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A THREE-STEP ALGORITHM FOR CANDECOMP/PARAFAC
ANALYSIS OF LARGE DATA SETS WITH
MULTICOLLINEARITY
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SUMMARY

Fitting the CANDECOMP/PARAFAC model by the standard alternating least squares algorithm often requires
very many iterations. One case in point is that of analysing data with mild to severe multicollinearity. If, in
addition, the size of the data is large, the computation of one CANDECOMP/PARAFAC solution is very time-
consuming. The present paper describes a three-step procedure which is much more efficient than the ordinary
CANDECOMP/PARAFAC algorithm, by combining the idea of data compression with a form of regularization

of the compressed data arrdy.1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A popular model for the analysis of three-way data is the CANDECOMP or PARAFAC model
(independently introduced by Carroll and Chamagd Harshmahrespectively), henceforth denoted
as the ‘CP model’. The CP model can be described as followsXId&note a three-way array with
elementsq, i=1,...),j=1,...J, k=1,... K. Then the CP model is given by

R
Xk = Z ayr by Cir + ik (1)
r=1
whereg;, by andc,, are elements of the three component matrigseB andC of ordersl x R, J x R
andK x R respectively ana;, denotes the error term for observatigg. Both Carroll and Charlg
and Harshmanproposed to fit the CP model to a data array by minimizing the sum of squared error
terms, using an alternating least squares (ALS) algorithm.

Having been introduced in psychometrics, the CP model turned out to be especially successful in
chemometric applications® This is because physical-chemical principles behind response
mechanisms often correspond to the CP model: the main deviation from the model is caused by an
often small amount of noise. Typically, in chemometric models, some of the underlying component
matrices contain spectra or other smooth profiles, and often the underlying component matrices show
at least mild degrees of multicollinearity. Furthermore, typically, the size of at least two modes in
chemometric data is rather large (e.g. of the order of 100). The multicollinearity in the data tends to
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causehe CPalgarithm to requirevery manyiterations(e.g.severakensof thousandg andthesizeof
the dataarray causeseachiterationto be ratherexpeng/e, making a singe CP analysispracticaly
unfeasble.

Sevenl apprachesavebeensuggestd to remedythe problemof slow convergene. Forinstance,
Mitchell andBurdick® realizedthat onecauseof slow convegenceof the CP algorithmwasthatthe
algorithm landedin a region of the solutionspaceconsising of ‘degeneate soluions’.” After very
many iterationsthe algarithm was able to leavethis ‘swamp’ areaand then convege quickly, but
while residingin suchanareathealgorithmprocesdsonly very slowly. Mitchell andBurdick sugges
avoidingsuchrunsof analgorithmby stoppingarunassoonasit entersaswampareaasindicatedby
atleast one'triple cosine’tendng to —1, andrandamly startinga newrun; herea triple cosineis a
cosinebetwea tensomproduds a ® b, ® ¢ anda,,®b,&cq,, | # m, with a, by andc, denotingthelth
columnsof A, B andC respectivéy and® the(right) Kroneckemprodud.® Assuning thatatleastone
randomy startedrun will avoid the degeneate solution space this is an effective way of avoiding
‘swamping’ due to degenerag. Howeve, slow convegenceis not always accompaied by near
degeneacies.In partiaular, in the caseof high multicollinearity, convergencetendsto be slow,
wherea degeneaciesareonly rarely encournered.

A moregeneraltypeof apprachto handleslow convegencehasalreadybeenusedby Harshmart.
He employel arelaxatbntechniqie of changingeachvariableindividually asafunction of its current
short-rangeandlong+angetrends A differentprocedurdor acceleratig slow convegenceof the CP
algorithm is the Gatss—Newta-typeprocedurepropogd by Paaterd, coupledwith penaty termsof
gradually decreasingmpact. A disadvantagef thes techniqueshowever, is that a mondonical
decreasén the lossfunction valueis no longerguaranted. As a consequene, the algarithm mayin
certainsituafons lead away from a relatvely goodsoluion, or it may, in principle, evenoscillate
betwea soluions. Another problemwith suchan apprachis thatit requires a certainamountof
tinkering to chooserelaxatbn paraméersor penaltyparaméers,whichis quite problemaic for users
with little feeling for the optimization problem at hand. A third problemis its large memory
requiranent,making the analyss of large dataarraysunfessible.

In the presentpapera three-stp apprachis proposecasedon threemondonically conveging
sequenesinvolving CP analyse®f differently compresedversionsof the dataandof thefull data.
This procedurecanbe carriedout in a fully automaed way, thusnot requiringany tinkering by the
user.The procealureis a combination of compressim*®*3andregulaization of the dataarray.The
first stepconsistsof the CP analyss of the regulariz2d compressediataarray;in the secondstepthe
optimally compressediataarrayis analysediusingtheresut from thefirst stepasa start;andin the
third step the full arrayis analysedwith the solution from the secom stepasa stat. To avoid local
optima, thefirst stepshoul berepeatd from differentrandam initial estmates(from nowondenoted
as‘initials’). Becaus thefirst stepusualy requires only afew iterations this procalureis anefficient
way (even whenrun from severalkstars) to obtaingoodinitials. To improve theestimaes,thesecond
step usesoptimal conpressim bases™ the anajsis of the thus compresedarray doesrequirea
consideablenumberof iteraions,but dueto thegoodstartobtanedin step one,this numbertendsto
be considerab}l smaller than that needel for randanly startedruns; moreove, becase of the
availability of goodinitials, thereseemgo beno needto useseverakuchruns.Finally, thethird step
tendsto needonly veryfew iterationswhichisimportantbecaseeachiterationin thefinal anaysisis
very costly (involving the full dataarray).

In Secton 2 the rationale behind the regulaizing compressionstepwill be explainedanddetails
will be given of the computationsinvolved in the two compressim steps.In Secton 3, resultsof a
simulaion study comparirg severalcompressim-basedprocedureswill be given aswell asresults
from analyse®f datasetsfrom theliterature In Sectiond it will bediscussd howto handk possibe
degeneacies.The paperis concludedwith a generaldiscussiorin Secton 5.
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2. REGULARIZED AND OPTIMAL COMPRESSION

Whenanalsingpractical datasetsby aPARAFAC-like procedureKiers andSmilde** foundthatthe
algorithm required very many iteraions, and resultsof different randomly stated runstended to
differ only slightly in termsof lossfunction value but consideably in termsof obtainal paraneter
estimatesAlthough this type of outcomeoften indicatesthat a wrong numkber of componentshas
beenusedthis cannotexplainthepresenproblem becauseve actually knewthatwe took thecorrect
numberof componerd. Herethe problemcan probablybe attributed to the extremeflatnessof the
criterion function and to prematureterminaton of the algorithm. Two of the three component
matrices underlying thesedata were known to have consterablemulticollinearity, so it seemed
reasonableo attribute the slow convegenceto this multicollinearity. In fact, to checkthis, datasets
of the sane sizebut with compmentmatrices of constderablysmallercondtion numbershavebeen
construted, andindeedfor suchdatathe algarithm conveged quickly. It wasthus concludedthat
high condition numters in undetying componentmatrices may well be the causeof slow
convergene. Moreover high condiion numbersin componenmatricesaredirecty relatdto high
conditionnumberdn the datawrittenassupematrices with rowsreferiing to the entries of themode
athand.Therdore a possibilityto remedythe thuscause slow convegencemightbeto alleviatethe
multicollinearity in the data.

To seehow we can alleviate the multicollinearity in the datg we first consider the error-free
situation. Error-free datasatisfying the CP modd canbe descriled equivalenly as

X,=AH(C'®B") (2a)
Xp=BH(AT®C") (2b)
Xc=CHB'®AT) (2¢c)

whereX, is the | x JK matrix with the frontal planesof X nextto eachother, Xy, (J x IK) and X,
(K x 13) arethematrices obtainedanalogouly from X after permutingthe modes of X suchthatone
obtainsaJ x K x | andaK x | x J arrayrespectivey, andH is the R x R? matrix with the frontal
planesof theR x R x R ‘superidenity array’ | with all elements equalto zerg excef the elements
with three equal indices, which all equal one. Now suppos that the matrix A has high
multicollinearity where, for the sakeof argumeh, B and C are orthonomal. Then X, and A
havethe sameconditionnumkter (ascanbe seenuponrealizing thatin this caseH(C'®B") is row-
wise orthonomal). Furthermoe, from equation(2a) it follows that X, is in the column spaceof A.
Hence,if P, denotesa basismatrix for the column spaceof A, we have

P.P3Xa=PAH(CT®B") ®)

where P} denotesthe Moore—Penrosénverseof P, and A denoes the R x R matrix suchthat
A=P,A, henceA =P, A. Equation (3) givesanexpressionof thedataandthe modéd projectedonto
the basismatrix P,. This expressionis atthe bask of the postponedasismultiplication procedure*

which hasbeenshowrt? to be equivalentto the analyss of a compreseddataarray (ashadalready
beenproposedby Carrd! et al.*®> and Appellof and Davidon'?). Thus studying the errorfree case
leadsus naturally to compresionof the dataarray.As shownby Kiers andHarshrman > CPanalysis
of thefull datais equivalentto CPanalyss of the compressediatain PPz X ,, providedthatthe basis
matrixis column-wiseorthonormallf P, spandothX,andA, thenthis equivalencealsoholdsin the
caseof imperfed modelfit, albeitonly if the basismatrix is columnwise orthonomal, becagethen
we have ||P.P4X.—PAH(CT®BM)||?= |PiXa—AH(CT®B")||>. However, in the presentcase,
where we consider perfect fit, we have equivaknce of the full modé to a compresed modd

irrespecive of possitbe (non-)othonormaity of P,, becawseit follows from (3) that
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PiXa=AH(C'®B") @

Thus, as long as we have perfect fit, we can even compressthe data with respect to non-
orthonomal basismatricesandstill be ableto write the compresseddataasa CP modelin termsof
alternaive (andsmalle) paranetermatrices. Obviously,similar compresionscanbe performedfor
the B— and C—mode yielding

Ya = PIX(PLT@PI)=AH(CT®B") (5)

whereB andC denotethe R x R matricesneede to obtainB andC from Py, and P, respectivéy.

As mentionedabove we canderive(5) from the perfectfitting casg2) for anybasismatrices P, Py,
and P.. If we were to take column-wise orthonormal basis matrices, as in most compresion
procedurs propoed so far,°*%1315the condition number of X, would be the sameas that of
Y= PiX(PIT®PL™), andthesamewould holdfor theJd x IK matrix X, andits compresedverson
Yy = PiXu(PIT®@PI™) and for the K x IJ matrix X and its conmpressedverson Y. =
PIX(PET®PLT), which canbe obtdned by permutng the indicesof the arraysX, and Y. Thus
it canbe seenthat the standad compressin techniqiescompres the datain sucha way that the
underlying multicollinearity remainsin the conpressedarray. Therdore the CP algarithm appledto
this compresedarray canbe expectedo convege slowly, just asit would whenappliedto the full
data.Howevae, if we takeP,, P, andP. suchthatthe compresedverdonsof X, X, andX. become
(closeto) row-wise orthonomal (for which a procedurewill be givenbelow),thenin fact (mostof)
the multicollinearity is removedrom the arrayandtransferredto the basismatrices As aresult,the
compresedarrayis well conditionedn all directiors,andthe CPalgorithm appledto this array will
convergequickly. In the caseof perfectfit the real A, B and € canthen be reobtainedfrom the
solutionsfor A, B andC upan premutiplying theseby P,, Py, and P, resgectively.

In the caseof imperfectfit the aboveno longe holdstrue,andevenif P, P, andP, were to give
basedor both X andthe optimal A, B andC respectivey, the leastsquaresoluion minimizing

IXa— AH(CT®BT) ||? (6)
would not equalthat obtainal from minimizing
IPEXLPT®PEY) — AH(CT@B)|1? (7

in contastwith what is the caseif the bass matrices arecolumn-wise orthonomal. However,when
thefit is rea®nablycloseto perfect(i.e. whenthenoiselevel is low), onemayexped thatthesolution
from minimizing (7) premutiplied by thecorrespadingbask matrices soasto obtan solutionsfor A,
B andC will be closeto the A, B andC actuwally minimizing (6). Hence the solutionfrom (7) could
still be expectedto give goodestimatesfor minimizing (6).

Sofar, it hasnot beenexplainedhow we obtan basismatrices suchthatPZ X (Pt " @ Py +) andthe
compresedverdonsof X, andX. arecloseto row-wise orthonomality. This canbe doneasfollows.
We startby finding a basismatrix P, suchthat PZ X, is row-wiseorthonomal. Sucha matrix canbe
foundin variousways. Herewe obtainsucha matrix from the singular valuedeconposition(SVD) of
X4 given asX,=UDV' with UTU =V'V =1 andD diagonal, the sizesof thesematricesdepenihg
on the rank of X, which we assumeo be at leastR and usuallymuch larger. Let Ug, Dr andVg
denotetruncatedmatrices with the first R left singula vectors,singula valuesandright singula
vectorsresgectively. Thenwe take the bass matrix P, asP, = UgDg, and,asa result,PZ X, equals
V', whichindeedis row-wise orthonomal; notethatthe high condiion numberof X is transferred
to P,, becasethis high conditionnumker is reflededin the singula valuesin Dr. Upon permutng
theindices we obtan thearrayX,(P1 " ®1). If multicollinearity recidesnotonly in theunderlying A
but also in B, the matrix X,(P2"®1) will be multicollinear as well. To find a basismatrix that
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captures this multicollinearity, we usethe SVD X (P *®1) = UDVT andtakeP, asP, = UgDg, thus
having Pg X,(PX*®1) = VR, which is row-wise orthorormal. Thenwe againpermutethe arrayto
obtain X(PI"®P.") and find P.=UgDg, Where Ug and Dg are obtaned from the SVD
X(PEt@PIN)=UDV". Now Y. =P, X(PF*®Ps") = VR', which is hencerow-wise orthorormal.
Upon permutng the arrayagain,we find Y ; and Y, respectively. Thesematriceswill usuallynotbe
row-wise orthonormal,but their conditionnumkbkerstendto be muchlower thanthose of X, and X,
and, as a cons@uenceof this compresion procedure, we have found a compresed array with
conditionnumkersfor its asso@tedthreematrix expressiongyY 5, Y, andY ) mudch smallerthanthe
conditionnumtersof the matrix expressions(X,, X, andX,) of the original array X.

To further deceasethe condtion numkbkersof the matrix expressionsof the compressedarray, we
suggestepeatingthe aboveprocedureon the current compresedarray Y. The resuting new basis
matrices areincorporatal in the first setof basismatrices (by simply posmultiplying the first basis
matrices by thecorrespadingnewly obtainal ones) Practcal expefencesuggetsthatrepeatinghis
cycle, say, ten times usually leads to condtion numkbers closeto unity for all three matrices, and
continuingthe procedure evenfurther appeas to convergeto a soluion with all condtion numters
tendingto unity, althoughwe cannotprovethatthis mug alwaysbethe case Becaus for our purpose
it sufficesto have condiion numberscloseto unity, we propo® to usea limited numter of such
iterations;in all our analysesve usedten.Becaus this procedureturnsanill-conditionedarrayinto a
well-conditionedarray,this procedurewill be denotedasregularizingcompresionandthe ensuing
compresedarrayis called the regularizedcompresedarray.

To seewha theaboveprocaelureamauntsto, we first consideithe caseof perfectdataagan. In that
casewe know thatthereis a threeway array,nanely |, which is row-wise orthonomal in all three
directiors andwhich canbe obtaineal by taking P,= A, P, =B andP. = C. If the basismatrices are
indeedfoundasabove thenthe ensuingCP analysisof the compressedarray is very simple. The CP
analysisof | (the matrix expressin of which is H) boils down to minimizing |[H —~AH(CT®B") |2,
which hasthe trivially simple solutionA =B =C =1. Cleaty, premultipling this solution by the
correspading basismatrices leadsto the matricesA, B andC which actualy fit the full dataarray
perfectly. In pradice theiterative procaluretends to convergeto rotations(in all directiors) of I, so
thebass matriceswill berotationsof A, B andC, possiby rescaédcolumnwise. The CPsolutionof
the compressedarray then consistsof (rescaled)rotation matrices, and agan premutiplying this
solutionby the correspading basismatrices leadsto the matrices A, B andC. It is now intuitively
clearthatarrayswith closeto perfectfit will turninto regularizdcompresedarrayscloseto rotations
of the superidatity array, andthe CPanalysisof suchanarraywill yield matrices A, B andC which,
when prenultiplied by the correspading basismatrices, will lead to solutions closeto the ones
actuallyminimizingthe CPlossfunction. Of cours, it remaingo beseenwhatis ‘close’ to perfectfit.
Howeva, if oneis not safsfied with the ensung solution onecould updae this by the ordinary CP
algorithmstartedirom this solution, which, assumig thatthe presensolutionis closeto thebestone,
canbe expectedo convergequickly.

This procedurehasinitially beentegedby Kiers andSmilde** in orderto fit their PARAFAC-like
model.lt turnedoutthatthe procedurétselfoftenledto insufficienty adequée solutions soit needed
finishingby a seriesof final runswith the CPalgorithmappliedto thefull data.Howeve, thenumter
of iterationsrequiredfor this analysistendedto bestill quite high, althoughconsideably lower than
whenstaring from scratch This led themto useananalyss of the‘ordinary compresedarray’ (based
on SVDsof X, X, andX,) asanintermedate step.Experiene with this analyss of the ‘ordinary
compresedarray’ wasthat it requiresvery mary iteratiors whenstarted from scratch but, once
convergedit providesavery goodstartfor the CPanalyss of thefull data,requiringonly afew such
expensivaterations. Combining this with the experiencethatthe analysisof regulaized compressed
dataleadsto area®nablygoodstartfor the ordinary algorithm,they suggeted using the analysisof
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theregularzed compressedarrayasa first step asa secom step,the ordinary compressedarray(i.e.
usingcolumn-wise orthonomal basismatrices)is analysedising the currentsolution asa start(after
projectirg this onthe presenbass matrices); thethird andfinal stepconsiss of ananalyss of thefull
dataarray, startedrom the solutionfrom thesecoml step(obviously,afterpremutiplying thesolution
by the correspading bass matrices). In the presentpaperwe suggesa similar threestepapprach
for CP anaysis.

Howeve, we usethe aboveiterative procedurefor finding low condtion numkbersin all three
directiors, wherea Kiers andSmide** only usedconpressiorin two directiors. Furthermoe, rather
than‘ordinary compresion’, we usedthe ‘optimal’ compressiorpropogd by Bro andAndersson'®
which is basedon a TUCKALS3'® analyss of the dataarrayandfinds P,, P, andP, by minimizing
[Xa— PaY 4(PI®P}) ||? overcolumnwise orthonomal matrices P,, P, andP. andoverY ,. Because
thesebasismatrices are indeedcolumnwise orthonomal, this compresionwill not regulaize the
data.The compressim, however is optimal in the sensehatit gives the orthonomal projection of X
on R-dimensionalsubspaesthatremainsclosesto theoriginal X. For aschemadt desciption of the
threestepapprach,referto Section 3.2andTable 1.

We testedthe abovesuggetedthree-stepapproactby comparngit with ordinary CPanalsisand
othercompressim-basedorocedurs, applying thesemethodgo 40 datasetswith known underlying
structureaswell asto four datasetsreportal in theliterature This conparisonis descibedin thenext
section.

3. COMPARISON OF SEVERAL PROCEDURES FOR CANDECOMP/PARAFAC

To testthethreestepapproactandcompareit with CP analsisof thefull dataaswell aswith three
variantshasedon conpressiam, we performeda simulaion study on the basisof 40 constru¢ed data
sets.In addition,we analsedfour datases from the literatureso asto put the simulaton studyin
proper perpective. The algorithms were programmed in MATL AB'’ v. 4.2. The analyseswere
carried out in a Windows 3.11 environmenton a pernal computerwith a Pentium 100 MHz
processoand32 Mb RAM.

3.1. Construction of data for simulation study

For the simulationstudy, 40 datasetsof order20 x 20 x 20 were constucted,with known (three
dimensgonal) undetying CPstrucureandvariousamountsof noiseandmulticollinearity,asfollows.
For eachdataset,randommatrices Ag, Bo andC, of order20 x 3 wereconstucted;the elements of
thesematrices were drawn from the uniform [0.5,15] distribution in the condiions with mild
multicollinearity (20 datasets)andfrom the uniform [1,2] distribution in the condtions with severe
multicollinearity (20 datases). In the conditiors with severemulticollinearitythe condtion numkers
of Ao, Bo andCq rangedrom nineto 18, with anavelageof abouteleven;in theconditionswith mild
multicollinearity the condtion numkersof Ag, Bg andC, rangedfrom six to 14, with anaveageof
aboutseven Randommatrices, ratherthanfixed matrices, wereusedso asto covera broadrangeof
possibé situatins. The matrices were all forced to have non-n@ative elementsso as to mimic
situatimswhere thesemodespertainto non-neative physicalentities suchasfrequenciesn spectra
or concentations.To avoid complicatonsin settingup thedesign no provisionsweremadeto ensure
smoothprofilesin the componenmatrices,which would be animportantcauseof multicollinearity;
insteal, multicollinearity was forced simply by the choice of possibé values for the component
matrices, upon noting that randomvalues from relativdy high-valuedintervals tend to lead to
relativdy severemulticollinearity in the ensuingmatrix of randomnumbers
Fromthe matrices Ao, Bo andC, the dataarraywas construced as
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Tablel. Schematiaepresentatiomnf five methodsfor fitting CP model

CP-Full RegComp OptComp SVDComp Three-Step
Five CPrunsof X Yreg Yopt Yswd Yreg
Selectbest AcBc,Ce /:\r,l.5>r,(~3r Ao,éo,éo AS,LSJS,és Ar:érvér
Obtainfull-sized estimates A, A =RA, Ao=0A, As=SAs A =RA,
B Br =Ry Dr Bo= ob@o Bs= SOBS B, = Rb@r
Cec Cr =Ry Co=0.Co Cs=SCs Cr =Ry
Initials for intermediate Ao=04'A,
analysis Bo=0y B,
Co= OcTCr
Intermediatesolution AiB.Ci
Obtainfull-sized estimates Ai=0A,
Bi = OpB;
Ci=0cLC;
Solutionof final CPrun Arf,Brf,Crf Aof,Bof,COf Asf,Bsf,Csf Aif,Bif,Cif

Notation:

X, full dataarray;

Yeq regularizd compressedrray;

Y opw Optimaly compressedarray;

Ysva SVD-bagd compressedirray;

Ra Rb, Re, regularizdthree-dimenginal compressin basismatrices;
O, Oy, O, optimal three-dinensionalcompressiorbasismatrices;
S, S, S, SVD-basedhree-dimasionalcompressin basismatrices.

Xa=AoH(Co' ®Bo") + N 8)

where N denogs the matrix expressionof a three-wg array with propotional noise values;
specificdly, following Mitchell and Burdick?® eachnoise value was computel by multiplying the
correspading dataelemant by a value drawnfrom the normal distribution with standad deviation
o(with 2=0.025, 0.05,0.100r 0.25,dependihg on the noiseconditionat hand) Thusleves of 2.5%,
5%, 10% and 25% propotional noise were geneated. For eachcombindion of multicollinearity
condition(mild or sevee) andnoiselevel, five datasetsweregeneragd,thusleadingto thetotal of 40
datasetsmentionedearlier.

3.2.Five Methodsfor Fitting CP model

The five methodsusedin the simulation study are summarizedin Table 1. Eachmethodstars with
five randomlystated CP runsto a particula (usudly compresed)dataarray.Fromthese the best
solutionis seleced and usedto initialize the next CP run (exceptin the first method. Only in the
three-stp methodaretheresultsof this analysisagainusedto initialize anewrun. Specfically, in the
first method,CP—FUl, thefull dataarrayis analysedby five runsandthe bestsoluion is takenasthe
solution. The secoml, third and fourth methods(RegConp, OptCompand SVDComp respectivéy)
startby five CP runsappled to the regularizd, optimally and SVD-basedcompressediataarrays
respectivey. Theresuting solutionsare premutiplied by the correspading basismatrices to obtan
full-sized estimaesfor A, B andC. Theseestimaesin turn are usedasinitials for a final CP run
appliedto thefull dataset.Thethree-stepmethodis a bit morecomplex. Thefirst stepof Three-Step
is the sane asthatof RegComp.Howeve, thefull-sized estimateobtainedfrom Reg@®mparenow
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usedto computeinitialsfor a CPrun of theoptimally compressedirray;thes initials areobtanedby

projectirg the full-sized esimates on the optimal bass matrices (see ‘initials for intermediate
analyss’ in Table 1). The secondstep of ThreeStep consiss of the analsis of the optimally

compresedarray, initialized as mentionedjust above.From this intermedate analysis, full-sized

estimaesA;, B; andC; areobtainal. Thesein turn areusedasinitial sfor thethird step,consising of a

CPrun appliedto the full dataset.

3.3. Criteri a of Interest

All methodsdescriled abovewere appied to the 40 datases constuctedfor this simulationstudy.
Oneof themain criteria of interestin this studywashow well the original componentmatriceswere
recovere by eachof the methods To assesthis, ratherthan comparingeachobtainal component
with each correspading undetying componentmatrix, which would have to take into account
permugational,scalingandsignindeterminadesin the solution, we comparel solutionsby computing
cosines between tensor products a’®@b’®c?, 1=1,2,3, and 4,®@bm®@Em M=1,2,3, where the
supersapt ‘zero’ pertaingo columnsfrom theundetying componentmatricesandthe superinposed
‘hat’ pertainsto columnsof estimaed componentmatrices. Given a set of componentmatrices
{A,B,C}, othe setsof componentmatrices that yield the samerepreseatation of the data are
constitued of the samesuchtensor products althoughpossiblyin a different order.Hencea usefl
overallmeasue of recovery is the sumof threecosineshetweentensorproduds from the underlying
componenmatrices with those from the obtained conponentmatrices, with thelattertensorproduds
orderedsuchthattheyleadto the highestoverallsumof coshes.Thesecosinesdenoedas¢(beause
they arecomputel simply as Tucker's ¢-coefficientof congruenc®), arethe sameasthe measues
employel by Mitchell andBurdick,® called ‘uncorrectedcorreltion coefficients’. A drawbak of this
cosinemeasueis thatit tendsto yield high valuesevenwhendifferences betweertensor produdsare
apprecable, aslong as all valuesare positive. Therdore evensmall differences should be taken
serioudy.

Althoughthe main aim of all methodsis to optimally recover the undetying componentsthis is
operationakedin all methodsby minimizing thelossfunction(6). Thus,in additionto howwell the
underlyng componergarerecovere by thedifferentmethodswe conparedthelossfunctionvalues
for thefull datarestiting from thefive methodsin Reg@®mp, OptConp, SVDCamp andThree-Step
thesevaluesare simply the function valuesupon convergene of the final CP run of the full data,
wherea for CP-FUl this is the lowest value resulting from the five randamly stared runs.
Furthermoe,we compare thesewith thelossfunctionvaluesasso@tedwith theinitialsfor these CP
runs(which, if good,would obviate the needfor the final CP runs)

In the preent papera methodis propogd which, under certain circumstancesyields good
estimaes at little cost. Hence, besidesthe qualty of the esimates,a main point of interestis
computaional efficieng. Rathe than focusng on computation time, which is implementaton-
depenént,we reportnumbersof iterationsrequirad. Becausehevariouscompresedarraysareall of
thesamesize (3x 3x3) and,similarly, thefull datasizesarealwaysof size20x20x 20, eachiteration
for acompressedrray requiresexactly thesameamauntof time andsodoeseachiterationfor thefull
dataarray. In our configuition this wasapproimately 0.018s. for aniteration for the compresed
arrayand0.11 s for aniteration for the full dataarray. Diff erencesetweenmethodsthat are not
capture in this way are differences in time for computaion of the basismatrices, but, aswill be
reportal, these aretypically small comparel with thoseof the iterative parts.

A third point of concernin the presentsimulation study is the sensiivity to finding subopimal
solutions(‘suboptima), by which we meanlocal optima andsolutionswhere the algorithm hasnot
convergedyet. In a first seriesof runs, using our standad convegencecriterion, we encoutiered
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Table2. Summedp-values,averagedvithin eachcondition

Noise CP—Full RegComp OptComp  SVDComp  Three-Step
Multicollinearity (%) AB.Ce ArBit,Crt AorBorCot  AstiBstCot Ait,Bif,Cit
Severe 23 2097 2997 2998 2997 2998
5 2988 2988 2988 2988 2988
10 2945 2405 2047 2944 2621
25 1056 1040 0994 0083 0992
Mild 23 2999 2999 2999 2099 2999
5 2997 2097 2097 2997 2097
10 2982 2982 2081 20981 2081
25 2699 2303 2323 20197 2308
ACxBuCC Ar:BryCr Ao:BmCo A51851CS Aini,Ci
Severe 23 2997 2984 2998 2997 2998
5 2988 2941 2988 2984 2988
10 2945 1134 2948 20134 2622
25 1056 0061 0090 1062 0090
Mild 23 2999 2997 2999 2999 2999
5 2997 2988 2097 20997 2097
10 2982 2047 2980 2816 2980
25 2[699 1221 2326 1096 20194

many subopima, most of which probaly pertanedto prematire terminations of the algarithm.
Therefoe we usedastricterconvergene criterion in theactualanalysesepotedhere we constered
arun to be convergedf differencesin conseutive function values(see(6)) differed by lessthan
10 %% of the current function value. With this criterion, subopima were encounered far less
frequently andthosethatwereencounteredftendiffered more from thebestvalue thanwe would be
willing to explainby prematireterminaton. In thepresenstudy we countedhenumber of suboptima
in eachseriesof five randamly startedrunsasthenumter of runsthatledto lossfunction valuedarger
than1.0001timesthelowestfunctionvalue encounered(thealleged globalminimum). Therestlts of
theanalyse®f theoptimally compressedrraysarealsocomparel with those from the secoml stepof
Three-Sép, which analysethe samecompresedarrays.

Finally, we checkedfor each(intermediatg solutionwhethe it could be constlereda degenerate
solution, as indicated by dimengons with very low (closeto —1) ¢-codficients betwee tensor
productspertainingto the different dimensons of the solution

3.4.Resultsof simulation study

Thefirst resuts consideed herepertain to the highestsumsof ¢-valuesfor thetriple tensorproduds
from the obtainal matrices (both intermediate and final soluions) and the undetying matrices,
averagedverfive replicationsin eachcondition.Theresultsaregivenin Table2. It canbeseerthat
for the severemulticollinearity condtions with 2.5% and 5% noiseandthe mild multicollinearity
conditionswith 2.5%,5% and 10% noisethe quality of all five final solutionsis virtually the same
(and very good, consideing that the maximum is three) For the conditionswith more noisethe
resultsfor all methodsbhecomeworse.In fact, uponinspecton of the resultsfor the individual data
setswe sawthatall method failed to recoverthe undetying componentqasindicatedby ¢ < 2) for
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Table 3. Averagenumbersof FDIs (large print) and CDIs (small print)

Multicollinearity ~ Noise(%)  CP-Full RegComp  OptComp  SVDComp Three-Step

Severe 28 5x 42725 17378 30 1630 30
5 x 66 5x 93314 5 x 88984 5 x 606 + 60454

5 5x 33222 13468 48 8402 48

5x 108 5x 68772 5 x 75977 5 x 106 + 46058

10 5 x 26165 29884 836 22944 1554

5x 18029 5 x 62945 5x 79860 5 x 18029 + 61240

25 5x 8574 540 592 3778 4886

5 x 28438 5 x 34594 5x 46681 5 x 28438+ 14780

Mild 23 5x 13170 4484 20 338 20
5x 50 5 x 22042 5 x 21585 5 x 5007 + 12918

5 5x 13180 5342 26 144 26

5x 509 5x 23413 5 x 23558 5 x 50 + 152486

10 5x 12216 7090 4938 4182 506

5x 81 5 x 20254 5x 24314 5 x 8+ 15348

25 5 x 8867 5904 2538 7884 2570

5 x 203 5x 9738 5x 77342 5 x 203 + 36414

all datain the 25% noiseconditionwith severemulticollinearity andalsofor onedatasetin the 25%
noise condtion with mild multicollinearity. Becaug the ensuing conponentsare of no use
whatsever,it makeslittle senseo comparerelative differences in performancefor thesedatases.
For theremainirg 14 datasets(tenin the 10% noise conditionsandfour in the 25% noisecondition
with mild multicollinearity) we countechow manytimeseachof themethodslaggedbehind’,in that
the obtaned ¢-value wasmorethan0.1% lower thanthe highest ¢-valuefound for this dataset. It
turnedoutthat CP—Ful laggedbehind five times,RegComgsevertimes,SVDCompthreetimesand
OptConp andThree-Septwice; thusno methodalwaysledto the highestp-value ,but OptCompand
ThreeStepwerevery goodand notably betterthan CP—Fl.

We also inspectedthe final lossfunction valuesfor all methods In the sevee multicollinearity
conditionswith 2.5%and5% noise andthe mild multicollinearity condtionswith 2.5%,5% and10%
noisethesevalueswere justasthe ¢-values virtually equal Again discardinghe datasetsfor which
all methoddailed, for theremaining 14 datasetswe foundthat CP—Fullneverlaggedbehind(i.e. its
function valuewasnevermore than0.01%highe thanthe lowestfunction value found), Reg®mp
laggedbehind twice andOptConp, SVDCompandThree Steponly once.Thusit canbeseerthat,as
far aslossfunction valuesare concernedconsideable differences are not found very often.

As afirst concluson, we mertion thatin the caseof low noiseleves andbr mild multicollinearity
all methodsyield adequée resuts. At highe levels,for sone datasetsall analysedail; for the data
setswherethis is not the case,OptConp and Three Stepgive the bestresitits.

Table2 alsogivesthe ¢-valuesfor theintermediatesoluions of RegComp,0OptComp, SVDComp
and Three-Steplt canbe seenthat for Reg@®mp andto someextentalsofor SVDComp theseare
consideably lowerthanthosefor thefinal solutions;for OptCanp andThree Stepthedifference are
rathersmadl, theonly big differencebeingfoundfor Three Stepin the 25%noiseconditionwith mild
multicollinearity. Thisindicateshatthefinal stepis certainly necessarin RegCompandSVDComp,
wherea for OptCompand Three Stepthis stepseemasecessar only rarely.

The secoml point of interestis the efficiengy of eachmethod, measued in terms of full-data
iterations(FDIs) andconpressediataiterations(CDIs), whereit shoutl bekeptin mindthattheFFDls
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aremuchmore expensre thanthe CDIs. Theaveimagenumkbersof FDIs andCDIs for eachcondition
andeachmethodarerepotedin Table3. Becaus of theimplementationdepen@nceof computation
times, we will baseour conclusionson the numbersof iterations as far as possble; we resortto
computaion timesonly for comparisosthatareothewiseimpossble, buthande thesewith cauion.

It canbe seenfrom Table 3 that CP—Ful requires very mary (expensie) FDIs, espe@lly in the
conditionswith low noise percenagesin thesecondtions, OptCompandThree-Stemeedvery few
FDIs, indicating that, especidly in thesecondtions, the useof optimal compressionleadsto good
startingvaluesfor afull-data CPrun. In thisrespectOptConp clearly outperbrmsSVDConp in all
conditions thussustaning therestits reportedby Bro andAndersson* whointroducedOptCompas
analternaive to SVDConp. Furthermorejt canbeseernthatthe RegComgsolutiondoesnot provide
good initials for a full-data CP run: the numkber of iterations requireddoes (usudly) decreasen
comparisorwith thatrequiredin randanly stated CPruns,but the decreasés only smdl compared
with thatencouneredwith OptCompandThree-StepClearly, the lattertwo almostobviatethe need
for (expensie) full-data CPruns,at leastin the low-noise condtions,aswasalso deducel from the
quality of the intermedate soluions from these methodsin theseconditiors (seeTable 2); in the
highernoiseconditions,however the full-data CP runscannotalwaysbe left out.

In termsof CDIs, Reg@®mp is by far the fastes method,at least in the low-noise conditions.
Howeve, exceptin the25%noise conditions thisadvantagef Reg@mpwill notcompenséefor the
relativdy large amaunt of time involved in the FDI conmputationswith this method.OptComp and
SVDConp requie very many CDls, which doestendto take consicerableamountsof time, even
compare with thetime neededor theFDlIs.Finally, it canbeseerthat Three-Seprequiresfar fewer
CDls than OptCompand SVYDCompin the low-noise condtions. This is a consguenceof the fact
that the five first runsrequireonly a few iterations,and the run for the analysis of the optimally
compresed datais appaently so well stared that it requiresconsideably fewer iteraions than
randomlystared OptComp runs (exceptin the mild multicollinearity conditionwith 25% noise). It
canbe seenthatevenif only onerandamly stated OptConp run wereused,Three Stepwould still
requirefewer CDIs. Thisadvanageof Three Stepover OptConp (andhenceoverall othermethod$
is particulaly clearin the severemulticollinearity condtionswith 2.5% and5% noiseandthe mild
multicollinearity conditiors with 2.5%,5% and10% noise.Herceit canbe concludedthatfor these
conditions, Three Stepseemsto be the preferredmethod:it is mog efficient andthe qualty of its
estimateds asgoodasthat of the othermethods

In the sevee multicollinearity condition with 10% noise, OptConp requires consideably fewer
FDIsthanall otha methodsHowevae, it turnsout thatthe high numberof FDIs requiredby Three
Stepin this conditionis causedy the analysisof a singledataset;in the othe four analysesThree
Steprequiredjust asmary or evenfewer FDIs thanOptCompdid. In Secton 4 it will be explained
how this anonalousresut can be avoidedand hencethat, also in this condtion, ThreeStepand
OptConp arepreferredasfar asthenumker of FDIsis concened,whereasThree Stepagainrequires
fewestCDIs.Finally, in the25%noisecondtions,RegCompturnedout to requirerelativdy few FDIs
(the fewest of all in the severemulticollinearity condtion and ‘only’ abouttwice as mary as
OptConp andThreeStepin the mild multicollinearity condtion). Consiceringthatit usesvery few
CDls,RegCompcanbeseerto bethemostefficientmethodhere Howeve, this efficiengy is reached
at the costof quality: in six of thes analyseghe underlying componerg were not recoverel (see
above);for threeof thefour remainirg case the quality of the RegCompsoluion laggedbehindthat
of the othe methods This leavesOptConp and Three-Stepasthe preferredtechniquesevenhere.

To geta properideaof the full computationtimesfor eachmethod,we shouldalso considerthe
computaion of the bass matrices, and hencewe have to rely on resuts which hold for our
implementations only. It turned out that the basis matrices for regulaized compresgin were
computa in a split secom (0.23 s on average) which is negigible. Compuation times for the
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optimal bass matrices rangal from 5 to 7 s for the 2.5%,5% and 10% noiseconditions(usingless
than ten iterations)and nevertook more than 15s (and 105 iterations) In comparisonwith times
neede for CP—FUl, this is negigible, consdering that 1000 FDIs took approxinately 110 s and
usually severalthousandswere needel. Furthermoe, in the comparison betweenRegComp and
Three Stepthe computationtime for the optimal basismatricesis muchsmadler thanthe difference
betwea total computaion times for thesemethods exceptin the 25% noise conditions.In the

comparisorbetwea SVDConp andThree-Sépthis holdsin all conditions.Finally, the comparison
betweae OptCanp and ThreeStepis not affected by the computationtime of the optimal basis
matrices, becauseahey both usethese It canbe concudedthatin our implementations, Three-Step
was clearly mog efficientin all condtions exceptthe 25% noisecondtions, whereRegCompwas
moreefficient Thusit canbeseerthatonthebasisof ourimplementatbns,takingthe computatia of

thebasismatricesinto account doesnotchangeheoverdl conclusionontherelativeefficieng of the

methods

Thesensilvity to suboptimaof all methodsvasassesedby comparingthe solutionsfrom thefive
randomy startedrunsin thefirst stepof eachmethod.lt turnedout that CP—Ful led to subopima 19
times,all in the 25% noise condtions; RegComp(on whichis alsobasedrl hree-Sep) andOptComp
respedtely foundsix andonesubopima, all in thesevee multicollinearity condtionswith 10% and
25%noise; SVDCompledto suboptimal 7 times, all in 10%and25%noise conditions.Theseresuls
sugges that using five randan startsfor RegCanp and OptComp may not be necesary. For
RegCanpthereis little rea®n to reducethis numter, since theserunsareusualy extremely fast; for
OptConp, using fewer startswould certanly make the method more efficient, but, as has been
mentionedabove,evenif OptConp usedonly one run, Three-Sep would still use fewer CDls.
Moreover theresultsin Section3.5will indicate that OptConp may not alwaysbe soinsensitive to
suboptimaasit wasin the preentsimulationstudy.Furthermoe, comparsonof therandanly started
OptConp runswith the OptConp run within Three-Sep alsoindicatesthatsuboptinal soluionsare
sometinesfoundfor OptConp: in 36 casa the samesolutionswerefound,in threecase the bestof
thefive OptConp runswasbetterthantheintermedate Three Steprun,andin onecasethelatterwas
betterthanall five randamly startedruns;thelastresultindicateghatOptCanpledto suboptiman all
five runsfor this dataset.

Finally, we inspeced to what extent degeneratsolutionsoccurredin the analyseslt turnedout
thatadegeneatesoluion wasencoureredin only oneof the200CP—FUl runs;all othe runsdid not
eventendto low triple coshevalues.Thisindicateshatslow convergenefor thes datahasnotbeen
causedby swamjng dueto enteing a region of neardegeneacy (seealso Section4, where this
indication hasactually beenverified). We alsoinspectedthe final resultsfrom the othe methods
Degeneacieswereonly foundin the 10% and25%noise condtionswith sevee multicollinearity. In
theseconditions,Reg@mp, OptComp, SVYDCompandThree Stepled to degeneraesin three,two,
two andfour case respectivéy.

3.5 Analyses of four data setsfrom literature

The aboveresuts of the simulaton study demonstrat the value of the threestepapprachfor CP
analyss of largedatasets Howeve, theresultsarelimitedto onedatasizeandto constru¢eddata.To
seehow well the methodholdsup in othe situations,we reanalysedour datasetsreportedin the
literature The first dataset, ‘Fluorescene datd, hasbeendescibed by Bro.*® This is a dataset
pertainirg to five samplesor which emissionwasmeasued at 201 emisson wavelenghsrelatedto
excitdion at 61 excitation wavelemths.Becausg of the presencef threesubstanesin the samples
andbecawseof theoreticalpropetiesof the measuremat, thesedatacanbeapproaimatedby athree-
dimensonal CP modd. The seconddataset,‘Sugardata’, is reportal by Bro?° andpertansto 268
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Table4. Numbersof FDIs (large print) andCDIs (small print) aswell astime requiredin analysef four data

sets
CP-Full RegComp OptComp Three-Step

Fluorescencelata(5 x 201 x 61; R=3)

Iterations 703 26 + 66 759 + 2 112+ 2

Time (s) 668 76 39 38
Sugardata(268x 392x 7; R=3)

Iterations 2968 34+ 428 3147+ 63 539 4 64

Time (s) 192653 16657 3467 3425
PPldata(10x 8 x 6; R=3)

Iterations 68576 37 + 6042 83981+ 138 9540+ 138

Time (s) 1634 143 1473 170
PP2data(10 x 8 x 6; R=4)

Iterations 98188 60 + 10671 96606 + 2 12672+ 2

Time (s) 2524 274 1832 242

samplesfor which emisson spectra(with 571 wavelenghs, only 392 of which were used)were
obtainel at sevenexcitationwavelengtts. The resulting268 x 392 x 7 datasetwasanalysedusing
threedimensons. The third andfourth datasetsaretwo ill-conditioned, syntheic datasetsreported
by Hopkeet al.?* Thesedatasetsweredeliberaely construtedto be ‘difficul t’ testcaseswith a high
degreeof collinearity in the undetying componenmatrices. The first dataset,'PP1’, wasbasedon
three conponents,the secoml, ‘PP2’, on four. Thesefour data setswere analysedby CP—Fui,
RegComp OptComp and Three-Step;SVDComp wasleft out from the analysedecaseit did not
seemto haveany particdar merit over the other methodsin the simulationstudy.

In comparingthe analyse®f the four datasetshere,we focusdon the efficiengy of the methods
As for the simulaked data, we expressedthe efficiency in terms of numkers of iterationsand we
distingushedbetwea full-data iteraions and conpressed-dtaiteraions. The resuts are givenin
Table 4. To illustrate the effects of different datasizeson the ensuingoverdl computationtimes
(includingcomputationof theconmpressiorbasismatrices), we also reportthe computaion timeswith
our implementatons of the programs.Howevea, we warn that these computation times depend
consideably ontheimplementationandevenon conditiors of the computerenvironment(e.g.for full
analyse®f thelargestdatasetthecompute continuausly readandwrotefrom virtual memory which
causedheconputationgto becone very slow andthe computatontimes periterationvery unstabg).
Therefoe smdl differencesin computationtimes should not be taken seriousy and conclusions
shouldforemostlybebasednthenumlersof iterationsrequired, sincethes arenotimplementation-
depenént.

FromTable 4 we seethatthe conclusionsfrom the simulation studyarecorroboated.For all four
datasetsthe numberof FDIs required wasmuch smdler for RegComp OptComp and Three Step
thanfor CP—Fui; it shouldbenotedthatthis evenholdswhenin CP—Fuil only onerunis usedwhich
indicatesthat the analysesof compressediataleadto goodinitials for the full-data analysesThis
turnsoutto beparticulaly truefor OptConp andThree-Sép,which bothrequiredconsidcerablyfewer
FDIsthanRegComp,which, in turn, usedby far the fewestCDIs. The numbersof FDIs requiredby
OptConp andThree Stepwerevirtually equalin all four analyses but Three Steprequiral far fewer
CDlsthandid OptConp. It canthusbe seenthatregulaization servego reducethe numkber of CDIs
andoptimal compressiam servesto redue the numkber of FDIs. The formeris particulaly usefulin
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casesof high multicollinearity (notably PP1dataand PP2datg, wherea the latter is particularly
usefulfor very large datases (Sugardataand,to someextent,Fluorescencealata).Herce it is not
surprigng to find thatRegCompand Three Step(which both useregulaized compressin) aremog
efficientin the analyse®f the smallerdatasetswith high multicollinearity, whereasThree-S¢p and
OptConp (which both useoptimal compressim) aremostefficientin the analysef the largedata
setsOverall, we canconcludethatThree Stepis theonly methodthatis relativdy efficientbothin the
analyss of very largedatasetsandin theanalysisof fairly smalldataseswith high multicollinearity.

We alsocomparel the solutionsin termsof final lossfunction valuesandcomponenimatrices.|t
turnedout thatin all analyseshe differencesbetweernthe final soluions were very small. We also
checledthe qualty of the soluions obtaned from RegComp OptConp and Three Stepbeforethe
final full-data analyseswere carried out. It turned out that in all four analysesthe intermediate
RegCanp solutionwasinferior to the final solution, but the intermedate OptComp and Three-Step
solutionswerevirtually equalto thefinal soluionsin all four casesThis meanghatfor thesedatasets
theexpensve FDIscould havebeenleft outaltogeherandthetotal analsistime would bereducedo
thatof the (much)moreefficient CDIs. Unfortunately, it doesnot seemwiseto alwaysleaveout the
final analyss step:intermedate solutionsdo sonetimesdiffer markedy from thefinal solutions,as
foundin the simulaion study.

Finally, we inspecedthe occurrerce of subopimal solutions.We found subopimal solutionsonly
in cases wherethe maxmal numtler of iterations (20 000) wasreadhed. This neverhappenedn the
RegCanp runs,but did with the OptCompruns,althoughonly in theanalyse®f the PP1data(twice)
andthe PP2data(threetimes).It also happerdin the CP—Ful runs,againonly in theanalyse®f the
PP1ldata(twice) andthe PP2data(four times).We may concludethat suboptinal solutionsarenot
found frequently,but taking some preautions(sud asusingfive randanly startedruns)doesseem
recommendble espeally for CP—Ful and OptComp.

To sunmarizethe aboveresults,we can conclude that Three-Sep was the only techniquethat
worked well in all four widely differing case. This conclusion corroborates the results of the
simulaton study.

4. DEALING WITH DEGENERACIES

Themainaim of the presentlypropogdthree-stepmethodis to avoid slow convegenceandstill find
goodesimatesfor one’sparaneters.The three-stepnethoddoesavoid slow convegenceandfinds
good estimatesin low-noise conditiors, but in other conditions we sometines get subopimal
solutionsandslow convegence hotablyin one 10% andseveral25% noisecondtions. To geta bit
more insight into the problens with Three-Stepin suchanalysesfor the (single) casewherethis
happerd in the 10% noise condition, we investigaed the intermedate analysesn more detail. It
turnedout that for this datasetthe five RegCompruns took very many iteraions and all led to
degeneacies.The succeedingunson the optimally compreseddataandon the full dataalsoled to
degeneacies.Clearly, hereall five RegCompruns entereda Mitchell-Burdick-type swamp from
whichtheydid notemegeanymorebeforethe maximumnumberof iterations(20 000)wasreached.
Theserestlts suggesthat Three Stepbe combinedwith Mitchell andBurdick’s® proposl to simply
stopany CP runsthat entera swamp and restartthemrandomly. Thusit is suggeted to usetheir
procedurenot only for CP analyss of the full data but also for intermedate CP analysesof
compreseddata In this way the three-ste apprachcanbe usedrathergeneally in practice.

The above discussionmay provoke the question whether intermediate Mitchell-Burdick-type
swampng mayhavecause slow convergenein all analysesTherdore we checledthedegeneacy
indicator (lowestcosinebetweentensorproduds) everytenthiteraion for all randomlystartedCP—
Full runsaswell asfor all randomlystartedRegCompmandOptConp runs.It turnedoutthatof all 200
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CP—Ful runs,only oneenterecaswamp from whichit, moreove, did notemergebeforethe20000th
iteration. This clearly demonstatesthat for thes data,slow convegenceis mainly not cause by
Mitchell-Burdicktype swampng. The Reg@mp runs and OptComp runs, on the other hand, did

reveal intermedate and final degeneacies more often, but only in the sevee multicollinearity
conditionswith 25% noise (OptConp) and 10% or 25% noise (RegConp). As far as OptConp is

concernedhowever, it canbe concludedthat the slow convegenceof OptConp, which typically

happerd in the low-noise conditions, is not cause by Mitchell-Burdick-type swamping. For
RegCompmoreinterestingly, it turnedout thatall case where RegCompconvergedslowly werein

fact cases wherethe algorithmentereda swamp(andin theseanalysest wasneverableto pull itseff

outof it). If weleaveoutall thesecasegrom ourrestits, we find thattheaveragenumberof iterations
of the ‘proper’ RegComprunsin the severemulticollinearity conditionswith 10% and25% noiseis

13.0and6.4 respectivey, andthe very largevaluesof 1802.9and2843.8in Table 3 shouldthusbe
replacedby thesevalues.Cleaty, theseresultssuggesthatmuchof theinefficiencyaswell assome
of theinadequayg of paraneterestimaesby RegComp(andhenceby Three-Sep)in thehighe-noise
conditions could be remedied by avoiding degeneaciesin the way suggesed by Mitchell and
Burdick.

The above suggeted combindion of Three-Sép with swamp avoidance (implemened as
randomlyrestartingthe iterationsassoonasthetriple cosinefell below—-0.95)wastestedon all data
setswhereRegCompor OptConp found degeneate solutionsin all five runs;thes case coincide
with the caseswvhere Three-Sép found a degeneate solution. Thesedatasetswerebasedon severe
multicollinearity andnoise (onedataset)or 25% noise (threedatasets).For the 10% noisedataset,
RegCommandThree Steporiginally failed to find good solutions,but CP—Fdl andThree Stepdid (¢-
valueshigher than 2.83), so for this datasetit was hopedthat by meansof swamp avoidance
RegCompand Three-Sep would give similady good solutions;for the three 25% noisedatasets,
none of the methodsfound an adequée soluion (all ¢-valuessmallerthan 1.3), but since non-
degeneratesolutions exist, we hoped that by swamp avoidanceall methodswould yield non-
degeneratesolutions.For the 10% noise dataset, indeed, using swamp avoidance RegCompand
Three-Sepdid find goodsoluions (¢-valueswere2.827and2.835respectively), althoughit should
be notedthatthis required mary restartsandhencevery mary iterations(all Reg@mprunsreached
themaximumof 20 000iterations) Forthefirst 25% noisedataset,whereRegCompandThree Step
originally found a degenerag, Reg@mp still led to a degeneacy (althoughthe prior runsnow did
leadto anon-dgeneratinitial), but Three Stepnowfoundanon-deeneratesolution.Forthesecond
25% noisedataset,where OptComp and Three-Steporiginally led to degeneraies, they no longer
founddegenerat solutionsnow. For the third 25% noisedataset,whereagainOptCompandThree
Step originally led to degeneraes, OptConp no longer did so, but Three-Sgep still found a
degeneratsoluion.

It canbe concludedthat swamp avoidancecanbe usefil in avoidng degeneatesolutions.In fact,
Three-Sép supplemerad with swampavoidancded to goodsoluions (with ¢-valueshigherthan
2.8) for all 34 datasetsfor which goodsoluions werefound by at leastone method,andwith one
exceptiontheasso@ted¢-valueswerelessthan0.1%lower thanthe highest Also, for noneof these
34 datasetsdid it leadto suboptimalfunction values.CP—Ful is the only othermethodthatlikewise
alwaysfoundgoodsoluionsandno suboptimalfunctionvaluesfor these34 datasets.Thusit canbe
concludecdthat Three-Stepwith swamp avoidanceturnedout to be the bestalternaive to CP—Ful.
Moreover for mod of thesedatasets, Three Stepwasthe mog efficientmethod.Therefoe it canbe
recommenddto alwayssupplenentThree-Sepwith theswampavoidancerocelure:in casswhere
the iterationsdo not eventendto a degeneacy, swampavoidancedoesnot make a differenceand
leavesThree Stepvery efficient wherea in caseswvhereThree-Stepvould tendto adegeneacy, the
swampavoidanceprocelurewill preventThree-Sep from finding sucha suboptimalsolution.
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5. CONCLUSIONS AND DISCUSSDN

The resultsfrom the simulation study and from the analysesf the datareportedin the literature
demongtate that the threestep approacheffectivdy combines the advanagesof the regulariang
compresion procedurgfast convegence)andthe optimal basiscompresion (accurde appraima-
tion), unlesstoo muchnoise (25%in our simulaions)is presentCombinng eachstepwith Mitchell
andBurdick’s® proposl for avoiding swamps appeas a usefil addtional stepto avoid subopimal
estimaeswhich one might otherwise obtan. It shouldbe notedthat often the estimaesyielded by
analysesf optimally compresseddata (either by OptConp or by ThreeStep)are very good and
obviatetheneedfor afull-dataanalysisstartedrom theseestimaes.However,becasethis cannotbe
guaranted, it is recanmendedo alwaysusesuchafinal analysis,which, in caseshereit would not
havebeenneede, will requirevery few iterations.

In the preent paperwe comparedThree Stepwith somesimpler conpressim-basedvarians and
with CP—FUl andsawthat,overall,the Three-Stepapproactperformedbest.This, of course Jeaves
thequesion openwhetheralternaive proceduescouldbedevisedthatwork evenbetteror give good
resultsin abroacerrangeof applicaions,e.g.casawith highe noiselevels.In fact, we expeimented
with some other apprachesas well. For instane, rather than taking the dimensionéity of the
compresion basis matrices equal to that of the CP solution, we tested procedurs where the
dimensonality of the basismatrix wastwo higherthanthe dimensonality of the CP solution.

Howeva, it turned out that thee procedurs performed worse than their lower-dimensonal
counterprts. Also, we replacedthe regulaized conpressim procedureby a procedure which only
regulaizesbut doesnot compres. This also mack resultsworse.A third alternaive approachested
wasa three-stp approachwith the optimal compressinin the secoml stepreplaca by SVD-based
compresion;in fact, this washow we implementedThree Stepto beginwith. It turnedout thatthis
procedureworked reasonalyl well, but the use of optimal ratherthan SVD-based basismatrices
consideably improved Three-Step.

A furtherlimitation of the preentsimulationis thatit only consideed CPanalysesvith thecorrect
dimensonality. In pradice the dimensionéity is not alwaysknown a priori. To seewha happesin
situatilms wherethe undetying dimensiondty differs from the oneusedin the CP anaysis, in an
earlierstageof our simulaion study we analysedthe presenthree—dinensionaldatasetsby models
with dimensiondities of two (onetoo small) andfour (onetoo large) respectivéy. It turnedout that
differences betweermethodsin terms of efficiencywerevery similar to those obtaned for analyses
with the correct dimensiondty, so we did not proceedwith thesestudiesin a later stage of our
researb.

A potential limitation of the relaive usefulnessof Three-Stepis that it no longea seens to
outperbrm RegGmp and OptConp when the noiselevel becomesigh. Howeve, the resultsfrom
thesimulaion studyandtheanalyse®f thedatain theliteratureindicatethatevenin suchcasedittle
harmis donein using Three-Sep, becaseit doesnot tendto becomevery inefficient: it is always
amongthe mog efficient methods which doesnot hold for any othermethal teded here.
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