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SUMMARY

Fitting the CANDECOMP/PARAFAC model by the standard alternating least squares algorithm often requires
very many iterations. One case in point is that of analysing data with mild to severe multicollinearity. If, in
addition, the size of the data is large, the computation of one CANDECOMP/PARAFAC solution is very time-
consuming. The present paper describes a three-step procedure which is much more efficient than the ordinary
CANDECOMP/PARAFAC algorithm, by combining the idea of data compression with a form of regularization
of the compressed data array. 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A popular model for the analysis of three-way data is the CANDECOMP or PARAFAC model
(independently introduced by Carroll and Chang1 and Harshman2 respectively), henceforth denoted
as the ‘CP model’. The CP model can be described as follows. LetX denote a three-way array with
elementsxijk, i = 1,…,I, j = 1,…,J, k = 1,…,K. Then the CP model is given by

xijk �
XR

r�1

air bjr ckr � eijk �1�

whereair , bjr andckr are elements of the three component matricesA, B andC of ordersI � R, J� R
andK� R respectively andeijk denotes the error term for observationxijk. Both Carroll and Chang1

and Harshman2 proposed to fit the CP model to a data array by minimizing the sum of squared error
terms, using an alternating least squares (ALS) algorithm.

Having been introduced in psychometrics, the CP model turned out to be especially successful in
chemometric applications.3–5 This is because physical-chemical principles behind response
mechanisms often correspond to the CP model: the main deviation from the model is caused by an
often small amount of noise. Typically, in chemometric models, some of the underlying component
matrices contain spectra or other smooth profiles, and often the underlying component matrices show
at least mild degrees of multicollinearity. Furthermore, typically, the size of at least two modes in
chemometric data is rather large (e.g. of the order of 100). The multicollinearity in the data tends to
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causetheCPalgorithm to requireverymanyiterations(e.g.severaltensof thousands), andthesizeof
the dataarraycauseseachiterationto be ratherexpensive, makinga single CP analysispractically
unfeasible.

Several approacheshavebeensuggested to remedytheproblemof slowconvergence.For instance,
Mitchell andBurdick6 realizedthatonecauseof slow convergenceof theCPalgorithmwasthat the
algorithm landedin a region of the solutionspaceconsisting of ‘degeneratesolutions’.7 Af ter very
many iterationsthe algorithm wasable to leavethis ‘swamp’ areaand thenconverge quickly, but
while residingin suchanarea,thealgorithmproceedsonly veryslowly. Mitchell andBurdick suggest
avoidingsuchrunsof analgorithmby stoppingarunassoonasit entersaswamparea,asindicatedby
at least one‘trip le cosine’tending to ÿ1, andrandomly startinga newrun; herea triple cosineis a
cosinebetween tensorproductsal6bl6cl andam6bm6cm, l=m, with al, bl andcl denotingthelth
columnsof A, B andC respectively and6 the(right) Kroneckerproduct.8 Assuming thatat leastone
randomly startedrun will avoid the degeneratesolution space,this is an effectiveway of avoiding
‘swamping’ due to degeneracy. However, slow convergenceis not alwaysaccompanied by near
degeneracies.In particular, in the caseof high multicollinearity, convergencetendsto be slow,
whereas degeneraciesareonly rarely encountered.

A moregeneraltypeof approachto handleslowconvergencehasalreadybeenusedby Harshman.2

Heemployed arelaxationtechniqueof changingeachvariableindividuallyasafunctionof its current
short-rangeandlong-rangetrends.A differentprocedurefor accelerating slowconvergenceof theCP
algorithm is theGauss–Newton-typeprocedureproposedby Paatero,9 coupledwith penalty termsof
graduallydecreasingimpact. A disadvantageof these techniques,however, is that a monotonical
decreasein the lossfunction valueis no longerguaranteed.As a consequence, thealgorithm mayin
certainsituations lead awayfrom a relatively goodsolution, or it may, in principle, evenoscillate
between solutions. Another problemwith suchan approach is that it requires a certainamountof
tinkering to chooserelaxationparametersor penaltyparameters,which is quiteproblematic for users
with little feeling for the optimization problem at hand. A third problem is its large memory
requirement,making the analysis of largedataarraysunfeasible.

In the presentpapera three-step approachis proposedbasedon threemonotonically converging
sequencesinvolving CPanalysesof differentlycompressedversionsof thedataandof thefull data.
This procedurecanbecarriedout in a fully automatedway, thusnot requiringany tinkering by the
user.The procedureis a combination of compression10–13andregularization of the dataarray.The
first stepconsistsof theCPanalysis of theregularizedcompresseddataarray;in thesecondstepthe
optimally compresseddataarrayis analysedusingtheresult from thefirst stepasa start;andin the
third step the full arrayis analysedwith thesolution from thesecond stepasa start. To avoid local
optima,thefirst stepshould berepeated from differentrandom initial estimates(from nowondenoted
as‘initials’). Becausethefirst stepusually requiresonly afew iterations,thisprocedureis anefficient
way(even whenrun from severalstarts) to obtaingoodinitials. To improve theestimates,thesecond
stepusesoptimal compression bases;13 the analysis of the thus compressedarray doesrequirea
considerablenumberof iterations,butdueto thegoodstartobtainedin step one,thisnumbertendsto
be considerably smaller than that needed for randomly startedruns; moreover, because of the
availability of goodinitials, thereseemsto benoneedto useseveralsuchruns.Finally, thethird step
tendsto needonly veryfew iterations,whichis importantbecauseeachiterationin thefinal analysisis
very costly (involving the full dataarray).

In Section 2 the rationale behind the regularizing compressionstepwill be explainedanddetails
will be given of the computationsinvolved in the two compression steps.In Section 3, resultsof a
simulation study comparing severalcompression-basedprocedureswill be given aswell asresults
from analysesof datasetsfrom theliterature. In Section4 it will bediscussed howto handlepossible
degeneracies.The paperis concludedwith a generaldiscussionin Section 5.
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2. REGULARIZED AND OPTIMAL COMPRESSION

Whenanalysingpracticaldatasetsby aPARAFAC-like procedure, KiersandSmilde14 foundthatthe
algorithm required very many iterations, and resultsof different randomlystarted runs tended to
differ only slightly in termsof lossfunction valuebut considerably in termsof obtained parameter
estimates.Although this type of outcomeoften indicates that a wrong number of componentshas
beenused,thiscannotexplainthepresentproblem, becauseweactually knewthatwetookthecorrect
numberof components. Herethe problemcanprobablybe attributed to the extremeflatnessof the
criterion function and to prematuretermination of the algorithm. Two of the three component
matrices underlying thesedata were known to have considerablemulticollinearity, so it seemed
reasonableto attribute theslow convergenceto this multicollinearity. In fact, to checkthis,datasets
of thesame sizebut with componentmatrices of considerablysmallercondition numbershavebeen
constructed, andindeedfor suchdatathe algorithm convergedquickly. It wasthusconcludedthat
high condition numbers in underlying componentmatrices may well be the cause of slow
convergence. Moreover, high condition numbersin componentmatricesaredirectly related to high
conditionnumbersin thedatawrittenassupermatriceswith rowsreferring to theentriesof themode
athand.Thereforeapossibilityto remedythethuscaused slowconvergencemightbeto alleviatethe
multicollinearity in the data.

To seehow we can alleviate the multicollinearity in the data, we first consider the error-free
situation. Error-free datasatisfying the CPmodel canbe described equivalently as

Xa = AH (CT6BT) (2a)

Xb = BH(AT6CT) (2b)

Xc = CH(BT6AT) (2c)

whereXa is the I � JK matrix with the frontal planesof X next to eachother,Xb (J� IK) andXc

(K� IJ) arethematricesobtainedanalogously from X afterpermutingthemodesof X suchthatone
obtainsa J� K� I anda K� I � J arrayrespectively, andH is the R� R2 matrix with the frontal
planesof theR� R� R ‘superidentity array’ I with all elementsequalto zero, except theelements
with three equal indices, which all equal one. Now suppose that the matrix A has high
multicollinearity whereas, for the sakeof argument, B and C are orthonormal. Then Xa and A
havethesameconditionnumber (ascanbeseenuponrealizing that in this caseH(CT6BT) is row-
wise orthonormal). Furthermore, from equation(2a) it follows that Xa is in the column spaceof A.
Hence,if Pa denotesa basismatrix for the column spaceof A, we have

PaPa
�Xa = PaÃH(CT6BT) (3)

where Pa
� denotesthe Moore–Penroseinverseof Pa and Ã denotes the R� R matrix such that

A = PaÃ, henceÃ = Pa
�A. Equation(3) givesanexpressionof thedataandthemodel projectedonto

thebasismatrix Pa. This expressionis at thebasisof thepostponedbasismultiplicationprocedure,11

which hasbeenshown12 to be equivalentto theanalysis of a compresseddataarray (ashadalready
beenproposedby Carroll et al.15 andAppellof andDavidson10). Thus studying the error-free case
leadsusnaturally to compressionof thedataarray.As shownby Kiers andHarshman,12 CPanalysis
of thefull datais equivalentto CPanalysisof thecompresseddatain PaPa

�Xa, providedthatthebasis
matrix is column-wiseorthonormal.If Pa spansbothXa andA, thenthisequivalencealsoholdsin the
caseof imperfect modelfit, albeitonly if thebasismatrix is column-wiseorthonormal,becausethen
we have kPaPa

�XaÿPaÃH(CT6BT)k2 = kPa
�XaÿÃH(CT6BT)k2. However, in the presentcase,

where we considerperfect fit, we have equivalence of the full model to a compressed model
irrespective of possible (non-)orthonormality of Pa, becauseit follows from (3) that
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Pa
�Xa = ÃH(CT6BT) (4)

Thus, as long as we have perfect fit, we can even compressthe data with respect to non-
orthonormal basismatricesandstill beableto write thecompresseddataasa CPmodelin termsof
alternative (andsmaller) parametermatrices.Obviously,similar compressionscanbeperformedfor
the B– andC–mode, yielding

Ya: Pa
�Xa(Pc

T�6Pb
T�) = ÃH(CT6BT) (5)

whereB̃ andC̃ denotethe R� R matricesneeded to obtainB andC from Pb andPc respectively.
As mentionedabove,wecanderive(5) from theperfectfitting case(2) for anybasismatricesPa, Pb

and Pc. If we were to take column-wise orthonormal basis matrices, as in most compression
procedures proposed so far,10,12,13,15the condition number of Xa would be the sameas that of
Ya = Pa

�Xa(Pc
T�6Pb

T�), andthesamewouldholdfor theJ� IK matrixXb andits compressedversion
Yb : Pb

�Xb(Pa
T�6Pc

T�) and for the K� IJ matrix Xc and its compressedversion Yc:
Pc
�Xc(Pb

T�6Pa
T�), which canbe obtained by permuting the indicesof the arraysXa andYa. Thus

it can be seenthat the standard compression techniquescompress the datain sucha way that the
underlyingmulticollinearity remainsin thecompressedarray.Therefore theCPalgorithm applied to
this compressedarray canbeexpectedto convergeslowly, just asit would whenappliedto the full
data.However, if we takePa, Pb andPc suchthat thecompressedversionsof Xa, Xb andXc become
(closeto) row-wise orthonormal (for which a procedurewill begivenbelow),thenin fact (mostof)
themulticollinearity is removedfrom thearrayandtransferredto thebasismatrices.As a result,the
compressedarrayis well conditionedin all directions,andtheCPalgorithmapplied to thisarraywill
convergequickly. In the caseof perfectfit the real Ã, B̃ and C̃ can then be reobtainedfrom the
solutionsfor A, B andC upon premultiplying theseby Pa, Pb, andPc respectively.

In thecaseof imperfectfit theaboveno longer holdstrue,andevenif Pa, Pb andPc were to give
basesfor both X andthe optimal A, B andC respectively, the leastsquaressolution minimizing

kXaÿ AH (CT6BT) k2 (6)

would not equalthat obtained from minimizing

kPa
�Xa(Pc

T�6Pb
T�) ÿ ÃH(C̃T6B̃T)k2 (7)

in contrastwith what is thecaseif thebasis matrices arecolumn-wiseorthonormal. However,when
thefit is reasonablycloseto perfect(i.e.whenthenoiselevel is low), onemayexpect thatthesolution
from minimizing (7) premultiplied by thecorrespondingbasismatricessoasto obtain solutionsfor A,
B andC will be closeto theA, B andC actually minimizing (6). Hencethesolutionfrom (7) could
still be expected to give goodestimatesfor minimizing (6).

Sofar, it hasnot beenexplainedhowweobtain basismatricessuchthatPa
�Xa(Pc

T�6Pb
T�) andthe

compressedversionsof Xb andXc arecloseto row-wiseorthonormality. This canbedoneasfollows.
We startby finding a basismatrix Pa suchthatPa

�Xa is row-wiseorthonormal.Sucha matrix canbe
foundin variousways.Hereweobtainsuchamatrix from thesingularvaluedecomposition(SVD) of
Xa, given asXa = UDVT with UTU = VTV = I andD diagonal,thesizesof thesematricesdepending
on the rank of Xa, which we assumeto be at leastR andusuallymuch larger. Let UR, DR andVR

denotetruncatedmatrices with the first R left singular vectors,singular valuesand right singular
vectorsrespectively.Thenwe takethe basis matrix Pa asPa = URDR, and,asa result,Pa

�Xa equals
VR

T, which indeedis row-wiseorthonormal; notethatthehighcondition numberof Xa is transferred
to Pa, becausethis high conditionnumber is reflected in thesingular valuesin DR. Uponpermuting
theindices, weobtain thearrayXb(Pa

T�6I ). If multicollinearityrecidesnotonly in theunderlying A
but also in B, the matrix Xb(Pa

T�6I ) will be multicollinear as well. To find a basismatrix that
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captures this multicollinearity,weusetheSVD Xb(Pa
T�6I ) = ŨD̃ṼT andtakePb asPb = ŨRD̃R, thus

havingPb
�Xb(Pa

T�6I ) = ṼR
T, which is row-wise orthonormal. Thenwe againpermutethe arrayto

obtain Xc(Pb
T�6Pa

T�) and find Pc = ŪRD̄R, where ŪR and D̄R are obtained from the SVD
Xc(Pb

T�6Pa
T�)=ŪD̄V̄T. Now Yc = Pc

�Xc(Pb
T�6Pa

T�) = V̄R
T, which is hencerow-wiseorthonormal.

Uponpermuting thearrayagain,we find Ya andYb respectively.Thesematriceswill usuallynot be
row-wise orthonormal,but their conditionnumberstendto bemuchlower thanthose of Xa andXb,
and, as a consequenceof this compression procedure, we have found a compressed array with
conditionnumbersfor its associatedthreematrix expressions(Ya, Yb andYc) much smallerthanthe
conditionnumbersof the matrix expressions(Xa, Xb andXc) of the original arrayX.

To furtherdecreasethecondition numbersof thematrix expressionsof thecompressedarray, we
suggestrepeatingthe aboveprocedureon the current compressedarrayY. The resulting new basis
matrices areincorporated in the first setof basismatrices (by simply postmultiplying the first basis
matricesby thecorrespondingnewlyobtained ones). Practicalexperiencesuggests thatrepeatingthis
cycle, say, ten times usually leads to condition numbers closeto unity for all three matrices, and
continuingtheprocedureevenfurtherappears to convergeto a solution with all condition numbers
tendingto unity, althoughwecannotprovethatthismust alwaysbethecase.Becausefor ourpurpose
it suffices to havecondition numberscloseto unity, we propose to usea limited number of such
iterations;in all ouranalysesweusedten.Becausethisprocedureturnsanill-conditionedarrayinto a
well-conditionedarray,this procedurewill bedenotedasregularizingcompressionandtheensuing
compressedarrayis called the regularizedcompressedarray.

To seewhat theaboveprocedureamountsto,wefirst considerthecaseof perfectdataagain. In that
casewe know that thereis a three-way array,namely I, which is row-wiseorthonormal in all three
directions andwhich canbeobtained by takingPa = A, Pb = B andPc = C. If thebasismatrices are
indeedfoundasabove,thentheensuingCPanalysisof thecompressedarray is very simple.TheCP
analysisof I (thematrix expression of which is H) boils downto minimizing kH –ÃH(CT6BT) k2,
which hasthe trivially simple solution Ã = B̃ = C̃ = I . Clearly, premultiplying this solution by the
correspondingbasismatrices leadsto the matricesA, B andC which actually fit the full dataarray
perfectly. In practice the iterativeproceduretends to convergeto rotations(in all directions) of I, so
thebasismatriceswill berotationsof A, B andC, possibly rescaledcolumn-wise.TheCPsolutionof
the compressedarray then consistsof (rescaled)rotation matrices, and again premultiplying this
solutionby the correspondingbasismatrices leadsto the matrices A, B andC. It is now intuitively
clearthatarrayswith closeto perfectfit will turn into regularizedcompressedarrayscloseto rotations
of thesuperidentity array,andtheCPanalysisof suchanarraywill yield matrices Ã, B̃ andC̃ which,
when premultiplied by the corresponding basismatrices,will lead to solutions close to the ones
actuallyminimizingtheCPlossfunction.Of course,it remainsto beseenwhatis ‘close’ to perfectfit.
However, if oneis not satisfiedwith theensuing solution, onecould update this by theordinaryCP
algorithmstartedfrom thissolution, which,assumingthatthepresentsolutionis closeto thebestone,
canbe expectedto convergequickly.

This procedurehasinitially beentestedby Kiers andSmilde14 in orderto fit their PARAFAC-like
model.It turnedoutthattheprocedureitselfoftenledto insufficiently adequatesolutions,soit needed
finishingby aseriesof final runswith theCPalgorithmappliedto thefull data.However, thenumber
of iterationsrequiredfor this analysistendedto bestill quitehigh,althoughconsiderably lower than
whenstarting from scratch. This ledthemto useananalysisof the‘ordinarycompressedarray’ (based
on SVDs of Xa, Xb andXc) asan intermediate step.Experience with this analysis of the ‘ordinary
compressedarray’ was that it requiresvery many iterations whenstarted from scratch, but, once
converged,it providesaverygoodstartfor theCPanalysisof thefull data,requiringonly a few such
expensiveiterations.Combining this with theexperiencethattheanalysisof regularizedcompressed
dataleadsto a reasonablygoodstartfor theordinaryalgorithm,theysuggestedusing theanalysisof
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theregularizedcompressedarrayasa first step; asa second step,theordinary compressedarray(i.e.
usingcolumn-wiseorthonormal basismatrices)is analysedusing thecurrentsolution asastart(after
projecting thisonthepresentbasismatrices); thethird andfinal stepconsistsof ananalysisof thefull
dataarray,startedfrom thesolutionfrom thesecond step(obviously,afterpremultiplying thesolution
by the correspondingbasis matrices). In the presentpaperwe suggest a similar three-stepapproach
for CPanalysis.

However, we usethe aboveiterative procedurefor finding low condition numbers in all three
directions,whereasKiersandSmilde14 only usedcompressionin two directions.Furthermore,rather
than‘ordinary compression’, we usedthe ‘optimal’ compressionproposedby Bro andAndersson,13

which is basedon a TUCKALS316 analysis of thedataarrayandfindsPa, Pb andPc by minimizing
kXaÿ PaYa(Pc

T6Pb
T) k2 overcolumn-wiseorthonormalmatricesPa, Pb andPc andoverYa. Because

thesebasismatrices are indeedcolumn-wise orthonormal, this compression will not regularize the
data.Thecompression, however, is optimal in thesensethatit gives theorthonormal projection of X
onR-dimensionalsubspacesthatremainsclosestto theoriginal X. For aschematic description of the
three-stepapproach,refer to Section 3.2 andTable1.

We testedtheabovesuggestedthree-stepapproachby comparing it with ordinaryCPanalysisand
othercompression-basedprocedures,applying thesemethodsto 40 datasetswith known underlying
structureaswell asto four datasetsreported in theliterature. Thiscomparisonis describedin thenext
section.

3. COMPARISONOF SEVERAL PROCEDURES FORCANDECOMP/PARAFAC

To testthethree-stepapproachandcompareit with CPanalysisof thefull dataaswell aswith three
variantsbasedon compression, we performeda simulation study on thebasisof 40 constructeddata
sets.In addition,we analysedfour datasets from the literatureso asto put the simulation studyin
proper perspective.The algorithms were programmed in MATL AB17 v. 4.2. The analyseswere
carried out in a Windows 3.11 environmenton a personal computerwith a Pentium100 MHz
processorand32 Mb RAM.

3.1.Construction of data for simulation study

For the simulationstudy,40 datasetsof order20� 20� 20 wereconstructed,with known (three-
dimensional)underlying CPstructureandvariousamountsof noiseandmulticollinearity,asfollows.
For eachdataset,randommatrices A0, B0 andC0 of order20� 3 wereconstructed;theelementsof
thesematrices were drawn from the uniform [0.5,1.5] distribution in the conditions with mild
multicollinearity (20 datasets)andfrom theuniform [1,2] distribution in theconditionswith severe
multicollinearity(20datasets).In theconditionswith severemulticollinearitythecondition numbers
of A0, B0 andC0 rangedfrom nineto 18,with anaverageof abouteleven;in theconditionswith mild
multicollinearity thecondition numbersof A0, B0 andC0 rangedfrom six to 14, with anaverageof
aboutseven.Randommatrices, ratherthanfixed matrices,wereusedsoasto covera broadrangeof
possible situations. The matrices were all forced to have non-negative elementsso as to mimic
situationswhere thesemodespertainto non-negativephysicalentitiessuchasfrequenciesin spectra
or concentrations.To avoid complicationsin settingupthedesign,noprovisionsweremadeto ensure
smoothprofilesin thecomponentmatrices,which would beanimportantcauseof multicollinearity;
instead, multicollinearity was forced simply by the choice of possible values for the component
matrices, upon noting that randomvalues from relatively high-valuedintervals tend to lead to
relatively severemulticollinearity in the ensuingmatrix of randomnumbers.

Fromthe matrices A0, B0 andC0 the dataarraywasconstructed as
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Xa = A0H(C0
T6B0

T)� N (8)

where N denotes the matrix expressionof a three-way array with proportional noise values;
specifically, following Mitchell and Burdick,6 eachnoise value was computed by multiplying the
corresponding dataelement by a valuedrawnfrom the normal distribution with standard deviation
a(with a=0.025, 0.05,0.10or 0.25,depending on thenoiseconditionat hand). Thuslevels of 2.5%,
5%, 10% and 25% proportional noisewere generated.For eachcombination of multicollinearity
condition(mild or severe)andnoiselevel,fivedatasetsweregenerated,thusleadingto thetotalof 40
datasetsmentionedearlier.

3.2.Five Methods for Fitting CP model

Thefive methodsusedin thesimulation study aresummarizedin Table1. Eachmethodstarts with
five randomlystarted CP runsto a particular (usually compressed)dataarray.From these,the best
solution is selected andusedto initialize the next CP run (except in the first method). Only in the
three-step methodaretheresultsof thisanalysisagainusedto initializeanewrun.Specifically, in the
first method,CP–Full, thefull dataarrayis analysedby five runsandthebestsolution is takenasthe
solution.The second, third andfourth methods(RegComp, OptCompandSVDComp respectively)
startby five CP runsapplied to the regularized, optimally andSVD-basedcompresseddataarrays
respectively. Theresulting solutionsarepremultiplied by thecorrespondingbasismatrices to obtain
full-sized estimates for A, B andC. Theseestimates in turn areusedas initials for a final CP run
appliedto thefull dataset.Thethree-stepmethodis abit morecomplex. Thefirst stepof Three-Step
is thesame asthatof RegComp.However, thefull-sizedestimatesobtainedfrom RegComparenow

Table1. Schematicrepresentationof five methodsfor fitting CPmodel

CP–Full RegComp OptComp SVDComp Three-Step

Five CPrunsof X Yreg Yopt Ysvd Yreg

Selectbest Ac,Bc,Cc Ãr,B̃r,C̃r Ão,B̃o,C̃o Ãs,B̃s,C̃s Ãr,B̃r,C̃r

Obtainfull-sized estimates Ac Ar = RaÃr Ao = OaÃo As = SaÃs Ar = RaÃr

Bc Br = RbB̃r Bo = ObB̃o Bs = SbB̃s Br = RbB̃r

Cc Cr = RcC̃r Co = OcC̃o Cs = ScC̃s Cr = RcC̃r

Initials for intermediate Ão = Oa
TAr

analysis B̃o = Ob
TBr

C̃o = Oc
TCr

Intermediatesolution Ã i,B̃i,C̃i

Obtainfull-sized estimates A i = OaÃi

Bi = ObB̃i

Ci = OcC̃i

Solutionof final CPrun Arf,Brf,Crf Aof,Bof,Cof Asf,Bsf,Csf A if ,Bif ,Cif

Notation:
X, full dataarray;
Yreg, regularizedcompressedarray;
Yopt, optimally compressedarray;
Ysvd, SVD-basedcompressedarray;
Ra, Rb, Rc, regularized three-dimensional compression basismatrices;
Oa, Ob, Oc, optimal three-dimensionalcompressionbasismatrices;
Sa, Sb, Sc, SVD-basedthree-dimensionalcompression basismatrices.
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usedto computeinitials for aCPrunof theoptimally compressedarray;these initials areobtainedby
projecting the full-sized estimates on the optimal basis matrices (see ‘initia ls for intermediate
analysis’ in Table 1). The secondstep of Three-Step consists of the analysis of the optimally
compressedarray, initial ized as mentionedjust above.From this intermediate analysis, full-sized
estimatesA i, Bi andCi areobtained.Thesein turnareusedasinitialsfor thethird step,consisting of a
CPrun appliedto the full dataset.

3.3.Criteri a of Interest

All methodsdescribedabovewereapplied to the40 datasets constructedfor this simulationstudy.
Oneof themaincriteriaof interestin this studywashow well theoriginal componentmatriceswere
recovered by eachof the methods. To assessthis, ratherthancomparingeachobtained component
with eachcorresponding underlying componentmatrix, which would have to take into account
permutational,scalingandsignindeterminaciesin thesolution, wecompared solutionsby computing
cosines between tensor products al

06bl
06cl

0, l=1,2,3, and âm6b̂m6ĉm, m=1,2,3, where the
superscript ‘zero’ pertainsto columnsfrom theunderlying componentmatricesandthesuperimposed
‘hat’ pertainsto columnsof estimated componentmatrices. Given a set of componentmatrices
{ A,B,C}, other sets of component matrices that yield the samerepresentation of the data are
constitutedof the samesuchtensor products, althoughpossiblyin a different order.Hencea useful
overallmeasure of recovery is thesumof threecosinesbetweentensorproducts from theunderlying
componentmatriceswith thosefrom theobtainedcomponentmatrices,with thelattertensorproducts
orderedsuchthattheyleadto thehighestoverallsumof cosines.Thesecosines,denotedasf(because
theyarecomputed simply asTucker’sf-coefficientof congruence18), arethesameasthemeasures
employed by Mitchell andBurdick,6 called ‘uncorrectedcorrelationcoefficients’. A drawback of this
cosinemeasureis thatit tendsto yield highvaluesevenwhendifferencesbetweentensor productsare
appreciable, as long as all valuesare positive. Therefore evensmall differences shouldbe taken
seriously.

Although the main aim of all methodsis to optimally recover theunderlying components,this is
operationalizedin all methodsby minimizing thelossfunction(6). Thus,in additionto how well the
underlyingcomponentsarerecovered by thedifferentmethods, wecomparedthelossfunctionvalues
for thefull dataresulting from thefivemethods; in RegComp,OptComp, SVDCompandThree-Step
thesevaluesaresimply the function valuesuponconvergence of the final CP run of the full data,
whereas for CP–Full this is the lowest value resulting from the five randomly started runs.
Furthermore,wecompared thesewith thelossfunctionvaluesassociatedwith theinitialsfor theseCP
runs(which, if good,would obviate the needfor the final CPruns).

In the present paper a method is proposed which, under certain circumstances, yields good
estimates at little cost. Hence,besidesthe quality of the estimates,a main point of interest is
computational efficiency. Rather than focusing on computation time, which is implementation-
dependent,wereportnumbersof iterationsrequired.Becausethevariouscompressedarraysareall of
thesamesize(3�3�3) and,similarly, thefull datasizesarealwaysof size20�20�20,eachiteration
for acompressedarrayrequiresexactly thesameamountof timeandsodoeseachiterationfor thefull
dataarray. In our configuration this wasapproximately 0.018s. for an iteration for the compressed
array and0.11 s for an iteration for the full dataarray.Diff erencesbetweenmethodsthat are not
captured in this way aredifferences in time for computation of the basismatrices, but, aswill be
reported, these aretypically small compared with thoseof the iterativeparts.

A third point of concernin the presentsimulation study is the sensitivity to finding suboptimal
solutions(‘suboptima’), by which we meanlocal optima andsolutionswhere the algorithm hasnot
convergedyet. In a first seriesof runs,using our standard convergencecriterion, we encountered
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many suboptima, most of which probably pertained to premature terminations of the algorithm.
Thereforeweusedastricterconvergencecriterion in theactualanalysesreportedhere: weconsidered
a run to be convergedif differencesin consecutive function values(see(6)) differed by lessthan
10ÿ6% of the current function value. With this criterion, suboptima were encountered far less
frequently, andthosethatwereencounteredoftendifferedmorefrom thebestvaluethanwewouldbe
willing to explainby prematuretermination.In thepresentstudy wecountedthenumberof suboptima
in eachseriesof five randomly startedrunsasthenumberof runsthatledto lossfunction valueslarger
than1.0001timesthelowestfunctionvalueencountered(thealleged globalminimum).Theresults of
theanalysesof theoptimally compressedarraysarealsocompared with thosefrom thesecond stepof
Three-Step,which analysethe samecompressedarrays.

Finally, we checkedfor each(intermediate) solutionwhether it could beconsidereda degenerate
solution, as indicatedby dimensions with very low (close to ÿ1) f-coefficients between tensor
productspertainingto the different dimensionsof the solution.

3.4.Resultsof simulation study

Thefirst results consideredherepertain to thehighestsumsof f-valuesfor thetriple tensorproducts
from the obtained matrices (both intermediateand final solutions) and the underlying matrices,
averagedoverfive replicationsin eachcondition.Theresultsaregivenin Table2. It canbeseenthat
for the severemulticollinearity conditions with 2.5% and5% noiseand the mild multicollinearity
conditionswith 2.5%,5% and10% noisethe quality of all five final solutionsis virtually the same
(and very good, considering that the maximum is three). For the conditionswith more noisethe
resultsfor all methodsbecomeworse.In fact, uponinspection of the resultsfor the individual data
sets,wesawthatall methods failed to recovertheunderlying components(asindicatedbyf< 2) for

Table2. Summedf-values,averagedwithin eachcondition

Noise CP–Full RegComp OptComp SVDComp Three-Step
Multicollinearity (%) Ac,Bc,Cc Arf,Brf,Crf Aof,Bof,Cof Asf,Bsf,Csf Aif ,Bif ,Cif

Severe 2⋅5 2⋅997 2⋅997 2⋅998 2⋅997 2⋅998
5 2⋅988 2⋅988 2⋅988 2⋅988 2⋅988

10 2⋅945 2⋅405 2⋅947 2⋅944 2⋅621
25 1⋅056 1⋅040 0⋅994 0⋅983 0⋅992

Mild 2⋅5 2⋅999 2⋅999 2⋅999 2⋅999 2⋅999
5 2⋅997 2⋅997 2⋅997 2⋅997 2⋅997

10 2⋅982 2⋅982 2⋅981 2⋅981 2⋅981
25 2⋅699 2⋅503 2⋅323 2⋅197 2⋅508

Ac,Bc,Cc Ar,Br,Cr Ao,Bo,Co As,Bs,Cs A i,Bi,Ci

Severe 2⋅5 2⋅997 2⋅984 2⋅998 2⋅997 2⋅998
5 2⋅988 2⋅941 2⋅988 2⋅984 2⋅988

10 2⋅945 1⋅134 2⋅948 2⋅134 2⋅622
25 1⋅056 0⋅961 0⋅990 1⋅062 0⋅990

Mild 2⋅5 2⋅999 2⋅997 2⋅999 2⋅999 2⋅999
5 2⋅997 2⋅988 2⋅997 2⋅997 2⋅997

10 2⋅982 2⋅747 2⋅980 2⋅816 2⋅980
25 2⋅699 1⋅221 2⋅326 1⋅096 2⋅194
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all datain the25%noiseconditionwith severemulticollinearity andalsofor onedatasetin the25%
noise condition with mild multicollinearity. Because the ensuing componentsare of no use
whatsoever,it makeslittle senseto comparerelativedifferences in performancefor thesedatasets.
For theremaining 14 datasets(ten in the10%noiseconditionsandfour in the25%noisecondition
with mild multicollinearity)wecountedhowmanytimeseachof themethods‘laggedbehind’,in that
the obtainedf-valuewasmorethan0.1%lower thanthe highestf-valuefound for this dataset.It
turnedout thatCP–Full laggedbehindfive times,RegCompseventimes,SVDCompthreetimesand
OptComp andThree-Steptwice; thusnomethodalwaysledto thehighestf-value,butOptCompand
Three-Stepwerevery goodandnotably betterthanCP–Full.

We also inspectedthe final loss function valuesfor all methods. In the severe multicollinearity
conditionswith 2.5%and5%noiseandthemild multicollinearityconditionswith 2.5%,5%and10%
noisethesevalueswere,justasthef-values, virtually equal. Again discardingthedatasetsfor which
all methodsfailed, for theremaining14datasetswe foundthatCP–Fullneverlaggedbehind(i.e. its
function valuewasnevermore than0.01%higher thanthe lowestfunction value found), RegComp
laggedbehindtwiceandOptComp, SVDCompandThree-Steponly once.Thusit canbeseenthat,as
far aslossfunction valuesareconcerned, considerabledifferences arenot foundvery often.

As a first conclusion,wemention that in thecaseof low noiselevels and/or mild multicollinearity
all methodsyield adequate results. At higher levels,for some datasetsall analysesfail; for thedata
setswherethis is not the case,OptComp andThree-Stepgive the bestresults.

Table2 alsogivesthef-valuesfor the intermediatesolutionsof RegComp,OptComp,SVDComp
andThree-Step.It canbe seenthat for RegComp andto someextentalsofor SVDComp theseare
considerably lower thanthosefor thefinal solutions;for OptCompandThree-Stepthedifferencesare
rathersmall, theonly big differencebeingfoundfor Three-Stepin the25%noiseconditionwith mild
multicollinearity.This indicatesthatthefinal stepis certainly necessary in RegCompandSVDComp,
whereas for OptCompandThree-Stepthis stepseemsnecessary only rarely.

The second point of interest is the efficiency of eachmethod,measured in terms of full-data
iterations(FDIs) andcompressed-dataiterations(CDIs), whereit should bekeptin mindthattheFDIs

Table3. Averagenumbersof FDIs (largeprint) andCDIs (small print)

Multicollinearity Noise(%) CP–Full RegComp OptComp SVDComp Three-Step

Severe 2⋅5 5� 4272⋅5 1737⋅8 3⋅0 163⋅0 3⋅0
5� 6⋅6 5� 9331⋅4 5� 8898⋅4 5� 6⋅6� 6045⋅4

5 5� 3322⋅2 1346⋅8 4⋅8 840⋅2 4⋅8
5� 10⋅6 5� 6877⋅2 5� 7597⋅7 5� 10⋅6� 4605⋅8

10 5� 2616⋅5 2988⋅4 83⋅6 2294⋅4 155⋅4
5� 1802⋅9 5� 6294⋅5 5� 7986⋅0 5� 1802⋅9� 6124⋅0

25 5� 857⋅4 54⋅0 59⋅2 377⋅8 48⋅6
5� 2843⋅8 5� 3459⋅4 5� 4668⋅1 5� 2843⋅8� 1478⋅0

Mild 2⋅5 5� 1317⋅0 448⋅4 2⋅0 3⋅8 2⋅0
5� 5⋅7 5� 2204⋅2 5� 2158⋅5 5� 5⋅7� 1291⋅8

5 5� 1318⋅0 534⋅2 2⋅6 14⋅4 2⋅6
5� 5⋅9 5� 2341⋅3 5� 2355⋅5 5� 5⋅9� 1524⋅6

10 5� 1221⋅6 709⋅0 49⋅8 418⋅2 50⋅6
5� 8⋅1 5� 2025⋅4 5� 2431⋅4 5� 8⋅1� 1534⋅6

25 5� 886⋅7 590⋅4 253⋅8 788⋅4 257⋅0
5� 20⋅3 5� 973⋅8 5� 7734⋅2 5� 20⋅3� 3641⋅4
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aremuchmore expensive thantheCDIs.Theaveragenumbersof FDIs andCDIs for eachcondition
andeachmethodarereportedin Table3. Becauseof theimplementationdependenceof computation
times, we will baseour conclusionson the numbersof iterations as far as possible; we resort to
computation timesonly for comparisonsthatareotherwiseimpossible, buthandle thesewith caution.

It canbeseenfrom Table3 that CP–Full requires very many (expensive) FDIs, especially in the
conditionswith low noise percentages.In theseconditions,OptCompandThree-Stepneedvery few
FDIs, indicating that, especially in theseconditions, the useof optimal compressionleadsto good
startingvaluesfor a full-dataCPrun. In this respect, OptComp clearlyoutperformsSVDComp in all
conditions,thussustaining theresults reportedby Bro andAndersson,13 who introducedOptCompas
analternative to SVDComp. Furthermore,it canbeseenthattheRegCompsolutiondoesnotprovide
good initials for a full-data CP run: the number of iterations requireddoes (usually) decreasein
comparisonwith thatrequiredin randomly startedCPruns,but thedecreaseis only small compared
with thatencounteredwith OptCompandThree-Step.Clearly, thelattertwo almostobviatetheneed
for (expensive) full-dataCPruns,at leastin the low-noiseconditions,aswasalso deduced from the
quality of the intermediate solutions from these methodsin theseconditions (seeTable 2); in the
higher-noiseconditions,however, the full-data CPrunscannotalwaysbe left out.

In termsof CDIs, RegComp is by far the fastest method,at least in the low-noise conditions.
However, exceptin the25%noiseconditions,thisadvantageof RegCompwill notcompensatefor the
relatively largeamount of time involved in the FDI computationswith this method.OptComp and
SVDComp require very many CDIs, which doestend to take considerableamountsof time, even
compared with thetimeneededfor theFDIs.Finally, it canbeseenthatThree-Steprequiresfar fewer
CDIs thanOptCompandSVDCompin the low-noise conditions.This is a consequenceof the fact
that the five first runs requireonly a few iterations,and the run for the analysis of the optimally
compressed data is apparently so well started that it requiresconsiderably fewer iterations than
randomlystartedOptCompruns(exceptin the mild multicollinearity conditionwith 25%noise). It
canbeseenthatevenif only onerandomly startedOptComp run wereused,Three-Stepwould still
requirefewerCDIs. Thisadvantageof Three-StepoverOptComp (andhenceoverall othermethods)
is particularly clearin theseveremulticollinearity conditionswith 2.5%and5% noiseandthemild
multicollinearityconditions with 2.5%,5% and10%noise.Henceit canbeconcludedthat for these
conditions,Three-Stepseemsto be the preferredmethod:it is most efficient andthe quality of its
estimatesis asgoodasthat of the othermethods.

In the severe multicollinearity conditionwith 10% noise, OptComp requires considerably fewer
FDIs thanall other methods. However, it turnsout that thehigh numberof FDIs requiredby Three-
Stepin this conditionis causedby theanalysisof a singledataset;in theother four analyses, Three-
Steprequiredjust asmany or evenfewerFDIs thanOptCompdid. In Section 4 it will beexplained
how this anomalousresult can be avoidedand hencethat, also in this condition, Three-Stepand
OptComp arepreferredasfar asthenumberof FDIs is concerned,whereasThree-Stepagainrequires
fewestCDIs.Finally, in the25%noiseconditions,RegCompturnedout to requirerelatively few FDIs
(the fewest of all in the severemulticollinearity condition and ‘only’ about twice as many as
OptComp andThree-Stepin themild multicollinearitycondition). Consideringthat it usesvery few
CDIs,RegCompcanbeseento bethemostefficientmethodhere. However, thisefficiency is reached
at the costof quality: in six of these analysesthe underlyingcomponents werenot recovered (see
above);for threeof thefour remaining cases thequality of theRegCompsolution laggedbehindthat
of the other methods. This leavesOptComp andThree-Stepasthe preferredtechniquesevenhere.

To get a properideaof the full computationtimesfor eachmethod,we shouldalsoconsiderthe
computation of the basis matrices, and hencewe have to rely on results which hold for our
implementations only. It turned out that the basis matrices for regularized compression were
computed in a split second (0.23 s on average), which is negligible. Computation times for the
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optimal basis matrices ranged from 5 to 7 s for the 2.5%,5% and10%noiseconditions(usingless
than ten iterations)and nevertook more than 15s (and 105 iterations). In comparisonwith times
needed for CP–Full, this is negligible, considering that 1000 FDIs took approximately 110 s and
usually severalthousandswere needed. Furthermore, in the comparisonbetweenRegComp and
Three-Stepthecomputationtime for theoptimal basismatricesis muchsmaller thanthedifference
between total computation times for thesemethods, except in the 25% noise conditions.In the
comparisonbetween SVDComp andThree-Stepthis holdsin all conditions.Finally, thecomparison
between OptComp and Three-Step is not affected by the computation time of the optimal basis
matrices, becausethey bothusethese.It canbe concludedthat in our implementations,Three-Step
wasclearly most efficient in all conditions exceptthe 25% noiseconditions,whereRegCompwas
moreefficient. Thusit canbeseenthatonthebasisof ourimplementations,takingthecomputation of
thebasismatricesinto account doesnotchangetheoverall conclusionontherelativeefficiency of the
methods.

Thesensitivity to suboptimaof all methodswasassessedby comparingthesolutionsfrom thefive
randomly startedrunsin thefirst stepof eachmethod.It turnedout thatCP–Full led to suboptima 19
times,all in the25%noise conditions;RegComp(on which is alsobasedThree-Step)andOptComp
respectively foundsix andonesuboptima,all in theseveremulticollinearityconditionswith 10%and
25%noise;SVDCompled to suboptima17times,all in 10%and25%noiseconditions.Theseresults
suggest that using five random starts for RegComp and OptComp may not be necessary. For
RegComp thereis little reason to reducethis number,since theserunsareusually extremely fast; for
OptComp, using fewer startswould certainly make the methodmore efficient, but, as has been
mentionedabove,even if OptComp usedonly one run, Three-Step would still use fewer CDIs.
Moreover, theresultsin Section3.5will indicate thatOptComp maynot alwaysbesoinsensitive to
suboptimaasit wasin thepresentsimulationstudy.Furthermore,comparisonof therandomly started
OptComp runswith theOptComp run within Three-Stepalsoindicatesthatsuboptimal solutionsare
sometimesfoundfor OptComp: in 36 cases thesamesolutionswerefound,in threecases thebestof
thefive OptComp runswasbetterthantheintermediateThree-Steprun,andin onecasethelatterwas
betterthanall five randomly startedruns;thelastresultindicatesthatOptCompledto suboptimain all
five runsfor this dataset.

Finally, we inspected to what extent degeneratesolutionsoccurredin the analyses. It turnedout
thatadegeneratesolution wasencounteredin only oneof the200CP–Full runs;all other runsdid not
eventendto low triple cosinevalues.This indicatesthatslowconvergencefor thesedatahasnotbeen
causedby swamping due to entering a region of neardegeneracy (seealso Section4, where this
indication hasactually beenverified). We also inspectedthe final resultsfrom the other methods.
Degeneracieswereonly foundin the10%and25%noiseconditionswith severemulticollinearity. In
theseconditions,RegComp,OptComp,SVDCompandThree-Stepled to degeneraciesin three,two,
two andfour cases respectively.

3.5 Analyses of four data setsfrom literature

The aboveresults of the simulation studydemonstrate the value of the three-stepapproachfor CP
analysisof largedatasets.However, theresultsarelimi tedto onedatasizeandto constructeddata.To
seehow well the methodholdsup in other situations,we reanalysedfour datasetsreportedin the
literature. The first dataset, ‘Fluorescence data’, hasbeendescribed by Bro.19 This is a dataset
pertaining to five samplesfor which emissionwasmeasuredat 201emission wavelengthsrelatedto
excitation at 61 excitation wavelengths.Because of thepresenceof threesubstancesin thesamples
andbecauseof theoreticalpropertiesof themeasurement, thesedatacanbeapproximatedby a three-
dimensional CP model. The seconddataset,‘Sugardata’, is reported by Bro20 andpertains to 268
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samplesfor which emission spectra(with 571 wavelengths, only 392 of which were used)were
obtained at sevenexcitationwavelengths. The resulting268� 392� 7 datasetwasanalysedusing
threedimensions.Thethird andfourth datasetsaretwo ill-conditioned, synthetic datasetsreported
by Hopkeet al.21 Thesedatasetsweredeliberately constructedto be‘difficul t’ testcaseswith ahigh
degreeof collinearity in theunderlying componentmatrices.The first dataset,‘PP1’, wasbasedon
three components,the second, ‘PP2’, on four. Thesefour data setswere analysedby CP–Full,
RegComp, OptComp andThree-Step;SVDComp wasleft out from the analysesbecauseit did not
seemto haveany particular merit over the othermethodsin the simulationstudy.

In comparingtheanalysesof thefour datasetshere,we focusedon theefficiency of themethods.
As for the simulated data,we expressedthe efficiency in termsof numbers of iterationsand we
distinguishedbetween full-data iterations andcompressed-data iterations. The results are given in
Table 4. To illustrate the effectsof different datasizeson the ensuingoverall computationtimes
(includingcomputationof thecompressionbasismatrices),wealso reportthecomputation timeswith
our implementations of the programs.However, we warn that thesecomputation times depend
considerablyontheimplementationandevenonconditionsof thecomputerenvironment(e.g.for full
analysesof thelargestdatasetthecomputer continuouslyreadandwrotefrom virtual memory, which
causedthecomputationsto becomeveryslowandthecomputationtimesperiterationveryunstable).
Therefore small differencesin computation times shouldnot be taken seriously and conclusions
shouldforemostlybebasedonthenumbersof iterationsrequired,sincethesearenot implementation-
dependent.

FromTable 4 we seethat theconclusionsfrom thesimulationstudyarecorroborated.For all four
datasetsthe numberof FDIs required wasmuchsmaller for RegComp, OptComp andThree-Step
thanfor CP–Full; it shouldbenotedthatthisevenholdswhenin CP–Full only onerun is used,which
indicatesthat the analysesof compresseddatalead to goodinitials for the full-data analyses.This
turnsoutto beparticularly truefor OptComp andThree-Step,whichbothrequiredconsiderablyfewer
FDIs thanRegComp,which, in turn, usedby far thefewestCDIs. Thenumbersof FDIs requiredby
OptComp andThree-Stepwerevirtually equalin all four analyses,butThree-Steprequired far fewer
CDIs thandid OptComp. It canthusbeseenthatregularizationservesto reducethenumber of CDIs
andoptimal compression servesto reduce the number of FDIs. The former is particularly useful in

Table4. Numbersof FDIs (largeprint) andCDIs (smallprint) aswell astime requiredin analysesof four data
sets

CP–Full RegComp OptComp Three-Step

Fluorescencedata(5� 201� 61; R = 3)
Iterations 703 26� 66 759� 2 112� 2
Time (s) 668 76 39 38

Sugardata(268� 392� 7; R = 3)
Iterations 2968 34� 428 3147� 63 539� 64
Time (s) 192653 16657 3467 3425

PP1data(10� 8� 6; R = 3)
Iterations 68576 37� 6042 83981� 138 9540� 138
Time (s) 1634 143 1473 170

PP2data(10� 8� 6; R = 4)
Iterations 98188 60� 10671 96606� 2 12672� 2
Time (s) 2524 274 1832 242

A THREE-STEPALGORITHM FORPARAFAC ANALYSIS 167

 1998JohnWiley & Sons,Ltd. J. Chemometrics, 12, 155–171(1998)



casesof high multicollinearity (notably PP1dataand PP2data), whereas the latter is particularly
useful for very largedatasets (Sugardataand,to someextent,Fluorescencedata).Hence it is not
surprising to find thatRegCompandThree-Step(which bothuseregularizedcompression) aremost
efficient in theanalysesof thesmallerdatasetswith high multicollinearity, whereasThree-Stepand
OptComp (which bothuseoptimal compression) aremostefficient in theanalysesof the largedata
sets.Overall, wecanconcludethatThree-Stepis theonly methodthatis relatively efficientbothin the
analysisof very largedatasetsandin theanalysisof fairly smalldatasetswith highmulticollinearity.

We alsocompared thesolutionsin termsof final lossfunction valuesandcomponentmatrices.It
turnedout that in all analysesthe differencesbetweenthe final solutions werevery small.We also
checked the quality of the solutions obtained from RegComp, OptComp andThree-Stepbeforethe
final full-data analyseswere carried out. It turned out that in all four analysesthe intermediate
RegComp solutionwasinferior to thefinal solution, but the intermediate OptCompandThree-Step
solutionswerevirtually equalto thefinal solutionsin all four cases.This meansthatfor thesedatasets
theexpensive FDIscould havebeenleft outaltogetherandthetotal analysistimewouldbereducedto
thatof the(much)moreefficientCDIs. Unfortunately, it doesnot seemwiseto alwaysleaveout the
final analysis step:intermediate solutionsdo sometimesdiffer markedly from thefinal solutions,as
found in the simulation study.

Finally, we inspectedtheoccurrenceof suboptimal solutions.We foundsuboptimal solutionsonly
in cases wherethemaximal number of iterations(20 000)wasreached.This neverhappenedin the
RegCompruns,butdid with theOptCompruns,althoughonly in theanalysesof thePP1data(twice)
andthePP2data(threetimes).It also happenedin theCP–Full runs,againonly in theanalysesof the
PP1data(twice) andthePP2data(four times).We mayconcludethat suboptimal solutionsarenot
foundfrequently,but takingsome precautions(such asusingfive randomly startedruns)doesseem
recommendable, especially for CP–Full andOptComp.

To summarizethe aboveresults,we can conclude that Three-Step was the only techniquethat
worked well in all four widely differing cases. This conclusion corroborates the resultsof the
simulation study.

4. DEALING WITH DEGENERACIES

Themainaimof thepresentlyproposedthree-stepmethodis to avoidslowconvergenceandstill find
goodestimatesfor one’sparameters.Thethree-stepmethoddoesavoidslow convergenceandfinds
good estimatesin low-noise conditions, but in other conditions we sometimes get suboptimal
solutionsandslow convergence,notablyin one10%andseveral25%noiseconditions.To geta bit
more insight into the problems with Three-Stepin suchanalyses, for the (single) casewherethis
happened in the 10% noisecondition,we investigated the intermediate analysesin moredetail. It
turnedout that for this dataset the five RegCompruns took very many iterations and all led to
degeneracies.The succeedingrunson theoptimally compresseddataandon thefull dataalsoled to
degeneracies.Clearly, hereall five RegCompruns entereda Mitchell–Burdick-type swamp, from
which theydid notemergeanymorebeforethemaximumnumberof iterations(20000)wasreached.
Theseresults suggest thatThree-Stepbecombinedwith Mitchell andBurdick’s6 proposal to simply
stopany CP runs that entera swamp andrestartthem randomly.Thus it is suggested to usetheir
procedurenot only for CP analysis of the full data but also for intermediate CP analysesof
compresseddata. In this way the three-step approachcanbe usedrathergenerally in practice.

The abovediscussionmay provoke the question whether intermediate Mitchell–Burdick-type
swamping mayhavecaused slowconvergence in all analyses. Thereforewecheckedthedegeneracy
indicator(lowestcosinebetweentensorproducts) everytenthiteration for all randomlystartedCP–
Full runsaswell asfor all randomlystartedRegCompandOptComp runs.It turnedout thatof all 200
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CP–Full runs,only oneenteredaswamp, from whichit, moreover, did notemergebeforethe20000th
iteration.This clearly demonstratesthat for these data,slow convergenceis mainly not caused by
Mitchell–Burdick-type swamping. The RegComp runsandOptCompruns,on the other hand,did
reveal intermediate and final degeneracies more often, but only in the severe multicollinearity
conditionswith 25% noise(OptComp) and10% or 25% noise(RegComp). As far asOptComp is
concerned, however, it canbe concludedthat the slow convergenceof OptComp, which typically
happened in the low-noise conditions, is not caused by Mitchell–Burdick-type swamping. For
RegComp, moreinterestingly, it turnedout thatall caseswhere RegCompconvergedslowly werein
fact caseswherethealgorithmentereda swamp(andin theseanalysesit wasneverableto pull itself
outof it). If weleaveoutall thesecasesfrom ourresults,wefind thattheaveragenumberof iterations
of the ‘proper’ RegComprunsin theseveremulticollinearity conditionswith 10%and25%noiseis
13.0and6.4 respectively, andthevery largevaluesof 1802.9and2843.8in Table3 shouldthusbe
replacedby thesevalues.Clearly, theseresultssuggest thatmuchof theinefficiencyaswell assome
of theinadequacy of parameterestimatesby RegComp(andhenceby Three-Step)in thehigher-noise
conditions could be remedied by avoiding degeneracies in the way suggested by Mitchell and
Burdick.

The above suggested combination of Three-Step with swamp avoidance(implemented as
randomlyrestartingtheiterationsassoonasthetriple cosinefell below–0.95)wastestedon all data
setswhereRegCompor OptComp found degeneratesolutionsin all five runs;these cases coincide
with thecaseswhereThree-Step founda degeneratesolution. Thesedatasetswerebasedon severe
multicollinearityandnoise (onedataset)or 25%noise (threedatasets).For the10%noisedataset,
RegCompandThree-Steporiginally failedto find goodsolutions,butCP–Full andThree-Stepdid (f-
valueshigher than 2.83), so for this data set it was hopedthat by meansof swamp avoidance,
RegCompandThree-Step would give similarly goodsolutions;for the three25% noisedatasets,
none of the methodsfound an adequate solution (all f-valuessmaller than 1.3), but since non-
degeneratesolutions exist, we hoped that by swamp avoidanceall methodswould yield non-
degeneratesolutions.For the 10% noisedataset, indeed, using swamp avoidance, RegCompand
Three-Stepdid find goodsolutions(f-valueswere2.827and2.835respectively),althoughit should
benotedthat this required many restartsandhencevery many iterations(all RegComprunsreached
themaximumof 20000iterations). For thefirst 25%noisedataset,whereRegCompandThree-Step
originally founda degeneracy, RegCompstill led to a degeneracy (although the prior runsnow did
leadto anon-degenerateinitial), butThree-Stepnowfoundanon-degeneratesolution.Forthesecond
25% noisedataset,whereOptComp andThree-Steporiginally led to degeneracies, they no longer
founddegenerate solutionsnow.For thethird 25%noisedataset,whereagainOptCompandThree-
Step originally led to degeneracies, OptComp no longer did so, but Three-Step still found a
degeneratesolution.

It canbeconcludedthatswamp avoidancecanbeuseful in avoiding degeneratesolutions.In fact,
Three-Step supplemented with swampavoidanceled to goodsolutions (with f-valueshigher than
2.8) for all 34 datasetsfor which goodsolutions werefound by at leastonemethod,andwith one
exception,theassociatedf-valueswerelessthan0.1%lower thanthehighest. Also, for noneof these
34 datasetsdid it leadto suboptimalfunction values.CP–Full is theonly othermethodthat li kewise
alwaysfoundgoodsolutionsandno suboptimalfunctionvaluesfor these34 datasets.Thusit canbe
concludedthat Three-Stepwith swamp avoidanceturnedout to be the bestalternative to CP–Full.
Moreover, for most of thesedatasets,Three-Stepwasthemost efficientmethod.Therefore it canbe
recommendedto alwayssupplementThree-Stepwith theswampavoidanceprocedure:in caseswhere
the iterationsdo not eventendto a degeneracy, swampavoidancedoesnot make a differenceand
leavesThree-Stepvery efficient, whereas in caseswhereThree-Stepwould tendto adegeneracy, the
swampavoidanceprocedurewill preventThree-Step from finding sucha suboptimalsolution.
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5. CONCLUSIONSAND DISCUSSION

The resultsfrom the simulation study and from the analysesof the datareportedin the literature
demonstrate that the three-stepapproacheffectively combines the advantagesof the regularizing
compressionprocedure(fast convergence)andtheoptimal basiscompression (accurate approxima-
tion), unlesstoo muchnoise (25%in our simulations)is present.Combining eachstepwith Mitchell
andBurdick’s6 proposal for avoidingswamps appears a useful additional stepto avoid suboptimal
estimateswhich onemight otherwise obtain. It shouldbe notedthat often the estimatesyieldedby
analysesof optimally compresseddata(either by OptComp or by Three-Step)are very good and
obviatetheneedfor afull-dataanalysisstartedfrom theseestimates.However,becausethiscannotbe
guaranteed,it is recommendedto alwaysusesuchafinal analysis,which, in caseswhereit wouldnot
havebeenneeded, will requirevery few iterations.

In thepresentpaperwe comparedThree-Stepwith somesimpler compression-basedvariants and
with CP–Full andsawthat,overall, theThree-Stepapproachperformedbest.This, of course,leaves
thequestion openwhetheralternative procedurescouldbedevisedthatwork evenbetteror givegood
resultsin abroaderrangeof applications,e.g.caseswith higher noiselevels.In fact,weexperimented
with some other approachesas well. For instance, rather than taking the dimensionality of the
compression basis matrices equal to that of the CP solution, we testedprocedures where the
dimensionality of the basismatrix wastwo higherthanthe dimensionality of the CPsolution.

However, it turned out that these procedures performed worse than their lower-dimensional
counterparts.Also, we replacedthe regularized compression procedureby a procedurewhich only
regularizesbut doesnot compress.This also made resultsworse.A third alternative approachtested
wasa three-step approachwith the optimal compression in thesecond stepreplaced by SVD-based
compression; in fact, this washow we implementedThree-Stepto beginwith. It turnedout that this
procedureworked reasonably well, but the useof optimal rather than SVD-basedbasismatrices
considerably improvedThree-Step.

A furtherlimitation of thepresentsimulationis thatit only consideredCPanalyseswith thecorrect
dimensionality. In practice thedimensionality is not alwaysknown a priori . To seewhat happens in
situations wherethe underlying dimensionality differs from the oneusedin the CP analysis, in an
earlierstageof our simulation study we analysedthepresentthree–dimensionaldatasetsby models
with dimensionalities of two (onetoo small)andfour (onetoo large)respectively. It turnedout that
differences betweenmethodsin termsof efficiencywerevery similar to those obtainedfor analyses
with the correct dimensionality, so we did not proceedwith thesestudiesin a later stage of our
research.

A potential limit ation of the relative usefulnessof Three-Stepis that it no longer seems to
outperform RegCompandOptComp when thenoiselevel becomeshigh. However, theresultsfrom
thesimulation studyandtheanalysesof thedatain theliteratureindicatethatevenin suchcaseslittle
harmis donein usingThree-Step,becauseit doesnot tendto becomevery inefficient: it is always
amongthe most efficient methods, which doesnot hold for any othermethod tested here.
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