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Abstract: The analysis of a three-way data set using three-mode principal com-
ponents analysis yields component matrices for all three modes of the data, and a
three-way array called the core, which relates the components for the different
modes to each other. To exploit rotational freedom in the model, one may rotate
the core array (over all three modes) to an optimally simple form, for instance by
three-mode orthomax rotation. However, such a rotation of the core may inadver-
tently detract from the simplicity of the component matrices. One remedy is to
rotate the core only over those modes in which no simple solution for the com-
ponent matrices is desired or available, but this approach may in turn reduce the
simplicity of the core to an unacceptable extent. In the present paper, a general
approach is developed, in which a criterion is optimized that not only takes into
account the simplicity of the core, but also, to any desired degree, the simplicity of
the component matrices. This method (in contrast to methods for either core or
component matrix rotation) can be used to find solutions in which the core and the
component matrices are all reasonably simple.
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1. Introduction

Tucker’s (1966) three-mode factor analysis, or, more appropriately,
three-mode principal components analysis (3MPCA), is a method for analyz-
ing three-way data by using three sets of components (one for each mode) and
a so-called core array relating the three sets of components to each other. For
example, three-way data may consist of scores of individuals (mode A), on a
set of variables (mode B), at a number of different occasions (mode C). Let
the data array be denoted by X, and its elements by x; %> Where i refers to indi-

vidual i, j refers to variable j, and k refers to occasion k, i =1,...,],
j=1,...,J,k=1,...,K. Thenthe 3MPCA model can be described as
. P QO R
Xig = 2 X X Qipbjg Cir 8pgr » 1)
p=lg=1r=1

where JAc,-jk is the model estimate for x;, A, B, and C (with elements Qip, by,
‘and c,, respectively) are component matrices of orders I x P, J x Q, and
K X R, respectively, G is a P X Q X R three-way array known as the core, with
elements gp,r,p = 1,...,P,g=1,...,0,andr = 1,...,R. The elements of
the core indicate the joint impact of the components from the different modes.
As proposed by Kroonenberg and de Leeuw (1980), the 3MPCA model is
fitted to the data by minimizing the sum of squared residuals,
Z; Ej Zk (x,'jk _‘%ijk)z’ over A, B, C, and G.

As already noted by Tucker (1966), the 3MPCA model is not fully
determined. Specifically, he showed that postmultiplying A, B, and C by non-
singular matrices can always be compensated for by applying the inverses of
these matrices to the core array. That is, it can be verified that A = AS™,
B =BT, C = CU, and G with elements

. P O R
Buvw = 2 E 2 SuptogUwr8pqr » 2)

p=1g=1r=1
u=1,...,Av=1,...,0,andw = 1,.. R, give the same model estimates

(inX)as A, B, C, and G do.

To exploit the above indeterminacy in 3MPCA, Kiers (1997) suggested
orthogonally rotating the core to simple structure (i.e., with most elements
either large or small in absolute sense), so as to enhance interpretability of the
core. Specifically, he proposed to maximize a class of criteria that measure
simplicity of the core as the sum of the ‘‘orthomax’’ (see Jennrich 1970)
values of the core elements in respectively all frontal, lateral, and horizontal
core planes. The maximization can be performed over rotation matrices for all
three modes, or a subset thereof.
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Kiers’ (1997) three-mode orthomax approach can be used successfully
for simplifying the core, but may at the same time reduce the interpretability
of the component matrices. Often interpretability is enhanced by rotation to
simple structure, although sometimes component matrices are more easily
interpreted when they contain other patterns, such as polynomial trends
(when data entries refer to successive time points). Here, we deal only with
situations where interpretability is enhanced by simple stucture. To avoid
problems in interpretation of component matrices, Kiers proposed to first
rotate a subset of the component matrices to simple structure, and next rotate
the core only in the directions for which no simple associated component
matrix is desired. However, this two-step approach need not always work.
Specifically, when simple component matrices are desired for all three modes,
fixing them at a simple solution would leave no opportunity to rotate the core
to some degree of simplicity as well. Similarly, even when only one or two
component matrices are fixed, it may be impossible to simplify the core as
much as desired. This two-step approach emphasizes simplicity of the subset
of component matrices, and simplicity of the core is deemed of secondary
importance. A more balanced approach would attach equal importance to
simplicity of the core and to simplicity of the component matrices, or, involve
any other weighting of importances. It is the purpose of the present paper to
develop a general procedure for joint orthomax rotation of the core and of
the component matrices, allowing for any combination of weights attached to
simplicity of the core versus simplicity of the component matrices. The
present approach subsumes the three-mode orthomax core rotation approach
as a special case; the present approach, however, has a considerably wider
scope in that any position can be taken with respect to the tradeoff between
simplicity of the core and of the component matrices, whereas with the two-
step approach one can only choose between the extreme positions. In particu-
lar, one can search for a solution where the core is considerably simpler than
with the two-step approach, and where the component matrices are still
sufficiently simple for easy interpretation.

The next section proposes a general criterion for joint simplicity of the
core and of the component matrices and explains how different sets of
weights can be used to obtain different tradeoffs between simplicity of the
core and simplicity of the component matrices, an extreme case of which is
that used in the two-step approach. Then, it describes how the joint orthomax
criterion can be optimized over S, T, and U. The performance of the algo-
rithm is assessed in a small Monte Carlo study. Finally, the method is illus-
trated by means of an analysis of empirical data.
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2. A Criterion for Joint Orthomax Simplicity of the Core
and of the Component Matrices

The present section supplements Kiers’ (1997) orthomax criterion for
the core with terms assessing orthomax simplicity of the component matrices.
The orthomax criterion (Crawford and Ferguson 1970; Jennrich 1970), which
has varimax (Kaiser 1958) and quartimax (Carroll 1953; Saunders 1953; Fer-
guson 1954; Neuhaus and Wrigley 1954) as special cases, is, for an m X r
loading matrix A, given by m ! times the function

2
] , (3)

m

> M

i=1
where A; denotes the element (i,/) of A, and 7 is the parameter monitoring the
choice of the orthomax criterion (e.g., ¥ = 0 yields the quartimax criterion,
and y =1 yields the varimax criterion). The three-mode orthomax criterion
proposed by Kiers is given by

forh =3, [f -1

=1 |i=1

3 ~
ASTU) =3 wifor (G 1), @
I=1

where Gl, Gz, and G3 denote the matrices whose columns consist respec-
tively of the vectorized horizontal, lateral and frontal slabs of the core G,
which is the original core array rotated by the orthonormal matrices S, T, and
U, according to (2); w, w,, and wj are fixed prespecified weights; and v;, 2,
and ys; are prespecified values of the y parameter in the orthomax function.
The first term measures simplicity of the (horizontal) slabs associated with
the individuals, the second term measures simplicity of the (lateral) slabs
associated with the variables, and the third term measures simplicity of the
(frontal) slabs associated with the occasions.

To supplement this criterion with terms measuring simplicity of the A-,
B-, and C-mode component matrices, we propose here to add to (4) the
orthomax criteria applied to A = AS’, B = BT’, and C = CU", multiplied by
an importance weight. We thus obtain the joint orthomax criterion for the
core and the component matrices:

3 -~ ~
[ STU) = 3 wifor(G ) + wafor(Aya)
I=1

+ wafor(B,Yz) + wefor(C.Ye) » (5)

where wy, wg, and wc denote the weights attached to the orthomax criteria
applied respectively to A, B, and C, with respective y-parameters y,, Yg, and
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Yc. Joint orthomax rotation of the core and the component matrices consists
of maximizing f,.. for a priori chosen weights wy, wo, wsa, wys, wg, and wc,
and a priori chosen orthomax parameters vy, Y2, V3, Y4, Y, and Y¢, with G as
defined in (2), and A, B, and C as defined above, over orthonormal matrices
S, T, and U. Here, we assume that the matrices A, B and C are columnwise
orthonormal, and hence so will be A, B, and C. However, the joint orthomax
procedure to be presented here may just as well be applied to matrices A, B,
and C that are normalized in a different manner (see also Discussion), but this
would require a reconsideration of the choices of weights to be discussed in
the next subsection.

2.1 Choosing the Weights in the Joint Orthomax Criterion

The weights and the orthomax parameters in the joint orthomax cri-
terion can be specified at will. However, in practice, some guidelines for
these choices may be helpful. First the weights for the terms corresponding to
the core (w1, w,, and w3) could be chosen as described and motivated by
Kiers (1997). Note that he has shown that the choices of the (nonzero)
weights and of the gamma parameters are related, and therefore these weights
can be fixed in a conceptually useful way, without loss of generality. He
advocated using the ‘‘natural’” weights wq = (QR)™!, w, = (PR)!, and
ws = (PO), or taking w; = O if simplicity in direction [ (/ = 1,2,3) is to be
ignored. Next, the choices of the weights for the terms corresponding to sim-
plicity of A, B, and C could be chosen such that the associated criterion
values are of the same order of magnitude, both in comparison to each other,
and in comparison to the terms associated with simplicity of the core. As a
starting point for finding such ‘‘standard’’ weights, we consider two bench-
mark situations: In the first, all component matrices and the core are abso-
lutely not simple (NS), having all elements equal, in absolute sense; in the
second situation, all component matrices and the core are highly simple in a
systematic way (SS), with, per column or plane, half the clements equal, in
absolute sense, and nonzero, and the other half of the elements equal to 0. In
these benchmark situations the amount of simplicity in the core and in each of
the component matrices can be judged equal, and hence we choose the ‘‘stan-
dard’’ weights such that the ensuing joint orthomax criterion reflects this
equality.

To derive weights that satisfy the above requirement, we first consider
the NS situation. In the NS situation, the columnwise orthonormality of A
ensures that A has all squared elements equal to I, hence, the orthomax
value, for any choice of v, is, according to (3),
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P I p (1 2
forRAN=F S AV -yt 3|31
[=1i=1

=1 |i=1

=PI —yI"'P = I"TP(1 —7).

Similarly, for(B,Y) = J1Q(1 —¥) and for(C,y) = K"'R(1 —v). Furthermore,
let g denote each squared element in the core; hence g = (PQR)™!|G|F. Then
for(G!.y) = (PORg* —Y(QR)™ P(QRg)* = (PQRg* —yPQRg?) =
PORg*(1-y)= (POR)VGIF(1-7); similarly, for(G*Y)= for(G®Y) =
(POR)YGJf(1-v). Hence, the total contribution of the core is
(w1 +wy +w3) (POR)YGIF(1-7). It is now clear that, by taking
wa =IP7, wg =JQ7!, and we = KR!, the contributions of the last three
orthomax terms in (5) equal (1 —v), and hence are equal to each other; the
total contribution of the core is normalized to (1 —%) by dividing the earlier
defined weights by (w1 + wy + w3) (PQR)Y|G|!'. By this procedure of nor-
malizing the earlier chosen ‘‘natural’’ weights for the three core terms, we
keep the relative contributions of the three core terms the same as with the
natural weights advocated by Kiers (1997). It can be shown analogously that,
using the above weights, the contributions of the component matrices, and the
total contribution of the core all equal (2 — ) in the SS situation. Because, in
the two benchmark situations, these weights lead to equal influences of the
separate parts of the 3MPCA solution, we consider these weights as ‘‘stan-
dard’’ weights:

w1 =V1i(V1 +vo +v3) L (POR)G™, where vy = (QR)™ orv; = 0;
Wo = V(v + Vg +3) L (POR)GI™, where v, = (PR) ! or v, = 0;
Wi = V3(V1 +Vq +V3) L (PORNGI™, where vy = (PQ)™ or vy = 0;
wy = IP7L;
wp =JQ™;
we = KR

The standard weights chosen above lead to the ‘‘standard joint
orthomax criterion.”” It can be verified that the criterion has two additional
useful properties:

1. The standard joint orthomax criterion is insensitive to an overall res-
caling of the original data, and hence of the array G.

2. The standard joint orthomax criterion is insensitive to replacing one
of the component matrices by a supermatrix consisting of two or
more of the same, below cach other. Thus such a change of the
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component matrix which does affect the size but not the simplicity of
the matrix does not affect the value of the joint orthomax criterion.
This observation demonstrates that the criterion value does not
depend intrinsically on the size of the data matrix.

We do not claim that the standard weights chosen above are the only or
even the best ones to equalize the influence of the different terms. However,
they do fulfil the practical requirement of having a standard (by convention)
combination of the orthomax criteria equalizing the influence of different
terms, and which is not sensitive to unimportant changes (like scale) in the
data. Therefore, these standard weights can be used as a reference point.
When, in practice, one chooses weights different from the standard weights
(e.g., to attach more importance to some criteria than to others), this
difference can most easily be referred to by expressing the weights relative to
the standard weights.

As an extreme choice of weights, one might set certain weights to 0,
and hence attach no importance whatsoever to the simplicity of certain
matrices. In fact, in this way the two-step approach (where, first, certain com-
ponent matrices are chosen optimally by means of orthomax rotation and then
the core is simplified by rotation over the other rotation matrices) emerges as
the special case in which certain weights are chosen equal to O, certain
weights are taken infinite, and the other weights are taken as the standard
weights. For example, when B is obtained by varimax rotation (and this rota-
tion is compensated for in the core), and afterwards orthomax rotation is
applied to the core, using only S and U, this approach is equivalent to maxim-
ization of f,. with wy, w,, and wy taken “‘standard,” wy =we =0 and wp
infinite.

In addition to the weights, one has to choose the orthomax parameters.
These can be chosen differently for each term in the criterion Jec» depending
on the actual orthomax criterion one wishes to employ for assessing simpli-
city in each of the six different respects. For instance, one might choose
Y1 =72 = Y3 =0 to ensure that quartimax is used for assessing simplicity of
the core, and at the same time use y4 = 1, y3 = 1, and Yc = 172 so as to use
varimax for rotation of A and B and a blend of varimax and quartimax for
assessing simplicity of C. For conceptual ease, one will tend to use the same
orthomax criterion for all component matrices, which will often be the vari-
max criterion.
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3. An Algorithm for Joint Orthomax Rotation of the Core
and of the Component Matrices

To maximize (5) over S, T, and U we propose to use an algorithm
which is a modification of the three-way orthomax algorithm proposed by
Kiers (1997). As in that paper, we propose to increase the function value,
after choosing initial values for the rotation matrices S, T, and U, by itera-
tively updating them until the function value stabilizes. We only describe the
update for S, because T and U can be updated fully analogously. To update S,
we have to maximize

3 =
Jee (S, %) = X, wifor(G Y1) + wafor(AS"Ya)
I=1
in which the first term can be combined into one weighted orthomax function
(see Kiers 1997) to yield

Foe(S,%) = (W1 +wo+w3)for(HS  yiw (w1 +wo+w3)™)
+ Wafor(AS",Ya)
= for(W1+wo+w ) HS yyw i (wi+wo+w3)™)
+ forWK " AS"1a) Q)

where H denotes the supermatrix containing the frontal slabs of the core
rotated by the current matrices T and U. Clearly, (7) consists of the sum of
two orthomax functions, and hence cannot be optimized by the standard
orthomax procedure, as is done in the core rotation approach. To maximize
(7) over S, we use an alternative iterative planar rotation procedure, which
finds the optimal S by iteratively updating all pairs of columns of S’, where
each pairwise updating finds the optimal rotation of the current S§” in a plane.
To find the optimal rotation angle, we can use Jennrich’s (1970) general
procedure for maximization of a ‘‘symmetric fourth degree rotation cri-
terion,”” where ‘‘symmetric’’ refers to the fact that the criterion, as a function
of the rotation angle 6, is invariant under an interchange of the columns or a
reflection of the columns of S§”. The present criterion clearly is symmetric (as
is the original orthomax criterion to which Jennrich applied his procedure).
Because of this symmetry, the criterion can be written using 0 as
F(©) = ¢ + a cos(40) + b sin(40) (see Jennrich 1970), where ¢ denotes a con-
stant, and a and b denote two coefficients which Jennrich suggests computing
via evaluation of F at three values of 6. A somewhat more efficient procedure
is to use the explicit expressions for a and b as derived by Clarkson and
Jennrich (1988, equations (13) and (15)) for the orthomax criterion. In the
present case, where we have a sum of two orthomax criteria, we can obtain a
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and b by simply summing the corresponding coefficients found for the two
orthomax criteria at hand. In fact, this procedure is essentially a generaliza-
tion of the planar rotation approach employed by Hakstian’s (1976) procedure
for joint varimax rotation of two matrices.

3.1 Testing the Algorithm by a Small Monte Carlo Study

We programmed the algorithm in MATLAB (Mathworks Inc. 1992);
the associated m-files are available from the author upon request, After some
preliminary runs, we tested the algorithm more systematically with a small
Monte Carlo study. The primary aim was to see whether the algorithm is
prone to hitting local optima, and whether it is computationally feasible (i.e.,
not prohibitively slow),

We constructed 80 sets consisting of component matrices A, B, and C,
and a core array G. The first twenty of these were constructed as random rota-
tions of the simple matrices

I3
% |1, %
113 1 1 13
Ag=— , Bo= | I3|, Co= | ,
P2 L ]13 ’ 2] [13
I, 3

and associated counter-rotations of the simple core array Gg with frontal

planes
100 000 010
000}, 1010, and |0 0 0],
010 000 001

respectively (where the core was chosen in the same way as in Kiers 1997).
For these rotated versions of the simple matrices and the core, we expected
that the maximum of the joint orthomax function is attained for Ay, By, Cg,
and Gy. The next sixty sets were also based on randomly rotated versions of
Ao, By, Cp, and Gy, but in addition to these rotations, various amounts of ran-
dom noise were added to the three matrices and to the core. The rationale
behind this construction of arrays was that, at least when little noise is added,
the search for a simple solution for all three matrices as well as the core will
be meaningful. Specifically, when noise was added, we constructed A as

A = GS(AoS, + oN),

where GS() denotes the Gram-Schmidt orthonormalization of the matrix in
parentheses, S, denotes a random rotation matrix, o. the noise level (varying
as (.2)%, (4)*, and (. 6)”, for groups of twenty data sets each), and N a matrix
with random elements drawn from a normal distribution with variance equal
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to the sum of squares of the elements of Ay and hence of A,S,. Thus, 100 o
can be interpreted as the added percentage of noise. B and C are constructed
analogously from By and Cy; G is constructed from Gy by first applying the
inverses of the rotations used for the component matrices to it, next adding
noise to the core (in the same way, using the same percentages, as for the
component matrices), and finally applying the inverses of the transformations
involved in the Gram-Schmidt orthonormalizations (of the component
matrices) to the core. This procedure guarantees that, as the noise level tends
to zero, the set {A,B,C,G} tends toward a rotated version of {Ag,Bg,Co,Gg}.

As has been mentioned, the main interest in this Monte Carlo study was
to investigate computational efficiency and proneness to local optima. Each
data set was analyzed by the standard joint varimax procedure (i.e., all
gamma parameters were taken equal to 1), using five randomly started runs of
the algorithm. The best of the resulting five solutions was considered the glo-
bal optimum; the others were considered local optima if they differed from
the purported global optimum by more than .01%; we will use this terminol-
ogy even though it is technically not correct, because the best value need not
be the best attainable, and the ‘‘local optima’’ may refer to solutions that are
not even locally optimal (e.g., because they may refer to saddle points, or
solutions not yet converged). The algorithm was considered to have con-
verged if a full iteration (i.e., a cycle in which all three rotation matrices in
turn are optimized, given the others) failed to increase the criterion by more
than .0001%.

We first checked how many of the 400 runs led to local optima. There
were only three, so it can be concluded that, at least for the standard varimax
procedure and the present type of data, the algorithm is not vulnerable to
local optima.

We also checked to see if the purported global optima for the first
twenty data sets corresponded to the underlying simple solution given by
{A0,Bg.Co.Gyg}; the result was positive. For the other 60 data sets, no such
absolute check was available, but we verified that, on average, the solutions
became less similar to the basic underlying set {A,Bg,Co,Go} as the noise
level increased. A detailed study of similarity to the underlying sets was not
carried out, because even solutions with low similarity to the underlying sets
might nevertheless be simple.

The second concern in this Monte Carlo study is the efficiency of the
algorithm. On a Pentium 100MHz pc, each full analysis (including five runs)
required less than 47 seconds, while the mean was only 13.6 seconds. The
problem size employed here can be considered fairly representative of that
encountered in practice. However, to see what happens for considerably
larger sizes, two sets with I =J = K =40 and P = Q = R = 4 (which can be
considered large) were run, and they took respectively 26 and 12 seconds.
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Therefore, it seems safe to conclude that the algorithm is not slow, and is thus
feasible in practice.

4. Illustrative Analysis

To illustrate the joint varimax procedure, and the manner in which
weights can be chosen satisfactorily, we chose to reanalyze a reasonably
sized data set (15 X 10 X6), which has been published completely, and previ-
ously analyzed with 3MPCA by Kroonenberg (1983, 1985): the data pub-
lished by Osgood and Luria (1954; as reprinted in Snider and Osgood 1969,
pp. 505-517). The data are scores of a single psychiatric patient with respect
to 15 concepts (see Table 1), on 10 semantic differential scales (see Table 1),
over six administrations, each referring to a particular state this alleged multi-
ple personality patient was in (‘‘Eve White”’ in two cases, ‘‘Eve Black’’ in
two other cases, and ‘‘Jane’’ in the last two cases). For more details, see
Osgood and Luria (1954). Following Kroonenberg (1983, pp. 228-241; see
also Kroonenberg 1985), we analyzed these data by a 3MPCA and prepro-
cessed the data just as he did (by only subtracting the scale mean). For the
dimensonalities of the three component matrices, we decided to take P = 3,
Q =3, and R =2, on the basis of a comparison of results of SMPCA’s with
varying dimensionalities. The ensuing solution accounted for 72.2% of the
sum of squares of the preprocessed data. The resulting unrotated, or, ‘‘princi-
pal axes’” solution (i.e., where A contains the leading eigenvectors of
XACC® B’B)X}, with X the supermatrix with frontal planes of X next to
each other, and B and C contain the leading eigenvectors of analogously
defined matrices) is given in Table 1.

4.1 Choosing the Weights for the Joint Varimax Criterion

It can be seen from Table 1 that, in the principal axes solution, matrix C
is quite simple, but for A and B, as well as for the core, a further
simplification would help. Therefore, we applied our joint orthomax method,
using the standard weights, as well as various modifications of these weights,
to put more emphasis on simplicity of certain matrices and less on that of oth-
ers. In all cases we set all gamma parameters to 1, thus using varimax
throughout. The modified weights are expressed relative to the standard
weights. Table 2 contains an overview of the varimax values of the core and
of component matrices for all combinations we employed. The first line gives
the varimax values for the unrotated solution. The second gives these values
for the case where the weights for the component matrices are all 0. This case
is equivalent to three-mode varimax and hence yields the maximally attain-
able varimax value for the core (which is underlined for that reason).
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TABLE 1

H.A L. Xiers

Unrotated (Principal Axes) 3MPCA Solution for the Osgood and Luria data

A (concepts) 1 2 3
my doctor 19 .54 -.03
peace of mind 19 45 -9
my father 25 32 17
my mother 23 .19 .30
sel f-control 29 .20 -.02
love 40 -12 -.02
sex .26 -.24 -.03
fraud -31 .10 .37
hatred -.26 .13 .43
my spouse 24 -.17 -.09
me -.08 31 .23
my job 33 -17 .08
mental sickness .25 -.18 .43
confusion .10 -19 .50
child 30 -.05 .12
B (scales) 1 2 3
small-large 34 -09 .28
dirty-clean 39 -13 .24
valuable-worthless -.42 .01 -.17
tasty-distasteful -.38 -.24 -01
weak-strong 33 .26 .04
deep-shal low -31 42 -.01
tense-relaxed 21 .62 -31
fast-slow -04 22 .77
active—passive -30 45 .30
cold-hot .25 .18 -.24
C (administrations) 1 2
Eve White 1 48 .09
Eve White 2 44 15
Eve Black 1 -.09 .64
Eve Black 2 -13 .75
Jane 1 .51 .05
Jane 2 .54 .03
Frontal Core Slabs
Cl C2
B1 B2 B3 B1 B2 B3
Al 43.42 -0.98 7.48 -12.30 ~4.39 3.91
A2 9.76 0.70 0.49 32.61 ~1.79 -8.69
A3 -1.49 -21.72 1.56 -0.88 -8.97 -4.76
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Varimax Values for the Core and the Component Matrices for Various Joint

Varimax Rotations Applied to the 3MPCA Solution for the Osgood and Luria Data

TABLE 2

Relative weight for

Varimax value of

A B C Core A B C
unrotated 4.23 1.06 1.48 1.16
0 0 0 5.12 0.95 1.65 0.84
0.5 0.5 0.5 5.06 0.88 1.92 1.04
1.0 1.0 1.0 4.99 0.85 1.95 1.13
1.5 1.5 1.5 4.92 0.84 1.97 1.18
2.0 2.0 2.0 4.85 0.84 1.99 1.20
2.5 2.5 2.5 4.78 0.85 2.01 1.21
3.0 3.0 3.0 3.84 1.15 2.01 1.24
3.5 3.5 3.5 3.28 1.31 2.03 1.23
4.0 4.0 4.0 2.82 1.41 2.05 1.23
4.5 4.5 4.5 2.45 1.48 2.07 1.24
5.0 5.0 5.0 2.14 1.53 2.08 1.24
5.5 5.5 5.5 1.88 1.56 2.09 1.25
6.0 6.0 6.0 1.65 1.59 2.10 1.25

100.0 100.0 100.0 0.75 1.66 2.12 1.27

00 o 00 0.75 1.66 2.12 1.27
3.0 1.0 1.0 4.78 1.29 1.91 0.48
3.0 1.0 1.5 4.03 1.34 1.87 0.99
3.0 1.0 2.0 3.98 1.27 1.89 1.13
3.0 1.0 2.5 3.99 1.22 1.90 1.19

*

) Underlined values indicate maximally attainable values.
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The case where the weights for the component matrices are all 100, on the
other hand, turns out to be almost equivalent to that where each component
matrix is rotated by varimax separately, and the core is counter-rotated
(which is indicated by infinite relative weights in Table 2). This case thus
gives the other extreme, where the varimax values for the component
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matrices are maximal (and also underlined). The other cases are between
these extremes, and can be compared to these extremes to choose one’s favor-
ite description.

It can be seen from Table 2 that, when the relative weights for A, B,
and C together increase, the varimax value of the core decreases, and those
for B and C increase, whereas that for A first decreases, but then again
increases, when taking weights of 2.5 or higher. Interestingly, at the point
where the values for A start increasing, the varimax value of the core drops
considerably. Apparently, simplicity of the core and of A are largely incom-
patible, whereas simplicity of the core and of B and C is quite feasible: When
the relative weights are all 2.5, the core and matrices B and C have varimax
values larger than 93% of their maximal varimax values (whereas for A the
varimax value is only 51% of its maximum).

In an attempt nevertheless to find solutions where both A and the core
are reasonably simple, a number of choices for the relative weights were con-
sidered where the weight for A is the largest. When taking the relative
weights equal to {3,1,1}, we did get reasonable simplicity of A, but then sim-
plicity of C was reduced enormously. Therefore, in the next trials, we gradu-
ally increased the weight for C as well. This situation caused the varimax
value for C to increase rapidly, whereas that for A, B, and the core did not
change much. In fact, with the set of relative weights {3,1,2} we obtained
varimax values for the core and the component matrices that were all higher
than 75% of the associated maximal varimax values.

4.2 Interpreting the Results

From the above discussion of the results presented in Table 2, we con-
clude that the solutions with relative weights sets {2.5,2.5,2.5} and {3,1,2}
strike the most interesting compromises of simplicity in the core and the com-
ponent matrices. The first solution closely approaches maximal simplicity in
the core and in B and C, at the cost of A; the second gives relatively high
simplicity for the core as well as all three component matrices but is not very
close to the maximally attainable simplicity. These solutions are given
respectively in the left and right panels of Table 3; in the component matrices,
values below —.35 and above .35 are underlined; in the cores, values below
— 10 and above +10 are underlined. Matrix A in the first solution is not at all
simple (with many intermediate values, i.e., between .20 and .35 in absolute
sense), whereas the matrix A of the second solution is quite simple indeed.
Therefore, we will only interpret the second solution.

The first component in the second solution refers to peace of mind,
which is apparently related to the patient’s father and doctor. The second
component contrasts fraud and hatred against love and sex. The third
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TABLE 3

Two Solutions from Joint Varimax Rotation of the Core and the Component

Matrices of the 3MPCA Solution for the Osgood and Luria Data

Relative Weights {2.5,2.5,2.5} Relative Weights {3,1,2}

A 1 2 3 1 2 3
my doctor 30 .49 -.06 52 .23 -.09
peace of mind 28 .39 -.22 .46 .13 -.23
my father 31 .27 16 40 .09 .16
my mother 27 .16 .29 30 .04 .30
self-control 32 .13 -.03 34 -.07 .00
love 37 -20 -.01 20 -36 .07
sex 21 -29 -.02 02 =35 .05
fraud -.28 18 .36 -15 37 .29
hatred —22 20 .42 -09 37 .35
my spouse 20 -22 -.08 .05 -.30 -.02
me -.01 33 .21 A7 .32 .16
my job 28 -.23 .09 11 -33 .16
mental sickness 21 -21 44 05 ~20 .49
confusion 06 -.18 .51 -.07 -.08 .54
child 28 -10 .12 18 .21 A7

B 1 2 3 1 2 3
small-large 38 -13 .19 35 -.16 .23
dirty-clean 43 -15 .14 40 -.18 .18
valuable-worthless -44 .01 -.11 —-42 .04 -.15
tasty-distasteful =36 -.27 -.06 =37 -.24 -.08
weak-strong 30 .30 .02 32 .27 .03
deep-shal low -34 35 .17 -32 39 .13
tense-relaxed A1 .71 ~-.08 18 .70 -.10
fast—slow .05 -.07 .80 -.03 -.03 .80
active-passive -30 .27 47 -31 .32 43
cold-hot 200 .29 -9 .24 .26 -.18

C 1 2 1 2
Eve White 1 .48 .07 .48  -.07
Eve White 2 45 13 A7 .00
Eve Black 1 -.07 .64 A3 .63
Eve Black 2 -10 .75 13 75
Jane 1 51 .03 .50 -2
Jane 2 54 .01 .52 -.15

Frontal Core Slabs

Ct C2 C1 C2
B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

Al 447 24 22 -62 -59 05 40.3 -1.1 28 14 -22 -6.2
A2 15 05 -1.6 326 6.9 -12.6 =124 -1.8 -81 36.5 5.0 -7.5
A3 0.2 -21.3 -65 -23 -62 -67 2.0 =225 -57 -9.1 -0.8 -3.5
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component mainly refers to confusion and mental sickness. These dimensions
hence globally refer to Comforters, Bad versus Good, and Instabilizors. The
components for the semantic differential scales can be labeled respectively as
Potency versus Evaluation, Relaxedness, and Inactivity, thus deviating con-
siderably from the (all too) standard semantic differential distinctions of
Evaluation, Potency, and Activity: Apparently, a more important dimension
in these data is the Relaxedness (versus tension) dimension. The components
for the third mode clearly describe Eve White and Jane (component 1) and
Eve Black (component 2). Finally, in the core, the highest element (40.3)
refers to the strong contribution of Comforters to Potency versus Evaluation
when the patient *‘is’’ either Eve White or Jane. The second highest element
(36.5) refers to the strong contribution of Bad concepts to Potency for Eve
Black (in line with the perverseness of Eve Black). The third highest element
(-22.5) indicates the negative contribution of Instabilizors to Relaxedness for
Eve White and Jane. The other contributions can be similarly interpreted.
The present illustrative analysis served to demonstrate the flexibility of
the joint orthomax method. We showed that by varying the relative weights
for the component matrices, one can focus on different compromises of sim-
plicity of the different parts of the solution and thus search for the ideal
compromise. Kiers’ (1997) core rotation procedure does not allow such
compromises, because that method requires deciding whether or not to rotate
a component matrix so that the core is optimally simple, which will lead to
insufficient simplicity of either the component matrix or the core matrix, and
there is no intermediate approach. The present analysis demonstrates that
such intermediate solutions may well give the most interesting compromises.

5. Discussion

The present paper offers a procedure for rotating the core and the com-
ponent matrices to simplicity, without forcing the user to choose for optimal
simplicity of some matrices at the cost of a considerable loss of simplicity of
the others. Using the method proposed here, we can search for solutions for
which all parts of the solution (or a prespecified subset of matrices) are rela-
tively simple. In the illustrative analysis presented in this paper, it is demon-
strated that the new procedure can indeed find solutions that make all
matrices of interest sufficiently simple, in the sense that they lead to interpret-
able solutions.

We have seen in the illustrative analysis that the flexibility of the
present method allows one to change relative weights for A, B, and C to lev-
els such that the simplicity of these matrices as well as of the core is satisfac-
tory. In fact, in this way, one may aim to find solutions in which the varimax
values of the core and of the component matrices are all higher than a certain
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percentage of the maximally attainable varimax value. Specifically, one
might wish to maximize the smallest of the four thus-defined percentages. An
alternative would be to search for solutions with a maximal average of thus-
defined percentages. Unfortunately, we do not have a procedure for finding
relative weights that actually optimize such criteria, although we do think that
the trial-and-error procedure used in our illustrative analysis does a good job.
Moreover, it should be noted that the method is meant for seecking a useful
and easily interpretable description among infinitely many equivalent solu-
tions, all of which are equally ‘‘correct.”” Therefore, the fact that subjective
decisions (for instance, concerning the choice of weights) partly determine
the outcome of the procedure is not harmful, as long as they do lead to clear
and useful descriptions of the data.

A drawback of the flexibility of the joint varimax approach is that, in
practice, it may not be easy to decide on an appropriate compromise of sim-
plicity of the core and of the respective component matrices. Moreover, a
comparison of solutions based on different sets of weights would be more
complete if it would involve the full rotated component matrices, rather than
just their varimax values (or percentages of the maximal varimax values).
However, since this approach would require comparison of many solutions
each consisting of three component matrices and a core, the strategy is virtu-
ally unfeasible in practice, and may, adversely, lead one to settle for only one
analysis based on standard weights. We propose to handle the flexibility by
comparing solutions according to simplicity indices for all constituents of the
solution, but further research may lead to better procedures to deal with the
flexibility, which is not just an aspect of the present criterion, but is inherent
in the wish to simplify the interpretation of all parts of a 3SMPCA solution
jointly.

In the analyses in the present paper, we consistently set all gamma
parameters equal to 1, thus combining only varimax criteria. The reason is
that the varimax criterion is known to work well for rotation of component
matrices, whereas, for instance, the quartimax criterion (y = 0) is notorious
for its tendency to yield a ‘‘general factor’” (one column with relatively high
elements throughout), even when the more simple situation of different com-
ponents being related to different, mostly exclusive, subsets of variables can
be attained. For rotation of the core, Kiers (1997) reported that the varimax
criteria tended to work well too, in general, but that for certain situations it
may be advantageous to take vy larger than 1 (as demonstrated by a case where
taking y = 3 yielded considerably better results). Therefore, we recommend
starting one’s analysis by using v = 1 for all terms, and to consider alternative
choices for v (e.g., > 1, in particular for the core), only when this approach
does not lead to acceptable solutions.
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An obvious extension of the present procedure is the one to solutions of
N-way PCA. Because the core rotation algorithm can easily be extended to
the N-way case, by simply cycling over N rather than three updatings of rota-
tion matrices, so can the joint orthomax procedure.

The 3MPCA solution is usually taken such that the component matrices
are columnwise orthonormal. However, this restriction is made merely for
identification purposes, and any nonsingular transformation of these matrices
(when supplemented with the inverse transformations of the core) yields the
same model fit. Hence, to find interpretable solutions, one need not restrict
oneself to the orthogonal rotations. In fact, an oblique rotation procedure for
rotating the core to simplicity has been proposed by Kiers (1998). However,
combining this criterion with criteria for simplicity of the (counter-rotated)
component matrices seems all but straightforward. An alternative procedure
for obtaining oblique rotations of the component matrices could be based on
rotation of rescaled versions of the component matrices (compare Harris and
Kaiser 1964). For instance, first normalizing the columns of A, B, and C to
sums of squares equal to the associated eigenvalues, and administering that
solution to the present joint orthomax procedure would reduce to searching
for oblique rotations that simplify the component matrices and the core
jointly. Of course, other rescalings could be considered for this purpose as
well.

An alternative to rotating the core and components to simplicity, is to
constrain the core and components to be simple, in that certain elements are
required to be zero (see, Kiers 1992; Kiers and Smilde 1998). This approach,
of course, requires insight in which elements should be constrained to zero.
The rotation procedure proposed here could be used to choose which ele-
ments to set to zero, and, upon comparison of fit values of different models,
one can check if the chosen constraints are sensible.
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