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Abstract 

SIMPLIMAX is proposed as a procedure for oblique rotation of a factor loadings matrix to simple 
structure. The distinguishing feature of this method is that it rotates the loading matrix so that after 
rotation the m smallest elements have a minimal sum of squares (where m is specified in advance). 
In the present paper, the SIMPLIMAX method is generalized to handle three-way arrays: Three-way 
SIMPLIMAX finds oblique simple structure rotations of the core matrix that results from a three-mode 
factor analysis. Specifically, three-way SIMPLIMAX minimizes the sum of the m smallest elements of 
the rotated core array. An algorithm for three-way SIMPLIMAX is presented, the performance of the 
algorithm is discussed, some applications are shown, and it is indicated how the method can be used 
to serve additional purposes. Also, it is shown how the method can be used for rotation of solutions 
of N-mode factor analysis, and for rotation over a subset of the modes of an N-mode core array. 
(~) 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduct ion  

In three-mode factor analysis (Tucker, 1966; Kroonenberg and De Leeuw, 1980; 
Kroonenberg, 1994) a three-way data set is modelled by means of component matri- 
ces for each of the three modes, and by a so called three-way core array, relating the 
components of the three modes to each other. Mathematically, the three-mode factor 
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analysis (3MFA) model can be described as follows. Let X denote an I x J × K 
data array. Then, according to the 3MFA model, we have 

P Q R 

= E E E 
p=l q=l r=l 

(1) 

where ~ijk denotes the estimate for the element ( i , j ,k )  of X; A, B and C (with 
elements aip, bjq and c~, respectively) are component matrices of orders I x P , J  x Q, 
and K x R, respectively, and G is a P x Q x R three-way array denoted as the core, 
with elements 0~r, i = 1 . . . .  ,L j = 1, . . . ,J ,  k = 1 . . . .  ,K, p = 1 . . . .  ,P, q = 
1, . . . ,  Q, and r = 1, . . . ,R. The elements of A, B, and C can be considered component 
scores for "A-mode entries" (in A), "B-mode entries" (in B), and "C-mode entries" 
(in C), respectively. The elements of  the core indicate how the components from 
the different modes interact. 

In 3MFA the model is (usually) fitted to the data by minimizing the sum of 
squared residuals, )-']-i ~7 ~k(X0k --X0k)2, over A, B, C and G. Kroonenberg and De 
Leeuw (1980) have proposed an alternating least squares (ALS) algorithm for this 
minimization. The method does not have a unique solution. As in factor analysis 
of two-way data, the solution is unique up to a rotation of the component matrices: 
Tucker (1966) already described that postmultiplication of matrices A, B and C by 
nonsingular matrices can always be compensated by applyin~ the inverse of  these 
matrices to the core array. Specifically, it can be verified thatA = A S  -1, B = B T  -~, 

= CU -I and (~ with elements 

? Q R 

o,: = E E 
p=l q=l r=l 

(2) 

i = 1, . . . ,P ,  j = 1, . . . ,  Q, k = 1 . . . .  ,R, give the same estimates for ~" as A, B, 
C and G do. Therefore, the solution obtained by the Kroonenberg and De Leeuw 
algorithm is just one out of infinitely many equally valid solutions. We may always 
transform this by nonsingular matrices S, T and U, as described above, without 
affecting the model fit. 

The results from a 3MFA are rather difficult to interpret. This is because the 
interpretation does not only involve interpretation of the components for all three 
modes, but also of all interactions between these components (as given by the core). 
Each nonnegligible core element points to an important contribution to the data of 
a particular combination of components from the three modes. Hence, when all core 
elements are nonnegligiblc, interpretation consists of a burdensome enumeration of 
all those combinations, and hardly serves to give insight in the main information in 
the data. Therefore, it is desirable to have a "simple" core, that is, a core with only 
few large elements, and most elements close to zero. The present paper deals with 
a method that exploits the above mentioned transformational freedom of the 3MFA 
solution to obtain simple cores. Specifically, rotation matrices (which here denotes 
both orthogonal and oblique transformations) S, T and/or U are found such that 
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the core becomes simple. Because these rotations must be compensated by applying 
the (inverse) rotations to A, B and/or C, it is sometimes preferred to use only a 
subset of the matrices S, T and U to find a simple core: For instance, if matrix 
A is very easy to interpret, it may be preferable not to distort this aspect of the 
3MFA solution, and one could attempt to simplify the core sufficiently by rotations 
involving T and U only. The method to be presented in the present paper allows 
for rotations by either the full set of rotation matrices or any subset thereof. 

The idea to use the rotational indeterminacy to obtain a simpler core is not new. 
Several suggestions have been made to rotate the core to a simpler form, for in- 
stance, to a form in which the frontal core planes are as diagonal as possible 
(e.g., Cohen, 1974, 1975; MacCallum, 1976; Kroonenberg, 1983, Chapter 5), or in 
which the array is as close as possible to superdiagonality (Kiers, 1992). Rather than 
rotating the core to an a priori specified form, one may choose to transform the core 
to an unspecified simple structure, as was done, for instance, by Murakami (1983) 
who rotated the transposed supermatrix of frontal core planes to simple structure by 
means of varimax rotation. More recently, Kruskal (1988) proposed "tri-quartimax" 
rotation, which is a procedure for maximizing a combination of normalized quarti- 
max functions applied to the supermatrices consisting of the frontal, lateral and hori- 
zontal planes, respectively, of the core. Recently, Kiers (1997)proposed a procedure 
which optimizes the "orthomax" criterion (see Crawford and Ferguson, 1970; Jen- 
m'ich, 1970) applied to a similar set of supermatrices of core elements. Kruskal's 
and Kiers' procedures are the most general procedures available for oblique and 
orthogonal rotation, respectively, to an unspecified simple form. An obvious limi- 
tation of Kiers' method is that it does not allow for oblique rotations. Kruskal's 
method does allow for oblique rotations, but, unfortunately, no published details are 
available on Kruskal's procedure and its performance. 

In the present paper, we propose a new procedure for oblique simple structure 
rotation of the core. This procedure is based on the SIMPLIMAX method (Kiers, 
1994) for oblique simple structure rotation of a (two-way) loading matrix. Specifi- 
cally, (two-way) SIMPLIMAX is a method for oblique rotation of a loading matrix 
such that in the resulting loading matrix the m (a number to be specified by the 
user) smallest loadings have a minimal sum of squares. It is not a priori known 
which loadings will be the smallest ones, hence the method does not only rotate 
such that m particular loadings have a minimal sum of squares, but simultaneously 
determines for which m loadings the smallest sum of squares can be found. Due to 
this search for the location of the smallest loadings, the method is very sensitive to 
finding suboptimal solutions, which, however is dealt with by using a large number 
of randomly started runs of the algorithm. Furthermore, by using different values for 
m, different SIMPLIMAX solutions can be compared, and the rotated loading matrix 
with the largest number of loadings that are sufficiently close to zero is taken as the 
solution with the best simple structure. It should be noted that here a compromise 
is to be struck between the choice for m, and the choice for what is sufficiently 
small. In the present paper, two-way SIMPLIMAX is generalized to rotate a three- 
way core such that the sum of m smallest squared elements is minimized. In this 
generalization, the core can be rotated in all three directions, hence the three-way 
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SIMPLIMAX method finds the three oblique rotations that jointly lead to the core 
with the minimal sum of smallest squared core elements. 

After presenting an algorithm for three-way SIMPLIMAX, we will discuss the 
performance of the algorithm. Next, the method will be illustrated on artificially and 
empirically obtained core arrays. The method will be generalized a bit further by 
describing how to handle rotation of N-mode factor analysis solutions, and how to 
handle rotation of subsets of the modes of the N-mode core array. Finally, it will 
be discussed how the method can be put to use for other purposes, especially in the 
context of constrained three-mode factor analysis (Kiers, 1992; Kiers, et al. 1997). 

2. Three-way SIMPLIMAX 

The SIMPLIMAX method (Kiers, 1994) minimizes the sum of squares of the 
smallest m rotated loadings. This is achieved, somewhat indirectly, as follows: SIM- 
PLIMAX finds an oblique rotation matrix Ts and a target matrix H with m zero 
elements, such that ATs (where A denotes a loading matrix) and H are optimally 
similar. Specifically, SIMPLIMAX minimizes 

a(Ts, H )  = IIATs - HII 2, (3) 

over T~ subject to Diag(TFlTF l') = I, and over all matrices H that have m zero 
elements. The matrix H that minimizes o" is always such that the zero elements 
correspond to the m smallest elements of ATs, thus, in this way SIMPLIMAX 
determines which are the m loadings for which the sum of squares is to be minimal. 
Furthermore, the nonzero elements of H equal the corresponding elements of ATs, 
and hence all contribute 0 to the function tr. As a consequence, the function tr(Ts, H)  
reduces to the sum of squares of the m smallest rotated loadings, as desired. There- 
fore, minimizing tr(Ts, H)  is indeed equivalent to minimizing the sum of squares of 
the m smallest loadings. 

For minimizing the function tr(Ts, H),  an iterative algorithm proposed by Kiers 
(1994) is used, which consists of alternating (until convergence) between, on the 
one hand, updating T~ and the nonzero elements of H,  while keeping the zero 
values in H fixed (using Browne's (1972) algorithm for oblique rotation to a partly 
specified target), and, on the other hand, updating all elements of H,  while keeping 
T~ fixed (which simply amounts to setting H = AT~ and next setting the smallest m 
elements of H to zero). The latter step serves to readjust the target to the location 
of the m smallest loadings. In both steps a(T~,H) decreases, or at least does not 
increase, hence, because the function is bounded below by zero, the function value 
will eventually stabilize, although not necessarily to the global minimum. In fact, the 
algorithm is rather prone to hitting suboptimal solutions. Therefore, several restarts 
must be used to increase the chance of attaining the global minimum. 

The simplicity of the SIMPLIMAX solution can be described in terms of the 
number (m) of small elements, and in terms of how small these small values actually 
are (expressed by a, which gives the sum of squares of the smallest m elements). 
Because there is no rationale for choosing m in advance, it is advised to try a number 
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of different values for m, and choose that solution that gives the best compromise 
between parsimony in terms of the number of allegedly small elements (m) and tr, 
which indicates how small the smallest m elements actually are. 

To adapt the SIMPLIMAX procedure to rotation of the three-way core array of 
a 3MFA solution, we have to note that in 3MFA the rotational freedom pertains to 
three directions (rather than the single one in the two-way case). Specifically, the 
transformed core array ((~) involves matrices S, T and U, see Eq. (2). Applying 
the SIMPLIMAX criterion to the core, we seek to minimize 

P Q R 

a ( S , T , U , H ) =  E E E ( L : - h , : )  2, 
i=1 j = l  k=l  

(4) 

where H is a P x Q x R target array with m zero elements (at unspecified positions). 
In two-way SIMPLIMAX, the oblique rotation matrix (Ts) is constrained such that 
Diag(T~ -l T~ -1') = I. In this way the component scores which, before rotation, are 
uncorrelated and standardized, will, after oblique rotation, still be standardized (al- 
though no longer uncorrelated). In the present situation we have three component 
matrices, A, B and C. In a 3MFA these matrices are usually columnwise orthonor- 
mal (and otherwise can be taken columnwise orthonormal without loss of fit). To 
ensure that the obliquely rotated versions of A, B and C, matrices,,l, B and C have 
unit sums of squares columnwise (like A, B and C), it is proposed here to constrain 
S, T and U such that Diag ( (S ' ) - IS  - l)  = I,  Diag -1) = t and Diag 

( (U ' ) - IU -l) = I. To verify this normalization we may check that Diag ~ 4  ~) = 
Diag ((S')-~A'AS -~) = Diag ((S')-~S -1) = I ,  etc. Thus, three-way SIMPLIMAX 
is defined as the method that minimizes a(S, T, U, H) over S, T, U and a target H 
with m zeros, subject to the above chosen constraints on S, T and U. 

To minimize (4) subject to the constraints, we alternately update S and H,  T and 
H,  and U and H,  by using the two-way SIMPLIMAX method, as described below. 
The procedure is started with randomly or rationally chosen initial matrices S, T 
and U that satisfy the constraints, and continues until the function value stabilizes. 
To update S and H,  given the other matrices (T and U), we have to minimize (or 
at least decrease) the function 

P Q R 

HIT, U) = - h , : )  2 
i=l j=l  k=l 

= IlSC (u' ® T ' )  - n ll (5) 

where G~ and HF denote the supermatrices with frontal planes of the respective three- 
way arrays next to each other, T and U denote the current (fixed) versions of T and 
U, and ® denotes the Kronecker product. It is worth noting that GF(U'®T') contains 
the elements of the core after rotation by T and U in the appropriate directions. By 
transposing both sides in Eq. (5), we find 

HIT ,  U) = II(U O T) #S - H#II =, (6) 
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which can be recognized as the SIMPLIMAX function (3) with A replaced by (U ® 
T)G~, 7s replaced by S', and, in line with this replacement, the constraint Diag 
(7~ I 7~ -1') = I replaced by Diag ((S ' ) -IS -1) = I, and the target matrix H replaced 
by H~. Because the constraints on S' and It~ in Eq. (6) match those imposed in 
the two-way SIMPLIMAX method on 7s and H in Eq. (3), the minimum of Eq. 
(6) is found by applying the SIMPLIMAX procedure to (U ® T)G~. It is worth 
noting that by applying SIMPLIMAX to (U ® T)G~ we do not only find the best 
oblique rotation matrix S (given U and T), but also find which are the smallest core 
elements after rotation by this S (as indicated by the zeros in the matrix H found). 

Upon permuting the three-way array, the updates for T and H, and for U and 
H can be found completely analogously. Thus, by repeatedly applying two-way SIM- 
PLIMAX to a supermatrix with partly rotated core elements, we minimize 
a(S, T, U,H) over a subset of the parameters, while keeping the other parame- 
ters fixed. Hence, the above iterative procedure monotonically decreases (or at least 
not increases) the three-way SIMPLIMAX function. Rather than applying the full 
two-way SIMPLIMAX procedure (which is iterative itself), one may use only a few 
cycles (called "inner iterations") for updating the rotation and target for each mode. 
Because each update in two-way SIMPLIMAX decreases (or at least not increases) 
the two-way SIMPLIMAX function at hand, it does the same for the full three- 
way SIMPLIMAX function, provided that each two-way SIMPLIMAX updating is 
started with the current values of the matrix to be updated; this updating may be 
supplemented with a number of two-way SIMPLIMAX runs from different starting 
positions, and, in case it leads to a better solution, this better solution is used instead 
of the original update. Because it is thus guaranteed that each step of the procedure 
decreases the function value, and because the function value is bounded below (by 
zero), the function will converge to a stable value, although not necessarily the global 
minimum. To increase the chance of finding the global minimum, it is recommended 
to run the algorithm from several (randomly chosen) starts for S, T and U. 

The algorithm for one three-way SIMPLIMAX run can schematically be summa- 
rized as follows: 

Step la. Choose nin (number of SIMPLIMAX iterations to be used within each 
two-way SIMPLIMAX updating), x (number of additional randomly started 
two-way SIMPLIMAX runs) and e (convergence criterion). 
Step lb. Initialize S, T and U, and choose m (the number of zeros in the 
target core). 
Step lc. Set H equal to the current rotated core, and set the m smallest elements 
of H equal to O. 
Step l d. Compute the function value. 
Step 2. Set O "°ld = O'. 
Step 3a. Update S and H from the current position by nin two-way SIMPLI- 
MAX cycles. 
Step 3b. (Optional) Compute x alternative updates for S by means of nin two- 
way SIMPLIMAX cycles each, started randomly; use the best from these runs 
and the run in Step 3a, to update S and H. 
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Step 4a. Update T and H from the current position by nin two-way SIMPLI- 
MAX cycles. 
Step 4b. (Optional) Compute ic alternative updates for T by means of nan twO- 
way SIMPLIMAX cycles each, started randomly; use the best from these runs, 
and the run in Step 4a, to update T and H. 
Step 5a. Update U and H from the current position by nin two-way SIMPLI- 
MAX cycles. 
Step 5b. (Optional) Compute lc alternative updates for U by means of nin twO- 
way SIMPLIMAX cycles each, started randomly; use the best from these runs, 
and the run in Step 5a, to update U and H. 
Step 6. Compute a. If (a °ld - a) > a°ld*e and the number of iterations is still 
lower than a preset maximum, then return to Step 2; else consider the algorithm 
converged. 

To increase the chance that the global minimum is attained, this complete proce- 
dure is repeated from a number of different random starting configurations. To get 
some insight into how many random starts suffice, the performance of the algorithm, 
and its sensitivity to hitting suboptimal solutions are considered in the next section. 

3. Performance of the Three-way SIMPLIMAX Algorithm 

As the two-way SIMPLIMAX algorithm was rather prone to hitting suboptimal 
solutions, we may expect the present procedure to suffer even more from this prob- 
lem. The reason is that the proposed algorithm combines and iteratively applies three 
two-way S1MPLIMAX procedures, each of which is prone to hitting suboptimal so- 
lutions. As soon as one of the three parameter matrices (say S) is associated with 
nonoptimal positions of the nonzero values in the target core, the other parameter 
matrices (T and U) will be adjusted towards a target core with zero elements at 
mostly the same positions, and thus the positions of the zero values in the target core 
will usually not be adjusted anymore. Since any of the three updating procedures 
can thus cause the algorithm to lead to a suboptimal solution, the method can be 
expected to hit suboptimal solutions very often. 

To get some insight into the extent of the problem, we tested the algorithm (pro- 
grammed in PCMATLAB and PASCAL, available from the author) on I00 core 
arrays. These core arrays were produced by 3MFA applied to data that satisfied a 
particular 3MFA model exactly (in 50 cases), or approximately (in 50 other cases). 
The main purpose of these analyses was to gain insight in the number of random 
starts needed to guarantee that the global minimum is attained. In addition, we hoped 
to gain insight in the efficiency of the algorithm. 

The 100 data sets were constructed as follows. For the construction of each data 
set a (P × Q × R) core array H0 with a particular simple structure (which varied 
over five conditions, as specified below) was first chosen. This matrix was multiplied 
by matrices A(50 x P), BOO x Q) and C(10 x R), with random elements; for ,4, 
which is here chosen to simulate the mode of the observation units, the elements 
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were drawn from the standard normal distribution; for B and C (modes representing, 
for instance, fixed variables and measurement instances) the elements were drawn 
from the uniform [-0.5,0.5] distribution. The multiplication of  these matrices with 
H0 results in the 50 × 10 × 10 array X. For each condition ten such data sets were 
constructed, leading to a total of  50 three-way data sets. These data sets represent 
the perfect data, because a 3MFA in (P, Q,R) dimensions will yield a perfect fit, and 
by means of  oblique rotations of  the core, the core can be simplified back into its 
original form. Because error free data do not occur in practice, a set of  more realistic 
data was constructed as well: Fifty data sets were constructed by adding a random 
three-way array N to each of  the former data sets. The elements of  this array were 
drawn from a standard normal distribution, and normalized such that their sum of 
squares equalled 0.25 times the sum of  squares of  the three-way array to which they 
were added. 

As mentioned above, five different types of  core arrays H0 were employed. The 
frontal planes of  these are described below, where each × indicates a random element 
drawn from the uniform [0.5,1] distribution: 

Case 1 (3 x 3 × 3 with 9 nonzero elements): (x00) (00x)(0x0) 
/ /1  = 0 0  × , / ' / 2 =  0 × 0 , H 3 =  × 0 0  . 

0 × 0  × 0 0  0 0 ×  

Case 2 (3 × 3 × 3 with 6 nonzero elements): (xoo) (oo ) 
H I =  0 0 x  , / / 2 =  0 x , 

0 0 0  × 0  

Case 3 (3 x 3 × 3 with 4 nonzero elements): ( oo) 
H1 = 0 0 X  , H E =  X , 

0 0 0  0 

Case 4 (4 × 3 × 2 with 6 nonzero elements): (oo) (ooo) 
H1 = 0 × 0 H E =  x 0 0  

0 0 x  ' 0 x 0  " 
0 0 0  0 0 ×  

Case 5 (4 x 3 x 2 with 4 nonzero elements): (oo / ( oo) 
H ~ =  0 x 0  O 0  

0 0 0  ' H 2 =  × 0 " 

0 0 0  0 x  

(i X°) n 3 =  0 0  . 

0 x  

o) 
/- /3= 0 0  . 

0 ×  

Each of  the 50 data sets was first analyzed by 3MFA, employing the least squares 
algorithm proposed by Kroonenberg et al. (1989), taking the best of  three runs 
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(one of  which was started rationally, the other two randomly). The resulting cores 
were analyzed by three-way SIMPLIMAX. The number m employed in the SIMPLI- 
MAX analyses was always taken exactly equal to the number of  zeros used in the 
underlying cores. In this way, we knew in advance that SIMPLIMAX of  the cores 
based on the perfect data could lead to a core with m elements exactly equal to 
zero. Thus, for these data we know that the global minimum of  the function value 
is 0. For imperfect data, we chose the same values for m as for the perfect data, 
expecting that we would be able to get m values relatively close to zero; for these 
data, the global minimum is not known. 

The main interest of  the present analyses was to inspect the sensitivity of  the 
three-way SIMPLIMAX algorithm to suboptimal solutions. First, we did some in- 
formal experimentation to study the effect of  different choices for ?tin (the number 
of  iterations in each two-way SIMPLIMAX run) and for x (the optional number of  
additional randomly started two-way SIMPLIMAX runs). It turned out that taking 
r t in  = 5 works considerably better (in terms of  avoiding suboptimal solutions) than 
taking nin : 1 ,  but that taking rtin : 10 or larger is hardly worth the increase in 
time consumption. Furthermore, it was found that using r = 50 additional randomly 
started runs improved the algorithm's ability to find the global minimum consid- 
erably; it was observed, however, that after the second major iteration (i.e., after 
the second time that the Steps 3 - 6 were completed), these additional runs hardly 
affected the solution. Moreover, it was observed that the positions of  the zero values 
in the target core seemed to change only in the first few iterations; after that, the 
updatings of  S, T and U only served to further decrease the values of  the smallest 
core elements, rather than changing their locations. So we decided to use x = 50 
only in the first two major iterations, and x -- 0 afterwards, and we took nin : 5. To 
avoid very long iterative processes, we always stopped a run after 1000 iterations. 
Unfortunately, even after these first improvements, a single run of  the algorithm still 
has a high probability of  landing in a suboptimal solution, 1 as can be deduced from 
Table 1. In the Case 2 conditions this probability is close to 90%, and it is also 
very high in the Case 1 conditions. Hence, in these conditions we certainly need a 
large number of  random restarts. In fact, for one data set, the global minimum was 
found in only one out of  the 200 runs. Hence, it seems that we actually need at 
least 200 randomly started runs. Fortunately, as will be seen later, a single nm of  
the algorithm does not take much computation time, even when many iterations are 
needed. 

Upon checking each individual analysis of  the 50 perfect data sets, we found that 
a value below 0.0001 was always reached. (For these data, the global minimum is 
exactly 0, but this value can only be expected to be approximated, the accuracy of  
which depends on the number of  iterations used). In fact, in most cases the obtained 
value was much smaller than 0.0001, but even if it was not, and even if the method 
actually attained a (very small) suboptimal function value, the difference from the 

1 A solution was considered a suboptimum for the perfect data, if the function value was more than 
0.0001 higher than the global minimum, or, in case of imperfect data, than the best observed value. 
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Table 1 
Average number of locally optimal solutions (out of 200 runs) 

Case 1 Case2  Case3 Case4  Case5  

Perfect data 147 184 63 118 37 
Imperfect data 155 179 79 113 150 

global minimum is negligible for all practical purposes. Hence, it can be concluded 
that the global minimum was attained sufficiently closely in all 50 cases. 

Having seen that the three-way SIMPLIMAX method indeed needs large numbers 
of  randomly started runs, one may wonder if  the method is still practically feasible. 
The PASCAL program written for this method, implemented on a pc with a Pentium 
(100 MHz) processor, a set of  200 runs used computation times in the range of  1600- 
2075 s for Case 1,289-1114 s for Case 2, 238-562 s for Case 3, 454-1044 s for Case 
4, and 264-1492 s for Case 5. This shows that it is indeed rather time consuming 
to perform one three-way SIMPLIMAX analysis with 200 runs, but not unfeasible. 
In practice, one will usually perform several three-way SIMPLIMAX analyses, with 
different numbers of  nonzero elements, so a full analysis of  one core array will 
require considerable computational effort, and any procedure to accelerate this process 
(e.g., based on a procedure for avoiding suboptimal solutions) is most welcome. 
Nevertheless, even the present procedure is still feasible within an acceptable period 
of  time. Moreover, with the availability of  considerably faster machines, computation 
times can be reduced to several minutes. 

4. Illustrative analyses 

To see how the three-way SIMPLIMAX method works in practical applications, 
we used it for simple structure rotation of  two core arrays, one resulting from an 
artificial data set, and one resulting from an empirical data set. The first core array 
results from one of  the imperfect Case 5 data sets. This (randomly picked) 4 × 3 x 2 
array resulted from a data set based on a core with 20 zero elements. We applied 
three-way SIMPLIMAX to this core, using different values for m. Specifically, we 
did SIMPLIMAX analyses using m = 19 through m = 22 zeros. In fact, we also 
did a few three-way SIMPLIMAX runs with m -- 18, but soon found that the 
function value was exactly zero. For each complete SIMPLIMAX analysis, we used 
the same options as in the study on the performance of  the algorithm (i.e., 200 
random starts, at most 5 inner iterations, 50 additional random starts for each two- 
way SIMPLIMAX update in the first two main cycles, and a maximum of  1000 
main iterations per run). The results for m = 18 through 22 are reported in Table 2. 
It can be seen that for m = 18 through 20, the function value is very small, but that 
from m = 21 on, the value is nonnegligible. Here, the relation between the number 
of  zeros (m) and the sum of  squares (a)  indicates that m = 20 is the highest value 
that still gives relatively small smallest elements. The giant step from m = 20 to 
m = 21 (representing a multiplication by more than 1000 of  the average of  the 
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Table 2 
Three-way SIMPLIMAX applied to a selected 
artificial core array: function values for different 
values of m 

m o" 

18 0.000 
19 0.00~, 
20 0.002 
21 3.994 
22 13.267 

squared smallest elements) suggests that m = 21 is based on too high a value for m. 
Hence, for this data array one would choose the m = 20 solution as the most useful 
one, which corresponds exactly to the number of  zeros used in constructing this array. 

The second application of  three-way SIMPLIMAX is meant to simplify a 3 × 3 × 2 
core reported by Kroonenberg (1994, p. 90). In this study, 82 subjects were measured 
on 5 variables (pertaining to performance and drunkenness) at 8 occasions (at which 
different doses of  alcohol had been administered to them); the reported core array 
resulted from a 3MFA applied to these data, followed by varimax of  B (the variables 
loading matrix) and a special rotation of  A (the subject components matrix). For 
more details, see Kroonenberg (p.85ff). The present 3 x 3 x 2 core array has been 
rotated here by means of  three-way SIMPLIMAX. We used the values m = 12 
through m = 16. For m --- 12 and m = 13, three-way SIMPLIMAX found a solution 
in which the smallest m elements were zero, up to the accuracy implied by the 
convergence criterion used. In fact, it can be proven that any 3 × 3 x 2 core can be 
transformed into a core with as many as twelve or thirteen exactly zero elements 
(Ten Berge, 1996), which explains what we found here. Hence, the only nontrivial 
applications of  SIMPLIMAX are those with m = 14, m = 15 and m = 16. Again, 
in each complete SIMPLIMAX analysis, we used the same options as before (200 
random starts, at most 5 inner iterations, 50 additional random starts for each two- 
way SIMPLIMAX update in the first two main cycles, and a maximum of  1000 
main iterations per run). The rotated cores, as well as the values of  the function tr 
(the sums of  smallest squared core elements) are given in Table 3, with the (18-m) 
highest elements in bold face. It can be seen that the core rotated towards 14 zeros 
indeed gives only four important core elements, the others being about ten times as 
small or smaller. Even in the core rotated to 15 zeros, the high values are at least 
eight times as large as the small values. However, in the core rotated to 16 zeros, 
the smallest elements were no longer negligible compared to the high values. It can 
hence be concluded that this 3 x 3 x 2 core can be simplified tremendously, and, in 
fact, the main relations between components can be described in 3 or 4 terms. This 
also illustrates that a solution that can be simplified, without loss of  fit, by fixing a 
certain number of  elements to zero, can, still without loss of  fit, be further simplified 
by making a number of  elements very close to zero, and hence negligible. 

To study the solution with 15 near zero core elements more closely, it isinteresting 
to see what transformations are used to find this core, and what matricesA, B and C 
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Table 3 
Three-way SIMPLIMAX applied to the core reported by Kroonenberg (1994) 

Original core (Frontal planes next to each other) 

24 -26 -5 -2 1 1 
18 11 9 -3 -3 0 

-2 -12 15 -1 -6 7 

Core rotated to 13 zeros a = 0.000 

35.4 0 0 3.1 0 0 
0 24.0 0 0 0 0 
0 0 18.9 0 0 12.4 

Core rotated to 14 zeros a = 2.958 

35.5 0.0 0.0 0.9 0.3 0.0 
0.0 23.5 0.0 0.2 - 1.4 0.0 
0.0 0.0 18.8 0.0 0.0 11.3 

Core rotated to 15 zeros a = 10.967 

33.9 0.0 -0.0 1.9 -0.6 0.0 
0.0 25.7 -0.1 -0.5 -2.5 0.0 
0.0 0.0 0.4 -0.0 0.0 21.6 

Core rotated to 16 zeros a = 276.355 

36.6 0.0 - 0 . 7  - 0 . 2  0.7 - 1.4 
0.0 25.8 1.4 0.7 2.7 - 0 . 4  
0.4 0.8 -9.3 2.2 -2.2 12.9 

correspond to the thus rotated core. The inverses of  the matrices S, T and U are the 
oblique rotations which rotate the matrices A, B and C, to,4, B and C respectively. 
These rotation matrices, as well as the resulting inner products between columns of  
the matrices,4, B and ¢~ are given in Table 4. Because Kroonenberg (1994) has 
only reported the elements of  B (repeated in Table 4), we could only compute B, 
and not A and ~?. 

It can be seen from Table 4 that there has been only little transformation in the 
A-mode, but the loadings for the B-mode have been affected considerably, and so 
have those for the C-mode. Specifically, the loadings in B were very simple before 
our SIMPLIMAX rotation, whereas the rotated loadings indicate contrasts that are 
more difficult to interpret. Apparently, the enormous gain in simplicity in the core is, 
in this case, offset by a loss in simplicity of  the B-mode loadings. One could say that 
the complicated (contrastlike) relations in the core have now been moved to contrasts 
in the matrix B. The advantage of using the SIMPLIMAX rotated core is that we no 
longer need to bother about the complicated problem of  taking into account many 
triple product terms (each involving the contribution of  one core element). We have 
not totally eliminated these intricate relations (which we could not even hope to, 
since they are in the data), but have moved them to a position where they may 
be easier to handle: They are now localized in the matrix B, and interpreting these 
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Table 4 
Rotation matrices inner product malriees, and the rotated version of B as a result 
of three-way SIMPLIMAX applied to the Kroonenberg (1994) core 

319 

S -~ A~4" 

1.00 -0.01 0.09 1.00 
0.11 1.00 0.15 0.10 1.00 

-0.01 0.02 0.98 0.10 0.17 1.00 

r-1 ~ '~ 

0.70 0.68 -0.11 1.00 
-0.69 0.66 -0.64 -0.03 1.00 
-0.17 0.31 0.76 0.24 -0.26 1.00 

U-1 ~,'~ 

1.00 0.90 1.00 
-0.10 0.44 0.85 1.00 

B-mode loadings Before rotation After rotation 

Auditory reaction time 0.63 0.02 -0.08 0.44 0.42 -0.14 
Visual reaction time 0.57 -0.01 0.05 0.40 0.40 -0.02 
Complex reaction time 0.53 -0.01 0.02 0.37 0.36 -0.04 
Arithmetic computation 0.00 1.00 0.00 -0.69 0.66 -0.64 
Self-rated drunkenness 0.02 0.00 0.99 -0.16 0.32 0.75 

contrasts is a matter of  interpreting the elements of  B only, without bothering about 
complicated relations with the different dimensions of  A and C. 

In the present empirical example, one may maintain that the simple structure that 
had been obtained for B is so useful that we do not wish to affect this. In that 
case, we might still try to simplify the solution by means of  oblique rotations of  the 
A- and C-mode only. In Section 6, it is discussed how the three-way SIMPLIMAX 
method can be adjusted for this and similar purposes. At the end of  Section 6, this 
procedure will be used for the reanalysis of  the present empirical core matrix. 

5. N-way  S I M P L I M A X  

The basic principle of  three-way SIMPLIMAX is easily generalized to four- and 
higher way core arrays. The only modification is to add extra steps for updating 
transformation matrices for the fourth and higher modes. 

For the general N-way SIMPLIMAX, we may expect even stronger sensitivity 
to hitting suboptimal solutions. One way to avoid this problem is to restrict the 
number of  modes of  which the components will be rotated to three, or even less. 
This possibility is discussed in the next section. 

6. Rota t ion  in a subset  o f  the m o d e s  o f  the N - m o d e  core  array 

As mentioned above, in N-way SIMPLIMAX it is probably wise to rotate the 
core over a subset o f  all permissible directions only. In fact, even in three-way 
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Table 5 
Results of three-way SIMPLIMAX rotation over the A- and C-mode, applied to 
the core reported by Kroonenberg (1994) 

Rotated core (frontal planes next to each other) 

30.2 - 1.1 2.9 -0 .2  - 1.7 - 1.6 
-0.1 26.5 9.7 -2 .2  0.6 0.2 

0.0 -0 .4  0.6 -2.3 -13.8 16.3 

S-l a~d 

0.76 -0.83 0.13 1.00 
0.65 0.55 0.17 -0.27 1.00 
0.00 0.01 0.98 0.21 0.00 1.00 

u-1 ~'~ 

0.99 0.89 1.00 
-0.11 0.44 0.84 1.00 

SIMPLIMAX it may be wise to rotate the core in only one or two directions. This can 
be accomplished simply by iteratively updating only a subset of  the transformation 
matrices, while keeping the other transformation matrices fixed to the identity matrix. 
In the extreme case where rotation is applied in only one direction, the method 
reduces to the two-way SIMPLIMAX method. 

An example of  a case where it may be desirable to rotate in only two directions 
is the rotation of  the empirical 3 × 3 x 2 core array in the previous section. Because 
B has a very clear simple structure, it may be preferable to keep B fixed, and to 
rotate the core to simplicity by rotations of  the A- and C-mode only. We applied 
the thus modified three-way SIMPLIMAX procedure for m = 12 through m = 15. In 
the present version of  SIMPLIMAX with rotation in only two directions, using the 

= 50 random restarts in the initial phases of  the algorithm now caused the method 
to land in a suboptimal solution for m = 13 even when using 200 random starts (as 
was found upon comparison with the results from 200 runs with ~: = 0; in fact, it 
turned out that all 200 runs led to the same suboptimal solution). Therefore, for this 
case we did not use random restarts for two-way SIMPLIMAX in the initial phases; 
otherwise, we used the same options for the algorithm as before. We now found 
0"=7.9 (m=12),  0"=25.9 (m=13),  0"=73.0 (m=14)  and o"=119.2 (m=15).  It turned 
out that only for m = 12 and m = 13 the smallest core elements were considerably 
smaller than the largest core elements. Moreover, there is a large jump in the size 
of  the function values when going from m = 13 to m = 14. For these reasons, the 
m = 13 solution was considered the most attractive one available for this core, by 
means of  oblique rotation of  the A- and C-mode only. The resulting core, as well 
as the transformation matrices and inner product matrices are reported in Table 5. 
It can be seen that this solution is in part similar to the one found with m = 15 
using rotation in all modes (see Table 3), but that the present solution differs from 
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the latter in that it has two sizeable interaction terms, which apparently suffice to 
capture most of  the three-way interactions in the present data. It can be concluded 
that, having thus reduced the core to 5 large elements and 13 small elements, we 
have succeeded in considerably simplifying the original core, without sacrificing the 
main simplicity found in the original solution (in terms of  B). 

7. Using three-way SIMPLIMAX for other purposes 

An alternative approach to finding 3MFA solutions with simple cores is to con- 
strain certain elements of  the core to be zero (see Kiers, 1992; Kiers et al. 1997). An 
advantage of  this approach over three-way SIMPLIMAX is that it guarantees certain 
elements in the core to be exactly zero, whereas with SIMPLIMAX it may happen 
that purported small elements are by no means close to zero (e.g., see the last panel 
in Table 3). One problem with this constrained 3MFA approach, however, is that 
we may well know how simple we would like the core to be (e.g., we could like a 
3 × 3 x 3 core to have 21 zeros), but it is much more difficult to choose the form 
of this simple core (which 21 elements should be constrained to 0). With three-way 
SIMPLIMAX we do not constrain the core to have exact zeros, but we do transform 
the core such that it has m values that are approximately zero, the positions of  which 
are found by the method itself. Now these positions can be used in a subsequent 
constrained 3MFA where the approximately zero values are constrained to be exactly 
zero. In this way, we have a procedure for both constraining core elements to zero 
and finding which elements to constrain to zero. 

Another situation where three-way SIMPLIMAX can be useful is the following. 
From a theoretical point of  view, it is interesting to study how many elements of  a 
core can be made exactly zero by means of  oblique rotations. One way to study this 
is to impose zero constraints, and to verify if  the corresponding 3MFA model fits the 
data perfectly. However, in doing so we do not only have to test every number of 
zero core elements, but also every configuration of  zeros in the core. Since, usually, 
very many different configurations are possible, it is practically impossible to test 
if indeed a certain number of  zeros is the maximal possible number of  zeros to be 
obtained by oblique rotations. 

With three-way SIMPLIMAX, we have an alternative possibility of  testing how 
many elements of  a core can be made exactly zero: By testing different values for 
m, and inspecting whether or not these lead to m elements exactly equal to zero, 
we can assess what is the largest number of  zeros that can be found by oblique 
rotations of  the core. In this procedure we do not need to specify the configuration 
of the zero values in advance. The method finds the form of  the configuration itself, 
and we no longer have to test all conceivable configurations. Hence, if SIMPLIMAX 
indicates that a certain number of  zeros (ram) is the maximal possible number of  
zeros to be obtained by oblique rotations, the only remaining uncertainty is that the 
result is based on a suboptimal solution found when using m m +  1 zeros, but this 
possibility can be ruled out by using a sufficient number of  random starts for this 
analysis. 
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8. Discussion 

In the present paper it has been described how SIMPLIMAX can be generalized 
so as to rotate a core array obliquely in as many directions as desired. It has also 
been seen that the method works well in that the method indeed finds simple cores 
when these can be found by oblique rotations. However, the method requires a large 
number of  randomly started runs to find the globally optimal solution. Therefore, 
alternative procedures for avoiding suboptimal solutions are most welcome. Never- 
theless, three-way SIMPLIMAX leads us to a new horizon of  possibilities: Rotation 
of  a core to simplicity in three directions was hitherto only possible by means of  
orthogonal rotations; lacking the details of  Kruskal's approach for oblique simplicity 
rotation of  the core, the present approach is the only detailed procedure for oblique 
rotation of  a core to simplicity in three (or, if desired, fewer) directions. 

The three-way SIMPLIMAX method is not only useful as a method for oblique 
rotation to a simple core, but can also be used to reduce the number of  nonzero 
core elements, as mentioned in the last section. In fact, by means of three-way 
SIMPLIMAX, we are able to study empirically how many elements of  a three-way 
(core) array can be made zero by means of  nonsingular transformations. For instance, 
it has been found consistently that we can (obliquely) rotate a 3 × 3 x 3 array such 
that we end up with at least as many as 18 zeros. We now have the means to study 
empirically how many zero elements can be found in an arbitrary P x Q ×R core array. 
With the help of  these empirical results, we can try to prove theoretically how many 
zeros can really be obtained by oblique rotations. This is of  theoretical importance, 
because it provides insight into the attainable amount of  simplicity of  a core array. 
It is important from a practical point of  view because it sets a lower bound to the 
amount of  parsimony to be obtained for a particular core array. For instance, any 
reported array that has fewer zero elements than the number of  zeros that can always 
be obtained by SIMPLIMAX, can be discarded as nonparsimonious if parsimony of  
the core is a desideratum. Furthermore, knowing that, for instance, a 5 x 3 × 2 core 
can always be transformed so as to have 24 zeros (Murakami et al., 1998), implies 
that any attempt to simplify this array by three-way SIMPLIMAX should start with 
at least 24 zeros. For these reasons, a further study into the attainable simplicity of  
three-way arrays by means of  nonsingular transformations is called for, and can be 
supported by empirical results on the basis of  three-way SIMPLIMAX. 

A further use of  three-way SIMPLIMAX is in the study of  uniqueness of  parsimo- 
nious 3MFA models. Again, proving uniqueness requires a theoretical approach, but 
can very well be guided by empirical findings. Three-way SIMPLIMAX can be of  
use here, because it indicates, for instance, that a three-way array can be transformed 
to have a particular number of  zeros in many essentially different ways, with config- 
urations of  zeros differing by more than permutations. Such discoveries are greatly 
facilitated by a method that finds the configuration of  zeros itself. 

The present paper has focussed on oblique rotations of  the core, thus allowing 
for optimal flexibility in rotation of  the core. However, in certain situations, it may 
be desirable to restrict oneself to orthogonal rotations of  the core. One reason could 
be that orthogonal rotations do not affect the property that the square of  each core 
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element gives the (independent) contribution of  the associated interaction to the 
total fit of  the model. Another reason could be that it is sometimes important to use 
orthogonal (and hence independent) dimensions of concepts, subjects, or whatever 
the modes pertain to. In such cases, one may resort to three-way orthomax meth- 
ods (Kiers, 1997). Alternatively, one may use an orthogonal variant of three-way 
SIMPLIMAX, which is readily constructed. The only modification is to replace each 
two-way SIMPLIMAX step for updating a rotation matrix, by an orthogonal two- 
way SIMPLIMAX step (as described by Kiers, 1994, p.578). In this way, it is even 
possible to use orthogonal rotations in some modes and oblique in others. 

The three-way SIMPLIMAX rotation method proposed aims at simplifying the 
core. As has been mentioned, for the interpretation of  a 3MFA solution it may be 
desirable that (some of) the component matrices are simple as well. Therefore, in 
SIMPLIMAX it is possible to use only a subset of  the rotation matrices so that one 
can keep some of  the component matrices fixed to a simple solution (which itself 
can have been obtained by simple structure rotation of that matrix). This has indeed 
been done in the second analysis of  our illustrative 3MFA solution, and it turned out 
that SIMPLIMAX rotation of the core by means of only two matrices indeed still 
simplified the core considerably. However, it is conceivable that for certain 3MFA 
solutions, by fixing one or two of the rotation matrices insufficient freedom is left to 
simplify the core. In such cases, we would need an alternative approach: It would be 
desirable to optimize a criterion that combines simplicity of the core and simplicity 
of the component matrices. Specifically, it would be useful to have a method that 
finds those rotation matrices S, T and U that optimize the (weighted) "average" of 
the simplicity of the core and the component matrices. In further research, it will be 
studied how such a criterion should be defined, and how it can be optimized. 
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