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Some procedures for displaying results from three-way methods
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SUMMARY

Three-way Tucker analysis and CANDECOMP/PARAFAC are popular methods for the analysis of three-way
data (data pertaining to three sets of entities). To interpret the results from these methods, one can, in addition to
inspecting the component matrices and the core array, inspect visual representations of the outcomes. In this
paper, first an overview is given of plotting procedures currently in use with three-way methods. Not all of these
optimally correspond to the actual approximation of the data furnished by the three-way method at hand. Next it
is described how plotting procedures can be designed that do correspond exactly to the low-dimensional
description of the data by means of the three-way method at hand, and it is indicated to what extent these
correspond to the ones currently in use. Specifically, procedures are described for displaying either one set of
entities (e.g. a set of chemical samples) in two- or three-dimensional plots, or a set of combinations of entities
(e.g. pertaining to each object at each time point, thus providing ‘trajectories’ for each object). Furthermore, it is
shown how, in these plots, the other entities can be plotted simultaneously (e.g. superimposing the variables on a
plot with trajectories for objects). Both procedures are summarized in an appendix. Copyrf/f@0 John

Wiley & Sons, Ltd.
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1. INTRODUCTION

Three-way data pertain to measurements related to three entities (modes); for instance, measurements
of a number of objects, on a number of variables at several different occasions (which may refer to
different points in time or, more generally, different measurement conditions). For the exploratory
analysis of three-way data, two methods are particularly suitable. These are Tucker's [1,2] three-
mode factor analysis, here called three-way Tucker analysis, and CANDECOMP/PARAFAC [3,4].
Both methods are three-way generalizations of principal component analysis (PCA). Like PCA, both
CANDECOMP/PARAFAC and three-way Tucker analysis yield component matrices for the objects
and for the variables, but, in contrast to PCA, they also yield a component matrix for the occasions.
Also like PCA, both methods yield a low-dimensional representation of the three-way data. For PCA

it is customary to display such low-dimensional configurations in the form of a plot of the variables
and/or the objects. To do so, it is tempting to simply use the loadings of the variables as co-ordinates
to plot the variables as points in a space spanned by the components (drawn as a set of Cartesian axes),
and likewise to use the object component scores as co-ordinates for plotting the objects as points in a
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spacespanné by thecomponentsHoweve, aswill beexplainedin Section4, simply usingloadngs
or component scores as co-ominates may lead to misleading plots, providing a distotted
represatation of the low-dimensonal configuration found by PCA. In such distoited plots the
distan@sbetweerentitiesdonotcorrespadto theiractualsimilaritiesaccordngto themodelel data,
hencesimilar objectsmay inadverently be plottedfarther apat thanlesssimilar objects To give an
adequée represatationof thelow-dimensiamal PCA configuraton, it is necesaryto cardully choose
the axeswith respect to which the variablesor objectsare to be disgayed, and to compute co-
ordinaeswith respectto theseaxes(seeSecton 4).

An interesing alternaive methodfor displaying PCA resdts is offeredby the so-calledbiplot [5—
7] in which objectsandvariabesaredisplayedointly. This is donein suchawaythat,for eachobject
and eachvariable, the inner produ¢ betwee the vectors pointing to an object and a variable
approxmatesthescoee of this object onthevariable.Suchplotsdo notrepresat thelow-dimensional
configuation of the objectsor of the variables but focuson repraducingthe scoesof the objectson
the variables.

In three-wa generalizéions of PCA, both typesof plots can,in principle, be made,andin fact,
somesuch procaedureshave beenproposedby Kroonenterg [8,9] for usewith three-wayTucker
analyss. However,sone of the propo®d proceduesleadto misleadingplots. Furthermoe, not all
possibiities havebeenexploredsysematicdly. In the preentpaperit will beexplainedhow onecan
obtain adequée representatios of low-dimensionalconfiguratons that correspad to the modd
actualy fitted to the dataand hencedo not give misleadng dispays. The requrementsfor such
adequée represatationsare very similar to those that hold for plots of (two-way) PCA solutions.
Therdore we will first establishthes requirenentsfor PCA, and next, for three-way methods
propo® generalproceluresfor adequégely plotting configurtionsof one setof entities, aswell as
configuations for combindions of entities from two different modes. Theseprocedurs will be
summaized in an appendk. The preent paperwill start, howeer, with a brief introduction to
CANDECOMP/PARAFAC andthree-wag Tuckeranalysisandthe currenttechniquesfor displaying
their resuts.

2. CANDECOMP/PARAFAC

CANDECOMP waspropo®dby CarrollandChang[3] asanN-way generaizationof singularvalue
decompotiion (andthereforeof PCA) anddubbed CANonical DECOMPogion’. PARAFAC, for

PARAlel FACtor analysis,was propogd by Harshman4] as a methodthat solves the rotationd

indetermnacy problemof PCA andfactor analysis(seeReference[10], pp. 123 and 147-169)by
simply using scoesof the sameobjectson the samevariableson more thanone occason. Despite
their different origins, CANDECOMP and PARAFAC (heneforth denotedas CP) are fully

equivakentin thattheyemploythe sanme modd andthe sameeastsquaresitting approachWhenthe
elementsof anl x J x K threewayarray X aregivenasxy, i =1,...l,j=1,... Jandk=1,... K, then
the modelcanbe descriled as

R
Xk = Z a by Cir + €k (1)
r=1

wherea;,, by, andc,, denoteelemants of the componenmatrices A, B andC of ordersl x R, J x R
andK x Rrespectivelyandej, denoesanerrortermfor elementx;. The modd is fitted to adataset
by minimizing the sumof squaed errorterms,zijke.jkz, overA, B andC by meansf analternaing
least squaes algaithm [3,4]. The modd generalzes the two-way PCA model, as can be seen
immedigely upon writing this as
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R
X = > arby + ¢ (2)
r=1

whereg;, andby, referto componentscoesandcomponentoadingsrespedtvely. Clearly, in thecase

where the three-wg array has only one slice (i.e. K=1), the CP model reducesto x; =

> r ar(brcr) + €, whichis of the sane form as(2). ThusPCA canbe seenasa specal caseof CP.
The PCA modéd is betterknownin its matrix notation

X=AB +E (3)

andwe will likewise descrite the CPmodelin matrix notaion. For this purpo® we denoteby X, the
| x JK mode A matricized [11] form of X which hasthe frontal slicesof X nextto eachother.
Similarly, we represet the three-way array of error terms E, by its matricized version E,.
Furthermoe, we introduce the R x R x R unit supediagonalarray| which hasunit elementsin the
positions(i,i,i), i = 1,...,R, andzeroselsevhere.The R x R® matricized versionis denoedasl . In
this notaion we canwrite the CP modelas

Xa=Alo(C'®B) +E, (4)

where® denoesthe Kronecler product.From (4) the similarity of the CP modelto the PCA modéd
(3) beconesclear. In fact, nowit canbeseeratoncethatCPis aconstranedverson of PCA appied
to Xz CPis PCA of X, subjectto the constrants that the PCA loading matrix for the variablke/
occasioncombinatiors canbe written as(C ® B)l', (seealsoReferencd12]).

In theliterature restts from appicationsof CPto pradical datasetsareusualy given in theform
of tablesor one-dimen®nd plots [13], the rationale being that the CP dimensons, which are
determireduniquely[10,14], canbeinspectedneby one,andthis shouldindeedbedonein orderto
correctlyrelatethe commpnentmatrices for the threedifferentmodes. In CP applicationst doesnot
seemcustonary to plot componeniscoreson different dimensons againsteachothe [15-17],and
when this is done [18], it is donewithout referenceto approximaibn of the highe-dimensonal
configuiationdataspace componentscoresarejust plotted againsteachother, without justifying the
choiceof (orthogamally drawn)axeswith respecto which the entiiesat handareplotted.Suchplots
may be rather misleading, as they incorrectly sugges that the distan@s between entities are
meanirgful. In the presentpaper procedurs for adequatly plotting configuationsrepresating CP
solutionswill be descibed.

3. THREE-WAY TUCKER ANALYSIS

Three-vay Tucker analyss [1,2] is a threeway generaization of PCA which can be seenas an
extendedverson of CP.As in CP,in three-wayTuckeranalyss, componentmatricesareemgoyed
for eachmode butin contrastto whatis the casein CP, differentnumtersof componentanbeused
in the differentmodes.Moreover, wherea in CP eachcomponenin modeA is related to preciséy
one componentin mode B and onein modeC, in three-wg Tucker analyss eachcompamentis
relatedto every componentof bothothermodestherelaionsbetwea the P componentsof modeA,
the Q componentsof modeB andthe R componentsof modeC arecapturedby theP x Q x R so-
called‘core’ array,heredenotedasG. Specifically the threeway Tuckermodéd canbe written as
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P Q R
Z Z Z ipDigCurTpgr + Eijk (5)

p=1¢g=1r=1
or, in matrix notation,as
Xa=AG4C ®B') +E, (6)

whereA, B andC (with elementsay,, b, andc,, resgectivey) arecomppnentmatricesof ordersl x P,
Jx QandK x Rrespectivdy, G istheP x Q x Rcorearray(theP x QRmodeA matricized verson
of which is G,) with elementsg,,, and E, is the matricized verdgon of the array with error terms.
Threeway Tucker analsis consstsof fitting modé (5) to a dataarray by minimizing the sum of
squarederror termsover A, B, C and G; for instance,by meansof an altemating leastsquaes
algorithm [2].

In contrastto what is the casewith the CPmodel,a soluion obtainel by three-wayTuckeranalysis
is by no meas uniquely determired. In fact, in three-wg Tucker analysis the rotational
indeterninacyis evenmoreextensve thanin two-modePCA: arbitrary non-sngulartransfornations
of all componenmatrices simultaneouslydo not affectthe modelrepresentatia, providedthatthese
transfamationsarecompensatedy theinversetransbrmationsappliedto the core[l] Thisfollows
at once from the fact that X, =AG,(C'®B') = A Ga(C ®B) for A=AS, B=BT, C=CU and
Ga=S~ Ga((U )~ 1®(T") 1) for any setof non-sngular matrices S, T and U. Therdore, in three-
way Tuckeranalyss, two- or higherdimensionaplotsareparticulaly useful,asthey, to sone extent,
obviate the needfor actually carrying out transbrmationgrotatiors of the componentmatrices.
Indeed severalprocedursfor plotting resuts from athreeway Tuckeranalsishavebeenproposed,
in particula by Kroonenbeg (seeReference8], Chap.6). Thisis notto saythat,in threeway Tucker
analyss, dimenson-by-dmensioninterpretationis uncomnon. On the contray, theinterpretaion of
threeway Tuckeranalyss soluionswill almostalwaysbe basedon dimensonwiseinterpretationof
componerd for eachof thethreemodes, followed by anassesmenbf the strengthof theinteracton
of such components(as indicated by the core). However, as Kroonenkerg has denonstrated
frequenly, interpretationof componentsaswell asof relationsbetwea entities from differentmodes
is consideably facilitatedby variousplotting procedires.

Kroonenlerg (SeeRefeence[8], pp. 154-157)first discussd interpretationand plotting of the
valuesin the componentmatrices.For plotting the entities of a paricular mode,without definingthe
Cartesan axesto be used,he mentionstwo possibiities: (1) use as co-ordnatesthe rows of the
columnwise orthonomal componenmatrix for the modeat hand;(2) first scalethe columnsof the
componenmatrix suchthattheir sumsof squaesequaltheir ‘weights, whichfor modeA denotthe
eigenvaliesof G G, andfor modes B andC denok the eigenvaliesof analogouly definedmatrices,
andusethe ensuingvaluesasco-ordnatesin fact, in applicaions,bothproceduresareused(seee.g.
Referencd8], pp. 208 and211 or Reference?9], p. 89). Kroonenkerg (seeReference[8], p. 155)
mentionsthat ‘Adjusting the componerd in sucha way that their lengthsare proportionae to their
(standadized) weights has certain advantage for plotting componerg against one anoher.
Especiadly whentheweighs associtedwith thecomponentsarevery different directly plotting them
without adjustmehmight give a wrongimpressionof their relativeimportance’.lt will be shownin
Section5 of the preentpaperthat,indeed, using the unweghtedco-ordnatess misleading andthat
the ‘certan advanages’of the seconl procedurepertainto the fact that it doesgive an adequée
represatation of the low-dimensonal dataapproimation provided by threeway Tuckeranalsis.

Interesting datafeatures may also be revealed by plotting resultsfor combindions of entities of
differentmodesfor instane, displayinga configumationof all variablesatall occasios. Kroonenbeg
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(seeReferencd8], pp.165-166)proposedo dispay co-ordnatesof suchcombinel entities (dended

by him as‘component scoes’) anddid soin variousapplicaions (seee.g.pp. 42 and220).Herehe
plotted such component scores,for each dimenson separagly, agairst the entities of the two

combinal modes. The alternaive of plotting suchcombinel scoesagainsteachothe to obtan so-
called'trajectories’is usedby Kroonenberd19] andmentionedin amoregenerakoniextby him (see
Referencd9], p.85).Aswill beshownin Secton 6 of thepresentpaperthesdrajectorescanalso be

viewed as low-dimensionalapproaimations of trajectoriesin the actual high-dimensiamal space,
providedthat prope scalirgs areused.

A third way of dispaying the resultsfrom a three-wg Tuckeranalyss is by meansof so-called
‘joint plots’ that relatethe entities of one modeto the entitiesof one other mode,for eachof the
componerd in the third mode (seeReferencd8], pp. 164-165) Specfically, for the rth C-mode
componeng joint plot for A- andB-mode entities is given by first deconposingG, (therth frontal
slice of G) asG, = UDV’ (by meansof a singular value deconposition); nextthe first S= min(P,Q)
singula vectorsandvaluesare collectad in Us, Ds and Vs Thena joint plot is obtaned by simply
plotting the A-mode entities vectors(or points)with co-ordnatesgiven by the rows of A = (1/3)**
AU<DsY? and plotting the B-mode entities (as vectass or pointsin the sameplot) by using as co-
ordinatesthe rows of B = (J/1)*BVDs'?, both with respect to Cartesan axes.In the® plots, no
meaniry is to be attadhedto the axes.Instead the information in the plot is carried by the inner
productsbetwee the vectorsfor the A-mode and B-mode entities. Theseinner produds are the
elementof A B’ = AUgDsV'sB’ = AG,B’, which appraimatesthe datarepresetationasaccownted
for by therth C-madecomponentin theplot, thes inner productscanbefoundexactly by projecion
of eachmodeA vecta on eachmodeB vector,and multiplying the length of the projectian by the
lengthof the modeB vector(or vice versa); a quick graspof theseinner produds canbe obtainel at
oncefrom the (nonJcloseressof groupsof vectors asfollows from the fact that, aslong asvectbors
havesimilar lenghs, the inner produd betwea vectorsis strongly correlatedwith the closenessf
their endpoints. Thattheselenghs havesimilar magiitudesis to sone extentascetainedby the use
of thescalarfactors(1/3)Y* and(J/1)*# in fact, theratiorale behind the useof the= factorsis thatthe
ensuingbiplot yields the smdlest possibe sum of distan@sbetwee row and column points of all
possibe biplots dispaying vectorswhose inner produds give the elementsof AG,B’, asprovenby
Kroonenkerg and De Leeuw [20]. Thus,from (nonjcloseressof the plotted points,the joint plots
yield aglobd insightinto the modded relaions betwee A- andB-modeentities, giventhe C-mode
entity. Joint plots as propo®d by Kroonenbergare very insighful in the casewherethe C-mode
entities areeasilyinterpretable(seee.g.Refelence[8], pp.218-221).Howeva, in the casewhere the
C-modeentities aredifficult to interpret,it maybebetterto dispay relationsbetwea all threemodes
simultaneously.This can be doneby using biplots displaying relationsbetwee entities from one
modetogethe with combinedentities from the othe two modes, aswill be descritedin Section6.

Having descriled the currenty usedprocedurs for plotting resuts from threeway methodswe
will now describeageneanl procedurefor displaying configurationghatadequgely correspadto the
data approximaions offered by three-way methods If possibé, we will relate theseto the ones
mentionedabove. Before doing so, however, we will start with a detailed explanation of such
displaying procedurefor thecaseof (two-way) PCA, thuslaying thefounddion for the proceduresto
be usedfor threeway methods

4. PLOTTING IN TWO-WAY PCA

In Section4.1 we will descibe, in ample detail, a procedire for plotting the column entities
(variables). In Secton 4.2 ananalogougprocedurefor plotting row entitieswill be describedoriefly,
andit will beindicatedhow, in this plot, the variablescanbe plotted meanirgfully aswell.
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4.1. Plotting the column entities (the variables)

In PCA of anl x J objects-byvariablesmatrix X a plot of the variableloadngs givesan adeque
represatation of the configuation of the variables in R', provided that the loadings have
componentise suns of squaesequalto theasso@tedeigenvalies.This canbe seenasfollows. We
considerthe variablesaspointsin the high-dimensionalspaceR', spannd by | orthogonalaxes(one
for eachobject),givenby the co-ordnatesin the columnsy; (j = 1,...,J) of X. Thusfor eachvariable
the co-ordnateswith respectto theseCartesan axesare simply the scoes of the objects on this
variable.TheEuclidean distancedetwea thes points aredirectly relatedto differencesin thescoes
onthevariabkesconcernedthe squaredistan@ betwee the pointsrepresentingvariables andk in
R'is [|Ix—Xu]|® = (X;X+XXk —2Xjx), which, in the casewhere the variables are centeredand
normalzed, equals2(1—rj), whererj, denoesthe correlation betweenvariablesj andk.

It hasbeenseerabovethattheconfigurationof thevariabke pointsin R' capturstheinformationon
therelaions betwee the variables.Now in PCA the matrix X is appraimatedby a matrix X = AB’
for certain matricesA andB of ordersl x RandJ x Rrespectively.In fact,aspecialpropert of PCA
is that X is an orthogonalprojectionof X ontoa particula subspae. This follows from the fact that
X = URDRV'R, WhereUg, Dg and Vg arematrices contairing thefirst R singular vectorsandvalues
from the SVD X = UDV'’. HenceX = UrDrV g = UrRUR' X, Where UgU'k is an orthogona projecbr,
which showsthqtf( containsprojectionsof the columnsof X ontothe subspae spannedy Ug. Thus
the columnsof X still pertainto pointsin R', butthesepointsall lie in an R-dimensionalsubspae of
R'. Now in PCA, usually eitherA or B is chose to haveunit sumsof squareshenceeitherA = Ug
andB = DrVgr or A = UgDr andB = V. Herewe assumehattheformerchoice(whichis commonin
psychanetrics but not in chenometrics)is made.Furthernore, we let A~ denotean orthonormal
complenentmatrix suchthatthesquae matrix As= (A|A") is orthonomal. We mayusethecolumns
of thel x | matrix Ag asanalternaive setof orthogmal normalzedbasisvectorsfor R', henceasan
alternaive setof Cartesianaxes,and cannow expre;s)A( = ASA/S)A( =AA'AB’ with respectto this
alternaive basisasA’';AB’. Thus,with resgectto this basis the co-odinatesof thevariablepointsare
given in the columns of A’AB’=(A|A-)AB’ =(B|0), from which it can be seen that the
(approxmated)variable points all lie in the column spacespannd by the first R axes(with co-
ordinaksin B’), andthatthe co-ordirateswith respecto theremaining axesareall zero.Thusa plot
of the variable loadngs given in the rows of B actually dispays the configuiation of the variable
pointsgiven by the low-dimensbnal appraimation X of X, with respecto a setof new orthogona
axesspanninghis low-dimensionalspaceA differentway of looking at PCA, hence|s thatin PCA
we rotatethe axesspannig R', wherethe rotationis representecby the orthonomal matrix Ag, in
suchawaythatthel-dimensionalconfiguitionis optimally capturel within thesubspae spanne by
thefirst R dimengons To visualizethis, we mayconstderthatthe subspaceefers for exanple,to the
planethatlies closestto all variablepointsin R3 anda plot of the loadingsrefersto the orthogona
projectian of thesepoints on this plare. An exampé of sucha situatim is given in Figure 1. The
origind points in R* are given, aswell asthe planeto which they are closest.The approcimated
configuationof thesefive points,given by projecticnsof thepointsonthisplare,isindicatedaswell.
To optimally visualizethe appraimated configuition, we rotatethe three-dimen®nd spacesuch
thatthe planeis capuredcomplédely in the spaceof the presentpage.Sincethe projectedpoints fall
exactl in this plane,the two-dimensionalplot adequgely dispays the appraimated configuation.

The above geonetrical interpretationof a loading plot as an approximation of the variable
configumtionin R' only holdsif the componentmatrix A is columnwise orthonomal. If it is not, the
above-nentionel matrix As will no longerbe orthonormal,andthe configuration basedon a plot of
the loadngs in B with respectto orthogorally drawn axesno longe pertainsto a simple rotated
version of the actual appraiimated configuiation of the variablks. Instead, it displays a distotted
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Figurel. Five pointsin R® (opencircles)areprojectedon the planeto which they areclosest{projectionsgiven

by full circles).Thethree-dimensionaspaceis rotatedsuchthatthe planewith the projectedpointsis oriented

parallel to the plane of the page;the third dimension,orthogonalto it, neednot be visualized,becausehe
projectedpointslie exactlyin the plane.

versionof the appraimatedconfiguiation. To illustratethis, considerthe simple exanple with

1 1 1 05 05 0Y
A:(l o-5> and BZ(O 05 05 1)

Then
X:AB':(

1 1 0 1
1 075 025 05

Plotting the column entities (labeled resgectively as A, B, C and D), using as co-odinatesthe
columnsof B, givestheleft-handplotin Figure2. This, however, is notanadequateepresetationof
the configurtion basedon the estimaed datavalues,given in X, ascanbe seenfrom the plot of the
columnentities basedon the columnsof X, which give the co-ordinatesof the column entitieswith
respecto theactualCartesiardataaxesin R', which hereis R? (middle plot of Figure2); it shouldbe
notedthat the presentsituation is specia) becase usually the columnsof X have more than two
elementandhencetheir location in R' cannotbe visualized. Both plots suggesthatA, B andD are
locatedon aline, but the plotsdiffer complédely asfar asC is concernedtheleft-handplot suggets

2 2 2
1 D 1 A 1
B
B . D
0 A 0 0 ¢ A
c 0
1 A 1
2 2 2
2 4 R 2 2 4 0 1 2 2 4 0 1 2

Figure 2. Plots(from left to right) of rows of B, columnsof X androws of B.
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thatC is closerto A thanto D, wherea, in the (estimaded) data C is farthestirom A andclosesto D.
Thusthe plot basedon the co-ordinatesin B is considerab} distorted This is a consequereof the
fact thatthe axesusedwhen takingthe valuesin B asco-odinatesarethetwo columnsin A, which
aresepaatedby anangleof only 18° (andhencefar from orthogond) andare,moreove, of unequa
length.

Thus,when thecomponenmatrix A is notcolumnwise orthonomal, for giving anundistotedplot
of theapproximatedconfigumation of the variableswith resgectto orthagonally drawnaxes,we mug
find an altemative bass matrix for X that is columnwise orthonomal. Speciftally, if A is not
columnwie orthonomal, we searchfor a transfornation matrix T suchthat AT is columnwise
orthonomal (e.g.by Gram—Schridt orthonormalzation),andpostmultply B by (T’ )~ sothatAB’
(with A = AT andB = B(T") %) still equaisx Thenaplot of thevariableswith thevaluesin B asco-
ordinakesdoesgive anadequée represetation of the appraimatedconfiguiation of thevariables.In
the aboveexamplean orthonomal bas for the columnsof X is given by

A_ 0.707 —-0-707
~ \0-707 0-707

and

5_ (141 124 018 1.06 '
~\ 0 -018 018 -0-35

gives the asso@ated co-ordnatesfor the column entities,which are usedin the right-handplot in
Figure 2. It canbe seenthat this configurationis undigorted, being simply a rotation of the actual
estimaed dataconfiguation, givenin the middle plot of Figure 2.

If the low-dimensionalappraimation usesmore thantwo dimensons, it is hardto display the
resultingconfiguation, andif it usesmorethanthreedimensons this canonly be doneby indirect
meansin suchsituationst is possibk thatthereareclustes of pointsthatarefar from morethanone
axis,which hencewould notshowupin plotswhere thes dimensonsarenotusedsimultareously.To
avoid missingsuchclustes, it is recanmendel to rotate the loadingsto simple strucure (e.g. by
meanf varimax[21]): theaim of simplestructurerotationsis to rotatesuchthatclustersof pointslie
closeto the axes.If this rotation achievesits goal asit often does, little insight is lost whenthe
configuationis displayedonly with respecto pairsof dimensions

4.2. Plotting therow entities (the objects)and representingthe variablesas projectedaxes

Rathe thanplotting the approaimatedconfiguiation of the variables,one may also wishto plot the
approdmatedconfiguiation of the objects, which canthemselve be represatedby pointsin R”. In
this situaion a plot of the co-odinatesin A canbeused providedthatB is columnwiseorthonormal,
asfollows from the samerea®ning asfor the variableswith X replacel by X’ andA by B andvice
versa Thus, if B is not columnwise orthonormal,we find a transbrmation T suchthat BT is
columnwiseorthonormal(e.g.by Gram—$hmidtorthonomalization), andpostmultply A by (T') 1
sothatAB’ (with A = A(T") ~*andB = BT) still equalsX. Thenaplot of theobjectswith thevaluesin
A asco-odinatesgives anadequée represatation of the approaimatedconfiguiation of the objects.
In pradice, a PCA doesnot give a solution with both A andB columnwiseorthonomal, nor can
sucha solutionbe obtainal upontransbrmaion. Henceit is impossble to plot objectsandvariables
onthebasisof componentscoesandloadingsthatareassocitedwith eachother.Therefoe, with the
above-nentional procelures, the configurations of objects and variables must be considered
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independatly. An apprachto studyobjectsandvariablesinterdependentlys by meansof the biplot

[5-7], asmertionedin Sectionl. In fact, given the configurationfor the objects, we can plot the
variablesasvectorsin thesane plotin suchaway thattheinnerproduds betwee (thevectorsto) the
pointsfor theobjectsandthevectorsfor thevariablesequalthevaluesin X. Moreower, thevectorsfor

thevariableshenrepresentheprojectionsof theorigina axesspanningR’ (eachof which pertainsto

onevariabk) ontothelow-dimensionspacadispayed.Givena configurationfor the objects theaxes
for the variablesare found asfollows.

Supposethat B is a columnwise orthonomal bass matrix for the R-dimensional object
configumtion. Then,after projecion on the subspacethe rowsof X = XBB' contin the co-odinates
for eachof the objectswith resgectto theoriginal J axes(which represat thevariablks),andtherows
of the (I x R) matrix XB contain the co-ordnateswith respectto the R axeschosenin the R-
dimensonal subspae. Now, to find the projectian of the original J axeson this R-dimensonal
subspacewe consicer the J fictitious objectsthat lie on thes original axesand have unit lengh,
hence objects that originally have score profiles e,/=(100...0), &' =(010...0), ...,
ey =(000...1), which, respedwely, lie on the axesrepresentingthe first variable, the secom
variable,..., the Jth variablke. Now, after projectian, theseobjectslie on the projected variabke axes,
hence by locatingthe projeced location of thes fictitious objects and noting that the origin, after
projectian, remainsattheorigin, we canassastheorientationof eachof the projectedaxesby simply
draW|ngthevecbrsassomtedwnh theprOJectedvarlabIesel/B by, e;B=b,,...,e;B=Dbj, where
bJ , denoesthejth row of B. Thelinesthroughthes vecirsform the projectedvariablesaxes.In the
resultingbiplot the length of the projectian of an objectpoint on a variable axis multiplied by the
length of the variable vector, appraimatesthe actual scoe of the object on the variable. This is
becausethe length of the projection of objecti on axisj is & by (b b)_l’2 which, multiplied by
(b b)l’z, gives § b =a'b= X.J Thus comparisonof scoreson the sane variabke can be done
straightforvardly by corrparlsonof projecion lengths

Herewe only mertioned projection of the original variable axesonto the low-dimensionalspace
contairing the appraimate configuration for the objects becawse this seemsof mog pradical
interest Howeve, given a configuation for the variables (Sectbn 4.1), we can also project the
original ‘object axes’onto the low-dimensionalspacecontairing the appraimate configuation for
the variables by following a fully anabgousprocedure.

Asin PCA,in three-wa methodslow-dimensionahppraximations to the dataareobtainal. How
the aboveprocedurs for plotting objectsor variables(and, if desred, projectedvariable or object
axes)canbe usedfor the resultsof threeway methodswill be discussd in the following sections.

5. PLOTTING IN THREE-WAY ANALYSIS: CONAHGURATIONS FORENTITIES OF ONE
MODE

5.1. Thethree-wayTuckermodel

In the caseof three-wa datathe entities of eachmode can be consideredas pointsin a high-
dimensonal space and the three-way Tucker model and the CP model provide low-dimensonal
approximatonsto the high-dimensiamal configurations Specificaly, the A-mode entitiesarel points
in R’ andwhenthe dataarerepresentedy the Tucker modelX, = AG,(C'®B’) with A anl x P
matrix, thenthe rows of X , give co-ordnatesfor | pointsin a P-dimensionalsubspacef R’¥. Hence,
to displaythis apprximatedconfiguration,we haveto find a basisof this P-dimensionalsubspace,
find the co-ordnatesof the A-modeentities with respecto Cartesianaxesin this subspae,andplot
the pointscorrespading to thes co-ordnates.

To find a basisfor the above-nentional subspae and co-ordnatesof the pointswith resgectto
Cartesiaraxestheren, we first rewrite the modelexpressionfor XaasX,= A((C®B)G,)' to makeit
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optimally similarto thatfor X in Secton 412, wherethe matrix A now hasorderl x P andtherole of
the J x R matrix B in Secton 42 is now played by the JK x P matrix F=(C®B)G,. Thuswe
actualy havea situatin analogougo thatfor two-way PCA, andto produe a plot of the A-mode
entities,we haveto replaceF = (C®B)G, by anorthonormalbass andadjusttheco-odinatesfor the
A-mode entitiesaccodingly. Hence,asin Section4(2, we find a transformationT suchthat FT is
columnwieorthonormal(e. g by Gram—&hmidtorthonomalizatian), andpostmuliply A by (T’ )t
sothatAF’ (with A = A(T’ )_ andF = FT) still equas AF’ = A((C®B)G,) = X Thenaplot of the
objectswith the valuesin A asco-ordnatesgives an adequée represatation of the approiimated
configuition of the objects

If sodesired the origind JK axescanbe projectedinto the same plot, but this will give a biplot
with, usually, mary vectors representingprojectedaxesfor all combindions of B- and C-mode
entities (e.g.representingeachvariable at eachdifferentoccasion. Suchaplot will in manycase be
hardto study andis not consideed further here

To obtan plotsfor the B- andC-modeentities, an analogougprocedurecanbe used,basedon the
mode B and mode C matricized verdons of X and X Thus we have Xy, = BGL(A'®C’") and
Xc =CG(B'®A’) [11], and co-odinatesfor the B- and C-made entities can be obtained after
orthonomalizing (A® C)Gy' and(B&RA)G. respectivéy.

Oftenthethree-wayTuckersolutionis given in sucha way thatfinding the required orthornamal
basesredu@sto a simple columnwie scaling. Specfically, for the (unrotated)solution it usualy
holds that matrix A contairs unit normalized eigenvetors of X _X,, B contairs unit normalized
eigenvetors of )A(b)A(b’, and C coniains unit normalzed eigenvetors of )A(C)A(c’, which is sometines
calledthe principal axessolution. It follows thatA’X X4A = A’AGG/A'A = GG, = A, WhereA,
denotesthe diagonal matrix with eigenvaluesof X.X,. Hencein this casethe basis matrix
F=(C®B)G, is columnwie orthogonal, becase F'F =G (C'CRBB)G, =G G, =A, SO to
orthonomalizeF it sufficesto divide the columnsby the squae roots of the asso@tedeigenvalues;
this scalingis to be conpensatedn A by multiplying the columnsof A by the squae rootsof the
associged eigenvales. The thus scaledmatrix A is sad to coniin principal co-ordinates This
scalirg is exactlythescalingsuggetedby Kroonenlerg(seeReferencg8], p. 155)which‘hascertain
advantags’ when plotting the entities for the modeat hand.The preentexplanaion clarifies what
theseadvanagesare:thescalirg athandensuesthattheplot correspadsexactly to the projecton of
theorigind configurationon thelow-dimensonalspaceusedin thethreeway Tuckerrepresatation.
This is becausein that case F doesnot only haveorthogon columns but owing to the scalirg by
meanf theinversesquareaootsof theeigenvaluesthes columnshaveunit suns of squaresswell.
Somefurther commentsarein order here First, of course,the samereasonng can be appliedfor
plotting B- andC-modeentities. Secondjt shoutl be notedthat, afterrotationof athree-wg Tucker
solution, the componentmatrices no longer contain eigenvetors, and the abovereasoningbreaks
down, unlessan orthogoné rotation wasappliedto scakd componenimatrices: for instane, if the
rotatedA-mode componentmatrix is found asan orthogonalrotation of the principal co-odinates
(eigenvetorswith sums of squaesequalto the assoted eigenvales),thenboth beforeandafter
rotationwe haveF'F = |, andhencethe bass matrix remans columnwiseorthonomal.

5.2. TheCP modé

The above procedure has beendescribedfor the three-wg Tucker modd, but exacty the same
procedurecan be usedfor plotting configuations for A-, B- or C-mode entities basedon the
approxmation given by an R-dimensionalCP modéd. To this end, it sufficesto replaceG in Secton

5.1by |. Howeve, suchplotting procedureswould ignore the fact that the CP modé gives (usually
oblique) unique axes,which may havean intrinsic meanirg. Thus one may like to visualize these
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uniqueaxesin their actualobliqueorientation.Forthis purpog onemight useaprocealurefor plotting
with respectto obliqueaxesHoweve, sinceall standirdplotting procedure arebasedn orthogonal
Cartesiaraxes,we will here asbefore,find an (auxiliary) orthogonalbasis,andon therestting plot
we will projectthe oblique CP axes,asfollows.

Supposeve haveplottedthe A-mode entities,with respecto orthonomal axesF = FT, in which
F =(C®B)l{ = CeB givestheorigind obliqueaxes,and® denogesthe columnwiseKronecler (or
Khatri-Raq produd [11]. To locatethe directionof the original axes(columms of F) in the current
plot, we simply usethat F = FT ~%. Herce, with respecto the current axes(the columnsof F), the
locationsof the columnsof F aregiven by the co-ordinaesin the columnsof T ~*. Thusthe origind
axescanbeplottedthrouch thevecbrsgiven by therowsof (T') ~ . It canbeverifiedthatthelocation
of the plotted objectscan now be found asthe linear combindion of the vecbrs represating the
obliqgueaxes,usingasweightsthe(original) scoesof theobjects(in A), which,in fact,in theorigind
CPrepresatation, give the co-odinatesof the objectswith respectto the oblique CP axes.

In orderto let A carryall therelevan scalesize information,onemay normalze bothB andC to
haveunit surns of squaresolumnwise(which canalwaysbe arrangedn the CPmodd, withoutloss
of fit, by multiplying the columnsof A by the squae rootsof the sumsof squaresf the associted
columnsin B andC). ThenF hasunit columnsumsof squaesaswell. If, furthemore, F is chosen
suchthatF'F =1, thentherowsof (T") ~* haveunit sumsof squaesandhenceall vecborsrepresenting
the CP axes are unit-length vectors this follows from the fact that F=FT ! and Diag
(F'F) = Diag((T") " *F'FT ~1) = Diag((T") ~*T ~%), hencethe row sumsof squaes (T')~* equalthe
columnsurs of squaref F, which in this caseareall unity.

5.3. lllustration

The procedurdor plotting entities of onemodecanbeusetll if onewishesto getanoveniew of the
similaritiesamong(sub®tsof) suchentities. Somdimessuchentities haveno intrinsic interest. For
instancejf oneor two of the modes pertan to different (emisson/absoption) wavelengthsthereis
little pointin showng similarities betwee suchwawvelengths Herce in suchinstanesonewill be
mainly interestedin thesimilaritiesbetwee entities of the othe mode which may pertainto samples
consistingof differentmixtures.In otherexampesonemay be interestedin similarities betweerall
entities of all modes. A casein pointis the following.

To illustrate the procedurefor plotting the entities of one mode,we usethe resultsof a Tucker
analysiof athreeway dataset[22,23]consistingof tenmeasuesof pollution (temperaure, flux, pH,
condugivity, O,, biochemicd O, demand,chemial O, demand,NH,, NOs;, PQy), takenat six
different‘stations along theriver Meauwret, at four differentoccagons (Febuary, June Augustand
Novemter). Thuswe havea6 x 10 x 4 dataset.It wasassunedthatto modelthesedataby meansof
a three-wg Tucker model, we need addtional (unknown) additive terms for the variables
(‘intercepts’),asdescriled by X,=1(1® u)'+AG 4(C®B) +E,, where 1 denoksa vecor with unit
elementsandy denotesavector with unknown interceps for thevariables Ratherthanestimaing the
interceps explicitly, we eliminatetheseby centeringacrossnmodeA andfit the mode AG,C®BY),
whereA representghe centredverdon of A. To account for differencesin scalesizeof thedifferent
variableswe normalizethethuscentere datawithin modeB; thatis, for eachof thevariablesacross
all scoreson it. Thefit valuesfor the thuscenterel and normalzed datafor severalsolutionswith
different dimengonalities are given in Tablel. The bold entities pertainto the best-fittingsolution
within a classof soluions with the sametotal numter of dimensons. We choosethe soluion for
which the highestincreag of fit wasfound uponincreasng the sumof dimensons oneby one[24],
which in this caseleadsusto the choiceP=3, Q=3 andR=2.

A full interpretationof theresultswouldinvolveinspecion of all componentmatricesandthecore,
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Tablel. Three-wayTuckerfit valuesfor severalcombinations
of dimensions

o

R Fit (%)

580
573
6503
686
693
719
698
742
718
7609
803
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and would, in addition, make use of displays of sone setsof entities. Here we do not constder
interpretationof the componenmatricesandthecore,butonly illustratethe procedurefor displaying
onesetof entities, nanely the stationsIn theleft-handpanelof Figure3 the stationsareplottedwith
respecto anorthonomal basisin the three-dimen®na subspae usedto represat thes data.The
co-ordnatesused in this plot are obtainal after first transbrming (C®B)G, to columnwise
orthonomality andappling theinversetransformationto A. To seewhatwould happerwithoutthis
transfamation, the right-handpanelof Figure 3 gives a plot basedon simply usingtherowsof A as
co-ordnates.n both caseghe centeringensued thatthe configurationis givenwith the centroidof
the stationsasorigin.

Statins 1-5 are ordeled downwads along the river Meauret, and station 6 is located in a
confluen at, asfar aspollutionis concened,asimilarlocationasstation5. Thelocationof staion 1 is
specialin thatit is locatedjust beforethe point wheretwo othea confluentsjoin the Meauwdret. This
causesasfar aspollution is concened,station1 to be moresimilar to the stationsfurther downthe

Figure 3. The left-handplot displaysthe low-dimensionalapproximationfor the original configurationfor the
stations;the right-handplot is basedon simply usingthe rows of the componentmatrix asco-ordinategor the
stations.
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Tablell. Full data—basedlistancesetweenstations

Stationl Station2 Station3 Station4 Station5 Station6
Stationl — 282 181 173 145 152
Station2 282 — 2004 264 2094 2094
Station3 181 2004 — 099 1385 202
Station4 173 264 099 — 097 152
Station5 1145 294 1385 097 — 134
Station6 152 294 2002 152 134 —

river than the onestopograplcally closestto it. It can be seenthat the configuiations differ
consideably with respgectto thelocation of this specialstationl. In theleft-handplot in Figure3it is
closeto stationss and6, whereasin theright-handplot it is far off from all othe stations.‘In reality’,

station 1 is not very far from staions 5 and 6, as we verified on the actualdatg asfollows. We
computel Euclidean distancesbetweenthe stations, as they are located in the origind high-
dimensonal space(basd on centerecandnormalizeddatain X). Specifically, the distan@ between
stationsh andi is expressedby

K

dhi = Z Z(ihjk — %ik )

J
j=1 k=1

Thesedistan@saregiven in Tablell. It canbe seenthatstaion 1 is muchcloserto staions5 and6
thanto station2. Furthermoe, it canbe seernthatstations2 and3 arefartherapartthanstatons1 and
5, where& the right-handplot in Figure 3 clearly displaysthe reverse As a final remak on these
displays, it canbe seenthatstation2, which, accordngto Tablell, is clearly mostdifferentfrom the
otherstations,is indeed an outlier in the left-handplot, wherea this is by no meansasclearin the
right-handplot. Thus the left-handplot in Figure 3, basedon the actualprojectedconfigu@ation, is
consideably morerealisticthanthe right-handplot.

6. PLOTTING IN THREE-WAY ANALYSIS: CONFIGURATIONS FOR COMBINATIONS
OF ENTITIES OF TWO MODES (TRAJECTORES)

In Section5 we disaussedhow one canplot the entities of one mode.However,sometimesoneis
interesed in visualizing the location of combinationsof entities of two modes.This is espedlly
interesing in caseswhere we have a sequace of measuements For instane, suppos we have
repeatedmeasurementof a numberof objects on a setof variables (e.g.in batchMSPC studes,
wherea numker of batchess meauredon anumker of variables,ata sequencef time points) Then
it can be of interest to seehow the location of the objects in the spacespannd by the variables
changesvertime. In otherwords,we would like to depict the trajectory along which the objects
‘travel’ in the spacespannedy the variables,similar to trajecbriesusedin, for instan@, STATIS
[25]. Sincewe cannotdepictthe trajecbriesin the full-dimensionalspace we usethe projectian of
thesetrajecbrieson the low-dimensionalapproximaton found by meansof the three-waymethodat
hand.Forthis purposewe basicallyfollow the sameprocedureasin Sectiond2, aswill beexplained
now.

Supposeave haveathree-waydataarray, orgarized suchthatmodeA pertansto the objectsmode
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B to the variablesand modeC to the measuremet occasios. Thenafter CP or three-wg Tucker
analyss we have X,=AG,C'®B’), but alo X,=BGy(A’®C’) and X.=CGB'®A’), as
mentionedin Section 5.1. Now, to plot the objectsat eachtime point (i.e. to plot all combinations
of A- andC-modeentities), we haveto find arepresentatia for the setconsistingof the columnsof

Xp, becauseeachcolumn pertans to one object/oc@sioncombination. In Xp, the co-ordinatesfor

thesecolumnsaregiven with respecto the full variablespaceR’, but theyareall locatedin a low-

dimensonal subspae, a basisfor which is given by B. Specifically, therowsof F=(A®C)Gy' give
the co-ordnatesof each object/ocasion combination with respect to the basis spannd by the
columnsof B. In thecaseof a Tuckeranalysighe matrix B is usuallycolumnwiseorthonomal,hence
the co-orinatescan be usedimmediately to plot the object/oc@sionconbinationswith respectto

Cartesan axes.In othercasegqnotablyin caseof CP)we haveto transbrm B into an orthonormal
basismatrix and apply the inversetransbrmationto (A® C)G,’ to obtain the object/ocasionco-
ordinaeswith respecto this basis.Havingthusfoundthelocationof eachobjectat eachoccasionit

is oftenusefulto connet pointspertaning to the sameobjectat conseutive occasios, soasto find

the projeckd trajectory of eachof the objects.

Asin thePCAsituatian, it maybeinterestingto visualizethelocationof the original variablesafter
projecticn onthesubspae. The proceduras fully analogoudo thatdescritedin Section4.2. Thus,if
transfamation T yields an orthonormal basis matrix B =BT, then F=(A®C)G, is to be
transfamed by (T’)~? to find the co-odinatesF = F(T") ~* for all object/occasbn combinations.
Now, in analogyto the derivatin in Section4(2, the rows of B give the vectorsdescibing the
projectedvariables. Furthernore, we can supeimpose the original CP axeson the plot, in an
analogousvay asin Secton 5.2. That s, the original CP axesare given by the columnsof B. To
expresshemwith respectto thecolumnsof B, thecurrently usedaxes we simply usetheco-odinates
in the columnsof T %, becausd = BT %, andwe plot thesecolumnsasvectorsin the currentplot.
Note that when B hasunit column sumsof squaresthe columnsof T~ also have unit sumsof
squaregcompae Section5.2),andthusthesevecbrsall haveunit length.The CPaxescanbeplotted
as the lines running through these vecbrs. The co-ordnates of the actal object/ocasion
combindions can now also be found as the linear conbination of the vectbrs representig the
obliqueaxes,using asweightthe (original) co-ordinaéswith respecto theseobliqueaxes.lt canbe
verified that theselinear combindions exactly lead to the locationsat which the object/ocasion
combindions havenow beenplotted. Thus in the caseof CP one candispay in a sinde plot: the
trajecbriesof the objectsalongwhich theytravel over the occasios, the projecedaxesrepresenting
the variables,andthe uniqueCP axes.

Rathe than plotting trajecbries for objects (combinatons of A- and C-modeentities), in some
caseonemightbeinterestedin plotting combinationsof A- andB-modeentities or of B- andC-mocde
entities. The proceduréfor finding properco-ordnatess fully analogougo thatdescibedabove but
thenbasedon X = CG(B'®A") and Xa= AG,(C'®B’) respedtely. We havechosento describe
only the proceadure for plotting combinationsof A- and C-modeentities, becase thesewill often
pertainto trajectoriesovertime for objects,which seemgshe mostinteresing applicationof combined
plotting.

The procedurewill now beillustratedfor a datasetdescriked by Nomikosand MacGregor[26].
The data set conssts of (simulated) measurerantson 52 batches(A-mode) with respectto nine
variables(B-mode) at 200 conseutive time points, with 5min intervals (C-mock). The first 50
batchesremoreor less'normally behaving’ batches whereasthe51stand52ndareknownto behave
abnormdly. Theninevariablesasdescribedoy NomikosandMacGregor[26], are: (1) flow ratesof
styrene (2) flow ratesof butadiene,(3) tempeatureof the feeds,(4) tempeatureof the reactor,(5)
temperatire of the cooling water,(6) temperatuve of thereactorjacket (7) densityof thelatexin the
reactor,(8) total convesion and(9) instantaneusrate of energyreleag.
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Figure4. Plot of the 52 batches.

The datawere preprocasedby cenering acressthe 52 batchesand by normalizng eachof the
variables(i.e. acrossbatchesand time points) suchthat for eachvariable the sum of squaeswas
unity. The thus preproceseddatahavebeenanalyzedby three-wa Tuckeranalysis using various
dimensonalities,andit wassoonfoundthatsolutionsusingmorethantwo componergfor eachmode
addedrelativdy little to thefit of the model.Forinstane, the (2,2,2) solutiongave220% fit, while
(3,2,2),(2,3,2)and (2,2,3)gave 23[3%, 2214% and 23[3% fit resgectively. It wasalso verified how
well the two-compament CP modd fitted thes data,andit was seenthat this led to a degenerate,
uninterpreéable solution. Therefore we choseto use results of the Tucker analyss, using two
componenrd for eachmode,to illustrate our plotting procedure.

Wefirst produ@da plot of thebatthes(Figure4), henceof the A-mode entities,in thesameway as
descriledin Section51. Batchesl,...,.52werelabded a,...,z,A,..,Z. It canbe seenclearly thatthe
abnormébatchegY andz) differ considerabl from theothe batchesswell asfrom eachother.The
mainpurpo® of the preentsectian, however, is to illustratea plot of trajecoriesof batchesAs each
trajecory pertainsto 200time points andasthereare 52 batchesthe plot would get clutteredif we
wereto dispay all batchessimultaneously.Therefoe in Figure 5 we give the trajectoriesfor four
batcheonly: batche, 12,51 and52. Theseweresekctedbecasethey could be expededto differ
consideably, asfollows from Figure 4: batche< and12 arenormally behavingbattes(in the plot
denotedby b andl) and can be seento be relatively wide apart: batches51 and 52 are the two
abnormé onesand were alreadynoted to be wide apat both from the othas aswell asfrom each
other.In the plot we also give the projectians of the variable axesonto the subspae dispayed. It
shouldberealized however, thatvariablesl, 2, 3 and4 arerepresatedratherpoorly by this Tucker3
analysis(fit pereentagesmallerthan4%), andhenceinterpretaton of the plot with resgectto these
variablesmay not be very reliable.
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Figure 5. Trajectoriesfor batches2, 12,51 and52. All trajectoriesstartnearthe origin (markedby ‘+'); the
arrowsrepresenthe projectedvariableaxes(5 and6 coincide).

From Figure 5 we learn quickly that the trajectories for the four batces displayed differ
consideably. The trajecbries for batches2 and 12 remain mosdly on the right side of the plot,
wherea thosefor batchesb1 and52 run from theright to the left. Batch52 is known to startbeing
deviantonly halfway throughthe process(seeReferenceg26] p. 1365);it canbe seento indeed
remainin the‘normal area’for arelatvely longtime, beforeit statsdivergingtowardsthelower left.
Batch 51 divergesright from the start. Furthermae, we canfollow eachsepaate trajectory more
closely, and see,for instane, that batch2 starts moving in the direction of arrows7 and 8 (thus
indicating a gradualgrowth of scoeson variables7 and8), andeventially bendstowardsarrow 6
(implying thatscoeeson variablke 6 eventally increaseconsideably). The trajectory for batch12 is
totally different: it moves quite consisently towards the right (mainly indicating increasingy high
scoreon variables7, 8 and9). As sad, thetrajecbriesfor batche$1 and52 mainly movefrom right
to left and henceshow deceasingscoes on variables 7, 8 and 9. It can also be seenfrom the
projectian of these trgjectorieson arrow6 thatbatch52 getsincreasngly high scoesonthis variable,
wherea for batch 51 this holdsonly for thefirst threequartersof the trajectory,whilst, towardsthe
end,thereis a decreasén scoreson variable6.

Forbatctes2 and52 we alsoplotted the actual(prepro@ssedyscoresonthevariabkesbs, 6, 7 and9
(Figures6 and 7) to demonstrag that, indeed,the generaltendencydisplayedin the sindge plot in
Figure5 conforms to the data Of coursetheplotsin Figures6 and7 give much moredetal, butthe
generakendencésof increa® or decreaseonfarm very well to thedatg andit canbeconcludedhat
theplotin Figure5 nicely summaizesthe maininformationin the data.The advantagef Figure5is
that it capture all the information in a singe plot, which allows for easymutual comparisonof
trajecbriesof different batches.
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Figure 6. Plotsof preprocessedcoresof batch2 on variables5, 6, 7 and9.

7. DISCUSSION

Thepresenpaperhasdescribedone proceduresfor plotting thelow-dimensionakonfiguationsthat
are obtaned by meansof threeway analysisas appraximations to the high-dimensional data
configuation for onesetof entities or for a combination of two ses of entities. The main rule that
shouldbe obeyedis that, to adequatly plot one setof entities, one should use co-ordinateswith
respecto orthonomal basisvectors In the proceduresdescriled, it is derivedhow the co-ominates
shouldbe computedfor suchplotsandhowtheorigina axescanbeprojecedinto thesameplot. The
proceduras descibedfor thegeneanl R-dimensionalsituaion, butin theactualpracticeof produdng
plots,R is usuallyrestrictedo 2 or 3. In casesvherehigher-dimen®nad configuationsareused.one
can dispay theseby either plotting co-odinatesfor all combinations of pairs (or triples) of
dimensons (which actuallycomesdownto orthogona projecionsof the full configuration),or only
useconseutive pairs(or triples). The latter may very well suffice, if carehasbeentakenthatpoints
are located reasonablyclose to theseplanes(or subspaes), as is typically achievedby simple
structurerotations Thus, in case where more thantwo or three dimensionsare to be used,it is
stronglyrecanmendel to precedethes plottings by procedurs for simple structurerotation[27].
The plotting procaduresdescribedn the presentpaperfocuson disgaying the approximaion of
thehigh-dimensimal configuationsentailedby theorigind data Otherplotting procedures(e.g.joint
plots [8]) focus on plotting ‘latent’ data configuiations, which togeher, by meansof linear
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Figure7. Plotsof preprocessedcoresof batch52 on variables5, 6, 7 and9.

combindions, apprximate the data Both appraches are mainly meant to supplenent the
interpretationof theresultsof one’sthreeway analsis,andshoutl notconmpletelyreplacetheresults
thatareusuallygiven in tabularform (suct asthose for thecorearrayin three-wg Tuckeranalyss),
nor do they obviate the dimenson-by-dmensioninterpretationusedin CP.

In the presentpaper,only in theillustrative analysesmertion hasbeenmace of how the dataare
treatedbeforeanalysis. It shouldbenoted howeverthatcenteringhedataacressonemodeseriousy
affectsthe meaniry of the dataelementsandshouldhencebetakeninto account. Oftenthis centering
is mainly meantto eliminate addtive constans from the data.In suchcases.estimaes of these
eliminated addtive constantscould be usedwhen interpreting the conplete model, or else, in
interpreting the restts, the estimateddatashoull be consteredasdeviationsfrom theseconstants
(for instance,deviationsfrom the means).What is mog approprate dependson the particula
situation athand.In casesvhereadditiveconstarnsareexplicitly modeledwith thedata,in disgaysof
the datatheseadditivetermscould alsobetakeninto account asadditionaldimensons. Forinstane,
suppoe the dataare modelal as Xa= 1u'+AG,(C'®B’), wherel denotesan |-vector with unit
elementsonly and u denotesa JK-vectorcontainng addtive termsfor all conbinationsof B- andC-
modeentities.In cases whereinterestis in plotting the A-mode units,onemay chooseto simply plot
the (usually columnwise centered)matrix A, and consicer thes co-ordnatesas co-odinateswith
respecto atranslatedorigin (e.g.transhtedto the centroidof the configuiation). Wheninterestis in
plotting the combinel B- and C-mode units, it is useful to write this modd as
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Xa= 1A (#|(C®B)G,) = AF’, thusinvolving one additionaldimenson for the whole configua-
tion. If interestis in disgaying otherconfiguations(e.g.thatfor the B-mode entities or the conbined
A- andC-modeentities), it shout be notedthatthefull modeldoesnotrepresenprojectiors of these
configuationson a low-dimensionalsubspae, and hencethe presnt plotting procedurs make no
senseln suchcass, eitherthe resuts shouldbe interpretedin termsof configuratons of cenered
data,or analtemativeapproachto modding additivetermsthatis in line with the configurationsthat
are to be displayed should be used. Such altemative models would be of the form
Xa= ma(1®1) + 1(1Q my) + L(1c®1) + AG4(C ®B’), possibly with one or two of the additive
termsleft out. For eachmodethelatter modelgivesa projectionon a subspaewhichis atmog three
dimensons higherthanthe subspaesinvolved in AG (C'®B’).

The plotting proceduresdescriledin the presentpaperare usedfor displaying resultsfrom three-
way methods but actually only rely on two-way (PCA) models obtaned after rewriting the three-
way modelsathand.It follows thatthe plotsdo not captureall theinformation availeable in theresults
of a threeway method,and they shouldneverbe usedto replace the full resuts of a threeway
analysis Ratherthey shoutl be usedto conplementsuchresults.Resultsfrom four- and,in geneal,
N-way methodscanlikewise be disgayedby rewriting the modelsbackinto two-way PCA form. In
thisrespecthe presenpaperis by no meanslimited to three-wg data.However,for higher-wg data
it will benotbeasfeasibleto represet theentities of all modesin oneplot, aswasdonein Secton 6.
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APPENDIX. SUMMARY OF MAIN PLOTTING PROCEDJRESFOR THREE-WAY
METHODS

In Sectionsb and6, procedureshavebeendescritedfor plotting oneor two modesof entities, onthe
basisof resultsfrom three-wy methods Thesecanbe summaized asfollows.
Given: X;=AG(C'®B’), where G, =1, in caseof CP;define F=(C®B)G,.

1. Displayingapproxmate configuiation of A-modeentities

(a) Find T suchthat, for F = FT,F'F = | holds(e.g.by Gram—%hmidt orthonomalizaion).

(b) Plotrowsof A = A(T’) " to displaythe | A-mode entities.

(c) Plotrowsof F to dispay projections of the JK originad axesonto subspace.

(d) (In caseof CP)Plotrows of (T")~* to dispay projecion of unique axes(colurms of F) onto
subspae.

2. Displayingapproxmate configuation of corrbination of B- and C-male entities

(a) Find T suchthat,for A = AT, A’ A =1 holds(e.g.by Gram-Schridt orthonomalization).

(b) Plotrowsof F = F(T")~* to displaythe JK combinationsof B- and C-made entities(forming
trajecories).

(c) Plotrowsof A to displayprojecions of the | original axesonto subspae.

(d) (In caseof CP)Plotrowsof (T’) ~* to display projectionof unique axes(columms of A) onto
subspae.
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