARA', (16) 

where A is an n x r "loading" matrix of the n objects on r main aspects in the data, and 
R is an r x r matrix that represents the (a)symmetric relations between these main aspects. 
For a description of the model we refer to Harshman, Green, Wind and Lundy (1982). A 
first monotonically convergent algorithm for OLS fitting of this model has been given by 
Kiers (1989) and a more efficient one by Kiers, ten Berge, Takane and de Leeuw (1990). 
For general WLS fitting of the DEDICOM model, no monotonically convergent algorithm 
has as yet been proposed, but it is obvious that iterative OLS can be used here. In fact, the 
special case where W = 11' - I (leading to off-diagonal fitting of the DEDICOM model) 
has already been dealt with by Takane (1985) and ten Berge and Kiers (1989). 

In the present section, we will evaluate in a small simulation study the use of WLS for 
fitting the DEDICOM model. Specifically, we have constructed a 7 x 7 data set to which 
the DEDICOM model fits perfectly in three dimensions, and to each data element we 
added random noise from a centered uniform distribution with a range proportional to the 
size of the data value. This choice of noise generation was meant to simulate the situation 
where the measurement error increases with the size of the data values, as can be expected, 
for instance, in the car switching data reported by Harshman et al. (1982), where the data 
range from values like 0, 4, 6, to high values like 61350, 63509, 67964 and 81808. In such 
cases it seems reasonable that, if the DEDICOM model fits well, the misfit should be much 
smaller for the small values than for the high values. Using OLS will not necessarily lead 
to such solutions. Therefore, in such cases, it seems reasonable to fit the DEDICOM 
model in terms of WLS, with weights taken equal to, for instance, the inverse of the data 
elements. This approach has been tested on the above artificial data set, constructed such 
that the ranges of the distributions of the model errors are indeed proportional to the size 
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of the data values. In this way, we are able to check the validity of the solutions of OLS and 
WLS DEDICOM. 

The artificial data X were constructed on the basis of the following matrices A~, 1~ and 
the noise-free data matrix X c = AcRcA~: 

1 0 
1 0 
0 2 

Ac= 0 2 
0 0 
0 0 
0 0 

0 ~ 
0 

° (i 0 Re=  
3 
3 
3 

4 X~= 
1 

1 1 0 0 12 12 I f  
1 1 0 0 12 12 12 

10 10 16 16 36 36 36 
10 10 16 16 36 36 36 
12 12 6 6 36 36 36 
12 12 6 6 36 36 36 
12 12 6 6 36 36 36 

A random matrix N was constructed (with elements drawn from a uniform [-.1,.1] dis- 
tribution), and each element of N was multiplied by the corresponding element of Xo 
before it was added to Xc. Thus, 

0.90 1.04 
0.93 1.04 

10.51 10.87 
X = 9.92 9.77 

12.08 12.05 
11.33 12.79 
10.91 10.88 

the data matrix X was obtained as 

0 0 11.80 11.59 
0 0 12.48 12.32 

16.55 17.38 38.95 37.85 
14.42 17.11 37.89 39.54 

5.86 6.03 34.29 35.03 
5.48 5.51 32.74 34.18 
5.90 6.18 37.70 39.47 

X = X c + N*Xc: 

12.53 ! 
12.61 
37.09 
32.92 
36.95 
38.77 
34.36 

The above data set was analyzed by DEDICOM, using three dimensions, as well as by 
-1  i f  xq  4: WLS DEDICOM. In the latter case, the weight matrix was defined by wij = xij 

0, and wij = 1 i fx i j  = 0. Note that this choice establishes that the residuals for the smallest 
elements are taken most seriously. The DEDICOM results were obtained by the Kiers et 
al. (1990) algorithm, using a rational start as well as two random starts, and a convergence 
criterion of .0001% of the function value. The three runs gave the same function value, and 
all used only few iterations (e.g., the run started from the rational start required only 13 
iterations). The solution yielded the data estimates given in Table 1. In the second panel 
of Table 1, the residuals (X - ARA') of the OLS fitting of the DEDICOM model are given. 
It can be seen that the residuals range from .04 to 2.55 (in absolute sense), and that small 
and large residuals are spread more or less evenly over the data: The absolute residuals for 
small data elements are not systematically smaller than those for large data elements as 
expressed by their correlation with the data values of -.05. Clearly, the OLS solution does 
not take into account the differences in accuracy by which the data elements satisfy the 
three-dimensional DEDICOM model. 

Although the residuals do not correspond to the structure in the true residuals, it is 
still possible that the solution reflects the elements in the original matrices A c and R c fairly 
well. Before the solution for A and R is considered, we remark that the obtained A is 
determined up to a nonsingular transformation only (which can be compensated by re- 
computing R). The common way to exploit this freedom is to enhance interpretability by 
varimax rotation of the (columnwise orthonormal) matrix A. The resulting A is reported in 
Table 2. It can be seen that this solution for A does not correspond very well to the matrix 
Ac from which the data have been constructed. However, it is still conceivable that a 
transformation of A can be found that better corresponds to Ac- The one that corresponds 
best can be obtained via regression of the columns of A on those of Ac. The resulting 
transformed solution is given in Table 2 as the "A, after matching A to Ac". The associated 
matrix R is given as well. It can be seen that, even after this transformation to optimal 
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TABLE 1 

(OLS) DEDICOM Estimates and Residuals for  Artificial Data 

Data Estimates (ARA') 

2.32 2.23 0.81 0.88 12.04 12.55 9.98 

2.24 2.11 0.75 0.79 12.70 13.27 10.21 

10.03 10.18 16.85 16.80 38.32 39.12 36.23 

9.59 9.70 15.92 15.86 37.57 38.40 35.13 

12.12 12.74 5.69 6.76 34.13 34.96 37.06 

12.25 12.91 5.26 6.40 33.59 34.39 36.97 

10.23 10.42 4.63 5.31 37.65 38.91 35.92 

Residuals (X-ARA')  

-1.42 -1.19 -0.81 -0.88 -0.24 -0.96 2.55 

-1.32 -1.08 -0.75 -0.79 -0.22 -0.95 2.40 

0.48 0.69 -0.30 0.58 0.63 -1.28 0.86 

0.33 0.07 -1.49 1.25 0.32 1.13 -2.21 

-0.04 -0.69 0.17 -0.73 0.16 0.07 -0.11 

-0.92 -0.12 0.22 -0.89 -0.84 -0.21 1.80 

0.68 0.47 1.27 0.87 0.05 0.57 -1.56 

agreement with Ac, the D E D I C O M  solutions for A and R differ considerably from the 
matrices A c and Pc, respectively, on the basis of which the data were constructed: For 
instance, the first two rows of A, as well as the seventh, deviate considerably from those of 
A~. 

Having seen that the OLS DEDICOM solution does not reproduce the original A and 
R very well, we now turn to the WLS DEDICOM solution. To minimize the WLS DEDI-  
COM function, we can iteratively apply one step of the OLS D E D ! C O M  algorithm to the 
matrix Xi = (Mi + W~n2W(2)*X-wm~W(2)*Mi), where M i = AiRiA i and A/and R i are the 
i-th updates of A and R, respectively. In one such step the WLS D ED ICO M function is 
decreased by updating both the matrices A and R. However, it is not difficult to improve 
the update for R, by using WLS regression. Therefore,  we updated R by means of WLS 
regression. The thus constructed algorithm was started by the same rational start for A and 
R as in the OLS D E D I C O M  analysis, and the same convergence criterion was used. The 
algorithm converged after 4459 iterations. Although this number may seem prohibitive, the 
fact that each iteration is very efficient implies that such a process takes still only 5 minutes 
on a machine with 486, 66MHz processor (and would take considerably less when pro- 
grammed in a more efficient language than in the interpreter based language PCMAT- 
LAB). In addition to this rationally started run, we ran the algorithm 10 times from 
random starting positions. In all cases we found the same loss function value (.103). 
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TABLE 2 

(OLS) DEDICOM Solution for A and R 

A, After Varimax Rotation of A 

-0.13 -0.01 0.45 

-0.17 -0.01 0.52 
0.02 0.73 -0.04 

-0.02 0.69 0.05 
0.66 0.01 0.05 
0.71 -0.01 0.02 
0.14 0.01 0.73 

A, After Matching A to A c 

0.47 -0.02 0.48 
0.55 -0.02 0.44 

-0.06 2.06 0.01 

0.04 1.94 0.02 
-0.15 0.03 3.09 
-0.20 -0.05 3.24 

0.66 0.03 2.38 

R, After Matching A to A: 

-2.34 0.04 4.60 
4.12 4.08 6.31 
4.36 0.97 3.94 

The estimates from the rationally started run, as well as the residuals, are presented 
in Table 3. It can be seen that now, indeed, the residuals for the small elements are much 
smaller than those for the large elements, as is also expressed by the fact that the absolute 
residuals correlated .75 with the data values. It is more important, however, to see to what 
extent the underlying structure is recovered. Table 4 gives the solution for A, first after 
varimax and next after transforming it to optimal agreement with Ac. For the latter solu- 
tion, the corresponding matrix R is given as well. It can be seen that already after varimax 
rotation (thus without using the usually unavailable information on the underlying matrix 
A~), the obtained A is very similar to Ac. In fact, the columns have congruence coefficients 
of .9997, .9995, and .9944, respectively, with the corresponding columns of Av. The solution 
for A and R after matching A to Ac is very similar indeed to the underlying structure given 
by A c and R c, and much better than the OLS solution. 

The present (artificial) example demonstrates two things. First, it illustrates that data 
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TABLE 3 

WLS DEDICOM Estimates and Residuals for  Artificial Data 

Data Estimates (ARA') 

0.90 0.99 0.01 0.01 12.21 12.23 11.74 

0.95 1.05 -0.01 -0.01 12.47 12.49 11.99 

10.32 10.65 16.73 16.43 37.51 37.92 37.80 

9.85 10.16 15.93 15.64 36.38 36.76 36.62 

11.61 11.97 5.86 6.16 34.88 35.71 35.40 

11.36 11.73 5.39 5.69 34.96 35.78 35.42 

11.31 11.69 5.79 6.07 35.98 36.78 36.39 

Residuals ( X - A R A )  

0.00 0.04 -0.01 -0.01 -0.41 -0.64 0.79 

-0.02 -0.01 0.01 0.01 0.01 -0.17 0.61 

0.19 0.22 -0.18 0.95 1.44 -0.07 -0.71 

0.07 -0.40 -1.50 1.47 1.51 2.77 -3.70 

0.47 0.07 -0.00 -0.12 -0.59 -0.68 1.54 

-0.03 1.07 0.09 -0.18 -2.21 -1.60 3.35 

-0.40 -0.80 0.11 0.12 1.72 2.70 -2.02 

where noise is proportional to the data values can be fit much better by WLS than by OLS. 
Second, the iterative OLS approach to WLS requires very many iterations. This is probably 
due to the fact that the weights in W differ considerably (by more than a factor 40). This 
phenomenon was encountered even more severely when we used the iterative OLS 
method to fit Harshman et al.'s (1982) car switching data in three dimensions. For  this 
analysis we only used 14 of the 16 car segments (dropping the very small segments SMAC 
and LUXI).  When using weights equal to the inverses of the data values, the algorithm 
converged (with e = 10 -6) only after 38690 iterations; this run was started by using the best 
solution resulting from six runs with e = 10 -4. The normalized varimax rotated solution, 
reported in Table 5 (with labels as used by Harshman et al.), can be seen to differ 
substantially from the normalized varimax rotated OLS solution (which is very similar to 
the solution of DEDICOM on the full data matrix). Rather  than giving a substantive 
interpretation of the results, we will focus on the differences between the solutions. The 
main difference is between the second dimensions. It should be noted that this difference 
cannot be removed by regressing one solution on the other. Specifically, it can be seen that 
in the OLS solution, the second dimension is dominated by the car segments STDM and 
LUXD, which are quite large car segments, with relatively many switchings within their 
own segment. This idiosyncracy, reflecting mainly the higher marginal values for STDM 
and LUXD, has disappeared in the WLS solution. The second WLS dimension focuses on 
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TABLE 4 

WLS DEDICOM Solution for A and R 

A after Varirnax Rotation 

0.70 0.00 -0.00 
0.71 -0.00 0.00 

-0.02 0.72 0.00 
0.02 0.69 -0.00 

-0.07 0.00 0.59 
0.00 -0.02 0.59 
0.07 0.01 0.56 

A~ After Matching A to Ac 

0.98 0.00 -0.00 

0.99 -0.00 0.02 
-0.03 2.05 0.01 

0.03 1.95 -0.01 
-0.10 0.01 3.06 

0.00 -0.04 3.04 
0.10 0.04 2.90 

R~ After Matching A to A c 

0.93 -0.01 4.08 
5.13 4.05 6.20 
3.88 0.97 3.97 

other aspects of the data (related mainly to the car segments SUBD, SUBI, SMAI, COMI 
and MIDI). The main conclusion here is that, by using WLS rather than OLS, we obtain 
a solution providing substantively different information, which is, moreover, no longer 
predominantly determined by large marginal values. 

For both solutions we also computed the correlation between the data and the asso- 
ciated (absolute) residuals. For the OLS solution we found a value of .72 (which is rela- 
tively high, since no such relation is enforced or stimulated by the OLS procedure); for the 
WLS solution the correlation is as high as .87. It can be concluded that, if for the car 
switching data the size of the residuals should be strongly associated with the size of the 
data values (which seems a reasonable assumption for the present frequency data), the 
WLS solution should be preferred. Furthermore, the WLS solution is preferable because 
it does not allow objects with large marginal frequencies to dominate part of the solution. 
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TABLE 5 

OLS and WLS DEDICOM Solution for  Car Switching Data 

A a f t e r  Normalized Varimax Rotat ion 

OLS WLS 

SUBD .14 - .05 .35 .08 - .34  .61 

SUBC .02 -.01 .03 .03 .02 .03 

SUBI .03 - .02 .30 - .08 .58 .33 

SMAD .02 - .04 .52 .01 .09 .48 

SMAI .00 .00 .09 - .04 .44 .01 

COML .25 -.11 .15 .26 - .07 .13 

COMM .11 .00 .05 .18 - .03 .03 

COMI .02 .00 .03 -.01 .31 - .02 

MIDD .54 .04 .12 .64 .22 .01 

MIDI .02 .00 .02 - .01 .30 - .02  

MIDS .08 .17 .61 -.01 .00 .50 

STDL .68 .01 -.20 .56 -.17 - .05 

STDM .25 .73 -.19 .39 .18 -.11 

LUXD - .29  .65 .14 .06 .19 - .02 

Associated R (divided by  1000) 

OLS WLS 

dim. 1 120 50 81 68 15 83 

dim. 2 28 95 33 11 9 16 

dim. 3 18 15 79 19 10 54 

Discussion 

With the availability of a general algorithm for WLS fitting of models for which OLS 
fitting procedures are already available, a host of new WLS fitting possibilities has 
emerged. These possibilities range from the simple orthogonal Procrustes model, to more 
complex models as the DEDICOM model, and even to considerably more complicated 
models as the DYNAMALS model by Bijleveld and de Leeuw (1991), or the PARAFAC2 
model (see Harshman & Lundy, 1984; Kiers, 1993). For the latter two models no WLS 
fitting algorithms seem to have been proposed, but OLS algorithms are available. By using 
the iterative OLS approach, it has become possible to fit those models in the WLS sense. 
Furthermore,  if one is willing to assume independent normal error distributions with 
known variances, one can obtain ML estimates for these models as well. In fact, even 
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without the assumption of known variances, one can use the present approach in a pro- 
cedure for Iteratively Reweighted Least Squares to approximate ML solutions (e.g., as in 
Carroll et al., 1989). In such cases, the weights are updated after each cycle of updating the 
model parameters. 

In analogy to the present approach to solving WLS problems, it is possible to mini- 
mize Generalized Least Squares (GLS) functions (e.g., see Bollen, 1989), which are often 
used to fit linear structural relation models (LISREL), by iterative OLS minimization. In 
some preliminary test analyses, however, we did not see a clear advantage in using this 
approach over the standard procedures in programs as LISREL8 (J6reskog & S6rbom, 
1993). For instance, G L S  fitting of the common factor model might be performed by 
iteratively using (one step of) the MINRES (Harman & Jones, 1966) algorithm, but for this 
fitting problem, the LISREL program worked fine. However, an alternative GLS fitting 
model is potentially useful for situations where the LISREL program does not work well. 

An important other type of GLS functions can be handled similarly: The class of GLS 
functions that yield asymptotically distribution free estimates, proposed by Browne (1984). 
By applying the same principle to this type of GLS function, Browne's GLS problem can 
be reduced to iterative OLS problems in almost the same way as we did in the previous 
section. In this way, considerably larger problems can be handled than with Browne's 
procedure, since the iterative use of an m(m + 1)/2 × m(m + 1)/2 matrix, where m 
denotes the total number of variables, can then be avoided. 

In some situations, a fitting problem cannot be described in terms of fitting a model 
to fixed data. In particular, in some cases the data have to be "fitted" as well, for instance, 
in the context of optimal scaling (see Girl, 1990). In such cases, our approach can still be 
used: By alternately fitting the model to the data and the data to the model, the WLS 
function can be minimized by fitting the associated OLS problems (to associated matrices 
£). 

The iterative OLS method studied in this paper is particularly attractive because of its 
omnipotence: It can handle all problems for which OLS procedures are available. How- 
ever, this is not to say that the algorithm should be used universally for solving WLS 
problems. For instance, for fitting the linear model, a closed-form WLS solution is avail- 
able, and there is no use in replacing this solution by one obtained via an iterative process, 
which is not even guaranteed to give the global minimum. Also, as we have seen, iterative 
OLS can be terribly slow. In such cases, more efficient algorithms should be used, if they 
are available. 
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