
Some procedures for displaying results from three-way methods

Henk A. L. Kiers*†

Heymans Institute (PA), University of Groningen, Grote Kruisstraat 2/1, NL-9712 TS Groningen, The Netherlands

SUMMARY

Three-way Tucker analysis and CANDECOMP/PARAFAC are popular methods for the analysis of three-way
data (data pertaining to three sets of entities). To interpret the results from these methods, one can, in addition to
inspecting the component matrices and the core array, inspect visual representations of the outcomes. In this
paper, first an overview is given of plotting procedures currently in use with three-way methods. Not all of these
optimally correspond to the actual approximation of the data furnished by the three-way method at hand. Next it
is described how plotting procedures can be designed that do correspond exactly to the low-dimensional
description of the data by means of the three-way method at hand, and it is indicated to what extent these
correspond to the ones currently in use. Specifically, procedures are described for displaying either one set of
entities (e.g. a set of chemical samples) in two- or three-dimensional plots, or a set of combinations of entities
(e.g. pertaining to each object at each time point, thus providing ‘trajectories’ for each object). Furthermore, it is
shown how, in these plots, the other entities can be plotted simultaneously (e.g. superimposing the variables on a
plot with trajectories for objects). Both procedures are summarized in an appendix. Copyright 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Three-way data pertain to measurements related to three entities (modes); for instance, measurements
of a number of objects, on a number of variables at several different occasions (which may refer to
different points in time or, more generally, different measurement conditions). For the exploratory
analysis of three-way data, two methods are particularly suitable. These are Tucker’s [1,2] three-
mode factor analysis, here called three-way Tucker analysis, and CANDECOMP/PARAFAC [3,4].
Both methods are three-way generalizations of principal component analysis (PCA). Like PCA, both
CANDECOMP/PARAFAC and three-way Tucker analysis yield component matrices for the objects
and for the variables, but, in contrast to PCA, they also yield a component matrix for the occasions.
Also like PCA, both methods yield a low-dimensional representation of the three-way data. For PCA
it is customary to display such low-dimensional configurations in the form of a plot of the variables
and/or the objects. To do so, it is tempting to simply use the loadings of the variables as co-ordinates
to plot the variables as points in a space spanned by the components (drawn as a set of Cartesian axes),
and likewise to use the object component scores as co-ordinates for plotting the objects as points in a
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spacespanned by thecomponents.However, aswill beexplainedin Section4, simplyusingloadings
or component scores as co-ordinates may lead to misleading plots, providing a distorted
representation of the low-dimensional configuration found by PCA. In such distorted plots the
distancesbetweenentitiesdonotcorrespondto theiractualsimilaritiesaccordingto themodeled data,
hencesimilar objectsmayinadvertently beplottedfarther apart thanlesssimilar objects. To give an
adequaterepresentationof thelow-dimensionalPCAconfiguration, it is necessaryto carefully choose
the axeswith respect to which the variablesor objectsare to be displayed, and to compute co-
ordinateswith respect to theseaxes(seeSection 4).

An interesting alternative methodfor displaying PCA results is offeredby theso-calledbiplot [5–
7] in whichobjectsandvariablesaredisplayedjointly. This is donein suchawaythat,for eachobject
and each variable, the inner product between the vectors pointing to an object and a variable
approximatesthescoreof thisobject onthevariable.Suchplotsdonotrepresent thelow-dimensional
configurationof theobjectsor of thevariables,but focuson reproducingthescoresof theobjectson
the variables.

In three-way generalizations of PCA, both typesof plots can,in principle, be made,andin fact,
somesuchprocedureshavebeenproposedby Kroonenberg [8,9] for usewith three-wayTucker
analysis. However,some of the proposed proceduresleadto misleadingplots.Furthermore, not all
possibilities havebeenexploredsystematically. In thepresentpaperit will beexplainedhowonecan
obtain adequate representations of low-dimensionalconfigurations that correspond to the model
actually fitted to the dataand hencedo not give misleading displays. The requirementsfor such
adequate representationsarevery similar to those that hold for plots of (two-way) PCA solutions.
Therefore we will first establishthese requirementsfor PCA, and next, for three-waymethods,
propose generalproceduresfor adequately plotting configurationsof onesetof entities, aswell as
configurations for combinations of entities from two different modes. Theseprocedures will be
summarized in an appendix. The present paperwill start, however, with a brief introduction to
CANDECOMP/PARAFAC andthree-way Tuckeranalysis,andthecurrenttechniquesfor displaying
their results.

2. CANDECOMP/PARAFAC

CANDECOMP wasproposedby Carroll andChang[3] asanN-waygeneralizationof singularvalue
decomposition (andthereforeof PCA) anddubbed‘CANonical DECOMPosition’ . PARAFAC, for
PARAlel FACtor analysis,was proposed by Harshman[4] as a methodthat solves the rotational
indeterminacy problemof PCA and factor analysis(seeReference[10], pp. 123 and147–169)by
simply using scoresof the sameobjectson the samevariableson more thanone occasion. Despite
their different origins, CANDECOMP and PARAFAC (henceforth denoted as CP) are fully
equivalentin thattheyemploythesamemodel andthesameleastsquaresfitting approach.Whenthe
elementsof anI � J� K three-wayarrayX aregiven asxijk, i = 1,…,I, j = 1,…,J andk = 1,…,K, then
the modelcanbe describedas

xijk �
XR

r�1

air bjr ckr � eijk �1�

whereair , bjr andckr denoteelementsof thecomponentmatrices A, B andC of ordersI � R, J� R
andK� R respectivelyandeijk denotesanerrortermfor elementxijk. Themodel is fitted to adataset
by minimizing thesumof squarederrorterms,

P
ijkeijk

2, overA, B andC by meansof analternating
least squares algorithm [3,4]. The model generalizes the two-way PCA model, as can be seen
immediately upon writing this as
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xij �
XR

r�1

air bjr � eij �2�

whereair andbjr referto componentscoresandcomponentloadingsrespectively. Clearly, in thecase
where the three-way array has only one slice (i.e. K = 1), the CP model reduces to xij =P

r air(bjrclr)� eij , which is of thesame form as(2). ThusPCA canbeseenasa special caseof CP.
The PCA model is betterknown in its matrix notation

X � AB0 � E �3�

andwewill likewisedescribe theCPmodelin matrix notation. For this purposewedenoteby Xa the
I � JK modeA matricized [11] form of X which has the frontal slicesof X next to eachother.
Similarly, we represent the three-way array of error terms, E, by its matricized version Ea.
Furthermore, we introducetheR� R� R unit superdiagonalarrayI which hasunit elementsin the
positions(i,i,i), i = 1,…,R, andzeroselsewhere.The R� R2 matricized versionis denoted asIa. In
this notation we canwrite the CPmodelas

Xa � AI a�C0 
 B0� � Ea �4�

where6 denotestheKronecker product.From(4) thesimilarity of theCPmodelto thePCA model
(3) becomesclear. In fact,nowit canbeseenatoncethatCPis aconstrainedversion of PCAapplied
to Xa: CP is PCA of Xa subjectto the constraints that the PCA loading matrix for the variable/
occasioncombinations canbewritten as(C 6 B)I 'a (seealsoReference[12]).

In theliterature,results from applicationsof CPto practical datasetsareusually given in theform
of tablesor one-dimensional plots [13], the rationale being that the CP dimensions, which are
determineduniquely [10,14], canbeinspectedoneby one,andthisshouldindeedbedonein orderto
correctlyrelatethecomponentmatrices for thethreedifferentmodes. In CPapplicationsit doesnot
seemcustomary to plot componentscoreson different dimensions againsteachother [15–17],and
when this is done [18], it is donewithout referenceto approximation of the higher-dimensional
configurationdataspace: componentscoresarejust plottedagainsteachother,without justifying the
choiceof (orthogonally drawn)axeswith respectto which theentitiesat handareplotted.Suchplots
may be rather misleading, as they incorrectly suggest that the distances between entities are
meaningful. In thepresentpaper, procedures for adequately plotting configurationsrepresenting CP
solutionswill bedescribed.

3. THREE-WAY TUCKER ANALYSIS

Three-way Tucker analysis [1,2] is a three-way generalization of PCA which can be seenas an
extendedversion of CP.As in CP,in three-wayTuckeranalysis, componentmatricesareemployed
for eachmode, but in contrastto whatis thecasein CP,differentnumbersof componentscanbeused
in thedifferentmodes.Moreover,whereas in CPeachcomponentin modeA is related to precisely
one componentin modeB and one in modeC, in three-way Tucker analysis eachcomponent is
relatedto every componentof bothothermodes:therelationsbetween theP componentsof modeA,
theQ componentsof modeB andthe R componentsof modeC arecapturedby the P�Q� R so-
called‘core’ array,heredenotedasG. Specifically, the three-way Tuckermodel canbe written as
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xijk �
XP

p�1

XQ

q�1

XR

r�1

aipbjqckrgpqr � eijk �5�

or, in matrix notation,as

Xa � AGa�C0 
 B0� � Ea �6�

whereA, B andC (with elementsaip, bjq andckr respectively) arecomponentmatricesof ordersI � P,
J�Q andK� R respectively, G is theP�Q� Rcorearray(theP�QRmodeA matricized version
of which is Ga) with elementsgpqr, andEa is the matricizedversion of the arraywith error terms.
Three-way Tuckeranalysis consistsof fitting model (5) to a dataarrayby minimizing the sumof
squarederror terms over A, B, C and G; for instance,by meansof an alternating least squares
algorithm [2].

In contrastto what is thecasewith theCPmodel,asolution obtained by three-wayTuckeranalysis
is by no means uniquely determined. In fact, in three-way Tucker analysis the rotational
indeterminacyis evenmoreextensive thanin two-modePCA:arbitrary non-singulartransformations
of all componentmatricessimultaneouslydonotaffectthemodelrepresentation, providedthatthese
transformationsarecompensatedby theinversetransformationsappliedto thecore[1]. This follows
at once from the fact that X̂a = AGa(C'6B') = Ã G̃a(C̃'6B̃') for Ã = AS, B̃ = BT, C̃ = CU and
G̃a = S71

Ga((U')716(T')71) for any setof non-singular matrices S, T andU. Therefore, in three-
wayTuckeranalysis,two- or higher-dimensional plotsareparticularly useful,asthey, to someextent,
obviate the need for actually carrying out transformations/rotations of the componentmatrices.
Indeed,severalproceduresfor plotting results from athree-wayTuckeranalysishavebeenproposed,
in particular by Kroonenberg (seeReference[8], Chap.6).This is not to saythat,in three-wayTucker
analysis,dimension-by-dimensioninterpretationis uncommon.On thecontrary, theinterpretation of
three-way Tuckeranalysis solutionswill almostalwaysbebasedon dimensionwiseinterpretationof
components for eachof thethreemodes, followed by anassessmentof thestrengthof theinteraction
of such components(as indicated by the core). However, as Kroonenberg has demonstrated
frequently, interpretationof componentsaswell asof relationsbetween entitiesfrom differentmodes
is considerably facilitatedby variousplotting procedures.

Kroonenberg (SeeReference[8], pp. 154–157)first discussed interpretationandplotting of the
valuesin thecomponentmatrices.For plotting theentitiesof a particular mode,without definingthe
Cartesian axesto be used,he mentionstwo possibilities: (1) useas co-ordinatesthe rows of the
columnwiseorthonormal componentmatrix for themodeat hand;(2) first scalethecolumnsof the
componentmatrixsuchthattheir sumsof squaresequaltheir ‘weights’, which for modeA denote the
eigenvaluesof GaG'a andfor modesB andC denotetheeigenvaluesof analogously definedmatrices,
andusetheensuingvaluesasco-ordinates.In fact, in applications,bothproceduresareused(seee.g.
Reference[8], pp. 208 and211 or Reference[9], p. 89). Kroonenberg (seeReference[8], p. 155)
mentionsthat ‘Adjusting the components in sucha way that their lengthsareproportionate to their
(standardized) weights has certain advantages for plotting components against one another.
Especially whentheweightsassociatedwith thecomponentsareverydifferent, directly plotting them
without adjustment might give a wrongimpressionof their relativeimportance’.It will beshownin
Section5 of thepresentpaperthat,indeed,using theunweightedco-ordinatesis misleading,andthat
the ‘certain advantages’of the second procedurepertainto the fact that it doesgive an adequate
representationof the low-dimensional dataapproximation providedby three-way Tuckeranalysis.

Interesting datafeaturesmay alsobe revealedby plotting resultsfor combinations of entities of
differentmodes;for instance,displayingaconfigurationof all variablesatall occasions.Kroonenberg
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(seeReference[8], pp.165–166)proposedto display co-ordinatesof suchcombined entities(denoted
by him as‘component scores’) anddid soin variousapplications(seee.g.pp. 42 and220).Herehe
plotted such component scores,for each dimension separately, against the entities of the two
combined modes. The alternative of plotting suchcombined scoresagainsteachother to obtain so-
called‘trajectories’is usedby Kroonenberg[19] andmentionedin amoregeneralcontextby him (see
Reference[9], p.85).As will beshownin Section 6 of thepresentpaper,thesetrajectoriescanalso be
viewed as low-dimensionalapproximations of trajectories in the actual high-dimensional space,
providedthat proper scalingsareused.

A third way of displaying the resultsfrom a three-way Tuckeranalysis is by meansof so-called
‘joint plots’ that relatethe entities of one modeto the entitiesof oneothermode,for eachof the
components in the third mode(seeReference[8], pp. 164–165). Specifically, for the rth C-mode
componenta joint plot for A- andB-modeentities is given by first decomposingGr (the rth frontal
sliceof G) asGr = UDV' (by meansof a singular value decomposition);next thefirst S= min(P,Q)
singular vectorsandvaluesarecollected in US, DS andVS. Thena joint plot is obtained by simply
plotting the A-mode entities vectors(or points)with co-ordinatesgiven by the rows of Ã = (I/J)1/4

AUSDS
1/2 andplotting the B-mode entities (asvectors or points in the sameplot) by using asco-

ordinatesthe rows of B̃ = (J/I)1/4BVSDS
1/2, both with respect to Cartesian axes.In these plots, no

meaning is to be attached to the axes.Instead, the information in the plot is carried by the inner
productsbetween the vectorsfor the A-mode and B-modeentities. Theseinner products are the
elementsof Ã B̃' = AUSDSV'SB' = AGrB', which approximatesthedatarepresentationasaccounted
for by therth C-modecomponent.In theplot, theseinner productscanbefoundexactly by projection
of eachmodeA vector on eachmodeB vector,andmultiplying the lengthof the projection by the
lengthof themodeB vector(or viceversa); a quick graspof theseinnerproducts canbeobtained at
oncefrom the(non-)closenessof groupsof vectors, asfollows from the fact that,aslong asvectors
havesimilar lengths, the inner product between vectorsis strongly correlatedwith the closenessof
their endpoints.That theselengthshavesimilar magnitudesis to some extentascertainedby theuse
of thescalarfactors(I/J)1/4 and(J/I)1/4; in fact, therationalebehind theuseof these factorsis thatthe
ensuingbiplot yields the smallest possible sumof distancesbetween row andcolumnpointsof all
possible biplots displaying vectorswhose inner products give the elementsof AGrB', asprovenby
Kroonenberg andDe Leeuw[20]. Thus,from (non-)closenessof the plottedpoints,the joint plots
yield a global insight into themodeled relationsbetween A- andB-modeentities,giventheC-mode
entity. Joint plots as proposed by Kroonenbergare very insightful in the casewherethe C-mode
entitiesareeasilyinterpretable(seee.g.Reference[8], pp.218–221).However, in thecasewhere the
C-modeentitiesaredifficult to interpret,it maybebetterto display relationsbetween all threemodes
simultaneously.This can be doneby using biplots displaying relationsbetween entities from one
modetogether with combinedentities from the other two modes, aswill be described in Section6.

Having described the currently usedprocedures for plotting results from three-way methods,we
will nowdescribeageneral procedurefor displaying configurationsthatadequately correspondto the
data approximations offered by three-waymethods. If possible, we will relate theseto the ones
mentionedabove.Before doing so, however, we will start with a detailed explanation of such
displaying proceduresfor thecaseof (two-way)PCA,thuslayingthefoundation for theproceduresto
beusedfor three-way methods.

4. PLOTTING IN TWO-WAY PCA

In Section 4.1 we will describe, in ample detail, a procedure for plotting the column entities
(variables). In Section 4.2ananalogousprocedurefor plotting row entitieswill bedescribedbriefly,
andit will be indicatedhow, in this plot, the variablescanbe plottedmeaningfully aswell.
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4.1. Plotting the columnentities (the variables)

In PCA of an I � J objects-by-variablesmatrix X a plot of the variableloadings givesan adequate
representation of the configuration of the variables in RI, provided that the loadings have
componentwisesumsof squaresequalto theassociatedeigenvalues.Thiscanbeseenasfollows. We
considerthevariablesaspointsin thehigh-dimensionalspaceRI, spanned by I orthogonalaxes(one
for eachobject),givenby theco-ordinatesin thecolumnsxj (j = 1,…,J) of X. Thusfor eachvariable
the co-ordinateswith respectto theseCartesian axesare simply the scores of the objects on this
variable.TheEuclidean distancesbetween thesepointsaredirectly relatedto differencesin thescores
on thevariablesconcerned: thesquareddistance between thepointsrepresentingvariablesj andk in
RI is kxj7xkk2 = (x'jxj�x'kxk 72x'jxk), which, in the casewhere the variables are centeredand
normalized,equals2(17rjk), whererjk denotesthe correlationbetweenvariables j andk.

It hasbeenseenabovethattheconfigurationof thevariablepointsin RI capturestheinformationon
therelationsbetween thevariables.Now in PCA thematrix X is approximatedby a matrix X̂ = AB'
for certain matricesA andB of ordersI � R andJ� R respectively.In fact,aspecialproperty of PCA
is that X̂ is anorthogonalprojectionof X ontoa particular subspace.This follows from thefact that
X̂ = URDRV'R, whereUR, DR andVR arematrices containing thefirst R singular vectorsandvalues
from theSVD X = UDV'. HenceX̂ = URDRV'R = URUR'X, where URU'R is anorthogonal projector,
whichshowsthatX̂ containsprojectionsof thecolumnsof X ontothesubspacespannedby UR. Thus
thecolumnsof X̂ still pertainto pointsin RI, but thesepointsall lie in anR-dimensionalsubspaceof
RI. Now in PCA, usuallyeitherA or B is chosen to haveunit sumsof squares,henceeitherA = UR

andB = DRVR or A = URDR andB = VR. Hereweassumethattheformerchoice(whichis commonin
psychometrics, but not in chemometrics)is made.Furthermore, we let A? denotean orthonormal
complementmatrix suchthatthesquarematrix As = (AjA?) is orthonormal.Wemayusethecolumns
of the I � I matrix As asanalternative setof orthogonal normalizedbasisvectorsfor RI, henceasan
alternative setof Cartesianaxes,andcannow express X̂ = AsA'sX̂ = AsA'sAB' with respectto this
alternative basisasA'sAB'. Thus,with respectto thisbasis,theco-ordinatesof thevariablepointsare
given in the columns of A'sAB' = (AjA?)'AB' = (Bj0)', from which it can be seen that the
(approximated)variable points all lie in the column spacespanned by the first R axes(with co-
ordinatesin B'), andthattheco-ordinateswith respectto theremainingaxesareall zero.Thusa plot
of the variable loadings given in the rows of B actually displays the configuration of the variable
pointsgiven by the low-dimensionalapproximation X̂ of X, with respectto a setof neworthogonal
axesspanningthis low-dimensionalspace.A differentway of looking at PCA,hence,is that in PCA
we rotatethe axesspanning RI, wherethe rotation is representedby the orthonormal matrix As, in
suchawaythattheI-dimensionalconfigurationis optimallycaptured within thesubspacespanned by
thefirst R dimensions. To visualizethis,wemayconsiderthatthesubspacerefers, for example,to the
planethat lies closestto all variablepointsin R3, anda plot of the loadingsrefersto theorthogonal
projection of thesepointson this plane. An example of sucha situation is given in Figure1. The
original points in R3 are given, aswell as the planeto which they are closest.The approximated
configurationof thesefive points,given by projectionsof thepointsonthisplane,is indicatedaswell.
To optimally visualizethe approximatedconfiguration,we rotatethe three-dimensional spacesuch
that theplaneis capturedcompletely in thespaceof thepresentpage.Sincetheprojectedpoints fall
exactly in this plane,the two-dimensionalplot adequately displays the approximatedconfiguration.

The above geometrical interpretationof a loading plot as an approximation of the variable
configurationin RI only holdsif thecomponentmatrix A is columnwiseorthonormal. If it is not, the
above-mentioned matrix As will no longerbeorthonormal,andtheconfigurationbasedon a plot of
the loadings in B with respectto orthogonally drawn axesno longer pertainsto a simple rotated
versionof the actual approximated configuration of the variables. Instead, it displays a distorted
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versionof the approximatedconfiguration.To illustratethis, considerthe simple example with

A � 1 1
1 0�5

� �
and B � 1 0�5 0�5 0

0 0�5 ÿ0�5 1

� �0
Then

X̂ � AB0 � 1 1 0 1
1 0�75 0�25 0�5

� �

Plotting the column entities (labeled respectively as A, B, C and D), using as co-ordinatesthe
columnsof B, givestheleft-handplot in Figure2. This, however,is notanadequaterepresentationof
theconfigurationbasedon theestimateddatavalues,given in X̂, ascanbeseenfrom theplot of the
columnentitiesbasedon thecolumnsof X̂, which give theco-ordinatesof thecolumn entitieswith
respectto theactualCartesiandataaxesin RI, whichhereis R2 (middleplot of Figure2); it shouldbe
notedthat the presentsituation is special, because usually the columnsof X̂ havemore than two
elementsandhencetheir location in RI cannotbevisualized. Both plotssuggest thatA, B andD are
locatedon a line, but theplotsdiffer completely asfar asC is concerned: theleft-handplot suggests

Figure1. Five pointsin R3 (opencircles)areprojectedon theplaneto which theyareclosest(projectionsgiven
by full circles).The three-dimensionalspaceis rotatedsuchthat theplanewith theprojectedpointsis oriented
parallel to the planeof the page;the third dimension,orthogonalto it, neednot be visualized,becausethe

projectedpointslie exactlyin the plane.

Figure2. Plots(from left to right) of rowsof B, columnsof X̂ androwsof B̃.
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thatC is closerto A thanto D, whereas, in the(estimated)data, C is farthestfrom A andclosestto D.
Thustheplot basedon theco-ordinatesin B is considerably distorted. This is a consequence of the
fact that theaxesusedwhen taking thevaluesin B asco-ordinatesarethetwo columnsin A, which
areseparatedby anangleof only 18° (andhencefar from orthogonal) andare,moreover, of unequal
length.

Thus,when thecomponentmatrixA is notcolumnwiseorthonormal, for giving anundistortedplot
of theapproximatedconfigurationof thevariableswith respectto orthogonallydrawnaxes,wemust
find an alternative basis matrix for X̂ that is columnwise orthonormal. Specifically, if A is not
columnwise orthonormal, we searchfor a transformation matrix T such that AT is columnwise
orthonormal (e.g.by Gram–Schmidt orthonormalization),andpostmultiply B by (T')71 sothat ÃB̃'
(with Ã = AT andB̃ = B(T')71) still equals X̂. Thenaplot of thevariableswith thevaluesin B̃ asco-
ordinatesdoesgive anadequate representationof theapproximatedconfigurationof thevariables.In
the aboveexamplean orthonormal basis for the columnsof X̂ is given by

eA � 0�707 ÿ0�707
0�707 0�707

� �
and

eB � 1�41 1�24 0�18 1�06
0 ÿ0�18 0�18 ÿ0�35

� �0
gives the associatedco-ordinatesfor the column entities,which areusedin the right-handplot in

Figure2. It canbe seenthat this configurationis undistorted,being simply a rotationof the actual
estimateddataconfiguration,given in the middle plot of Figure2.

If the low-dimensionalapproximation usesmore than two dimensions, it is hard to display the
resultingconfiguration,andif it usesmorethanthreedimensions, this canonly bedoneby indirect
means.In suchsituationsit is possible thatthereareclustersof pointsthatarefar from morethanone
axis,whichhencewouldnotshowupin plotswherethesedimensionsarenotusedsimultaneously.To
avoid missingsuchclusters, it is recommended to rotatethe loadingsto simple structure (e.g. by
meansof varimax[21]): theaimof simplestructurerotationsis to rotatesuchthatclustersof pointslie
closeto the axes.If this rotation achievesits goal, as it often does, little insight is lost when the
configuration is displayedonly with respectto pairsof dimensions.

4.2. Plotting the row entities (theobjects)andrepresentingthe variablesasprojectedaxes

Rather thanplotting the approximatedconfiguration of the variables,onemay also wish to plot the
approximatedconfigurationof theobjects,which canthemselves berepresentedby pointsin RJ. In
thissituation aplot of theco-ordinatesin A canbeused,providedthatB is columnwiseorthonormal,
asfollows from thesamereasoningasfor thevariables,with X replaced by X' andA by B andvice
versa. Thus, if B is not columnwise orthonormal,we find a transformation T such that BT is
columnwiseorthonormal(e.g.by Gram–Schmidtorthonormalization), andpostmultiply A by (T')71

sothatÃB̃' (with Ã = A(T')71 andB̃ = BT) still equalsX̂. Thenaplot of theobjectswith thevaluesin
Ã asco-ordinatesgivesanadequate representation of theapproximatedconfigurationof theobjects.

In practice, a PCA doesnot give a solution with bothA andB columnwiseorthonormal, nor can
sucha solutionbeobtained upontransformation. Henceit is impossible to plot objectsandvariables
onthebasisof componentscoresandloadingsthatareassociatedwith eachother.Therefore,with the
above-mentioned procedures, the configurations of objects and variables must be considered
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independently. An approachto studyobjectsandvariablesinterdependentlyis by meansof thebiplot
[5–7], asmentioned in Section1. In fact, given the configuration for the objects, we can plot the
variablesasvectorsin thesameplot in suchawaythattheinnerproductsbetween (thevectorsto) the
pointsfor theobjectsandthevectorsfor thevariablesequalthevaluesin X̂. Moreover,thevectorsfor
thevariablesthenrepresenttheprojectionsof theoriginal axesspanningRJ (eachof whichpertainsto
onevariable)ontothelow-dimensionspacedisplayed.Givenaconfigurationfor theobjects,theaxes
for the variablesarefoundasfollows.

Supposethat B̃ is a columnwise orthonormal basis matrix for the R-dimensional object
configuration.Then,afterprojection on thesubspace,therowsof X̂ = XB̃B̃' contain theco-ordinates
for eachof theobjectswith respectto theoriginalJ axes(which represent thevariables),andtherows
of the (I � R) matrix XB̃ contain the co-ordinateswith respectto the R axeschosenin the R-
dimensional subspace. Now, to find the projection of the original J axeson this R-dimensional
subspace,we consider the J fictitious objectsthat lie on these original axesand haveunit length,
hence objects that originally have score profiles e1' = (1 0 0…0), e2' = (0 1 0…0), …,
eJ' = (0 0 0…1), which, respectively, lie on the axes representingthe first variable, the second
variable,…, theJth variable.Now, afterprojection, theseobjectslie on theprojectedvariable axes,
hence,by locating the projected locationof these fictitious objects andnoting that the origin, after
projection, remainsat theorigin, wecanassesstheorientationof eachof theprojectedaxesby simply
drawingthevectorsassociatedwith theprojectedvariables,e1'B̃ = b̃1', e2'B̃ = b̃2',…, eJ'B̃ = b̃J', where
b̃j', denotesthe jth row of B̃. Thelinesthroughthesevectorsform theprojectedvariablesaxes.In the
resultingbiplot the lengthof the projection of an objectpoint on a variable axis, multiplied by the
length of the variablevector,approximatesthe actual score of the object on the variable.This is
becausethe length of the projection of object i on axis j is ãi'b̃j(b̃j'b̃j)

71/2, which, multiplied by
(b̃j'b̃j)

1/2, gives ãi'b̃j = ai'bj = X̂ ij . Thus comparisonof scoreson the same variable can be done
straightforwardly by comparisonof projection lengths.

Herewe only mentionedprojection of the original variable axesonto the low-dimensionalspace
containing the approximate configuration for the objects, because this seemsof most practical
interest. However, given a configuration for the variables (Section 4.1), we can also project the
original ‘object axes’onto the low-dimensionalspacecontaining the approximateconfiguration for
the variables,by following a fully analogousprocedure.

As in PCA, in three-way methods, low-dimensionalapproximations to thedataareobtained. How
the aboveprocedures for plotting objectsor variables(and,if desired, projectedvariableor object
axes)canbe usedfor the resultsof three-way methodswill be discussed in the following sections.

5. PLOTTING IN THREE-WAY ANALYSIS: CONFIGURATIONS FORENTITIES OF ONE
MODE

5.1. Thethree-wayTuckermodel

In the caseof three-way data the entities of eachmode can be consideredas points in a high-
dimensional space, and the three-wayTucker model and the CP model provide low-dimensional
approximationsto thehigh-dimensional configurations.Specifically, theA-modeentitiesareI points
in RJK, andwhenthe dataarerepresentedby the Tucker modelX̂a = AGa(C'6B') with A an I � P
matrix, thentherowsof X̂a giveco-ordinatesfor I pointsin aP-dimensionalsubspaceof RJK. Hence,
to displaythis approximatedconfiguration,we haveto find a basisof this P-dimensionalsubspace,
find theco-ordinatesof theA-modeentities with respectto Cartesianaxesin this subspace,andplot
the pointscorresponding to these co-ordinates.

To find a basisfor the above-mentioned subspace andco-ordinatesof the pointswith respect to
Cartesianaxestherein, wefirst rewritethemodelexpressionfor X̂a asX̂a = A((C6B)Ga')' to makeit
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optimally similar to thatfor X̂ in Section 4⋅2, wherethematrix A nowhasorderI � P andtheroleof
the J� R matrix B in Section 4⋅2 is now played by the JK� P matrix F:(C6B)Ga'. Thus we
actually havea situation analogousto that for two-way PCA, andto produce a plot of the A-mode
entities,wehaveto replaceF = (C6B)Ga' by anorthonormalbasisandadjusttheco-ordinatesfor the
A-mode entitiesaccordingly. Hence,asin Section4⋅2, we find a transformationT suchthat FT is
columnwiseorthonormal(e.g.by Gram–Schmidtorthonormalization), andpostmultiply A by (T')71

sothatÃF̃' (with Ã = A(T')71 andF̃ = FT) still equalsAF' = A((C6B)Ga')' = X̂a. Thenaplot of the
objectswith the values in Ã asco-ordinatesgives an adequate representationof the approximated
configuration of the objects.

If sodesired, the original JK axescanbe projectedinto the same plot, but this will give a biplot
with, usually, many vectors, representingprojectedaxesfor all combinations of B- and C-mode
entities (e.g.representingeachvariableateachdifferentoccasion). Suchaplot will in manycasesbe
hardto study andis not considered further here.

To obtain plotsfor theB- andC-modeentities,ananalogousprocedurecanbeused,basedon the
mode B and mode C matricized versions of X and X̂. Thus we have X̂b = BGb(A'6C') and
X̂c = CGc(B'6A') [11], and co-ordinatesfor the B- and C-mode entities can be obtainedafter
orthonormalizing (A6C)Gb' and(B6A)Gc' respectively.

Oftenthethree-wayTuckersolutionis given in sucha way thatfinding therequired orthornormal
basesreduces to a simple columnwise scaling.Specifically, for the (unrotated)solution it usually
holds that matrix A contains unit normalized eigenvectors of X̂aX̂a', B contains unit normalized
eigenvectors of X̂bX̂b', andC containsunit normalized eigenvectors of X̂cX̂c', which is sometimes
calledtheprincipal axessolution.It follows thatA'X̂aX̂a'A = A'AGaGa'A'A = GaGa' = La, whereLa

denotesthe diagonal matrix with eigenvaluesof X̂aX̂a'. Hence in this case the basis matrix
F = (C6B)Ga' is columnwise orthogonal, because F'F = Ga(C'C6B'B)Ga' = GaGa' = La, so to
orthonormalizeF it sufficesto divide thecolumnsby thesquare roots of theassociatedeigenvalues;
this scalingis to be compensatedin A by multiplying the columnsof A by the square rootsof the
associated eigenvalues. The thus scaledmatrix A is said to contain principal co-ordinates. This
scaling is exactlythescalingsuggestedby Kroonenberg(seeReference[8], p.155)which‘hascertain
advantages’ when plotting the entities for the modeat hand.The present explanation clarifieswhat
theseadvantagesare:thescaling athandensuresthattheplot correspondsexactly to theprojection of
theoriginal configurationonthelow-dimensionalspaceusedin thethree-wayTuckerrepresentation.
This is because,in thatcase, F doesnot only haveorthogonal columns, but owing to thescaling by
meansof theinversesquarerootsof theeigenvalues,thesecolumnshaveunit sumsof squaresaswell.
Somefurther commentsare in orderhere. First, of course,the samereasoning can be appliedfor
plotting B- andC-modeentities.Second,it should benotedthat,afterrotationof a three-way Tucker
solution, the componentmatrices no longer contain eigenvectors, and the abovereasoningbreaks
down,unlessan orthogonal rotationwasappliedto scaled componentmatrices: for instance, if the
rotatedA-mode componentmatrix is found asan orthogonalrotationof the principal co-ordinates
(eigenvectorswith sums of squaresequalto the associatedeigenvalues),thenboth beforeandafter
rotationwe haveF'F = Ip andhencethe basis matrix remainscolumnwiseorthonormal.

5.2. TheCP model

The aboveprocedure has beendescribedfor the three-way Tucker model, but exactly the same
procedurecan be used for plotting configurations for A-, B- or C-mode entities basedon the
approximationgivenby anR-dimensionalCPmodel. To this end,it sufficesto replaceG in Section
5.1 by I . However, suchplotting procedureswould ignore the fact that theCPmodel gives (usually
oblique)unique axes,which may havean intrinsic meaning. Thus onemay like to visualize these
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uniqueaxesin theiractualobliqueorientation.Forthispurposeonemightuseaprocedurefor plotting
with respectto obliqueaxes.However, sinceall standardplottingproceduresarebasedonorthogonal
Cartesianaxes,we will here, asbefore,find an(auxiliary) orthogonalbasis,andon theresulting plot
we will projectthe obliqueCPaxes,asfollows.

Supposewe haveplottedtheA-mode entities,with respectto orthonormal axesF̃ = FT, in which
F = (C6B)Ia' = C�B givestheoriginal obliqueaxes,and� denotesthecolumnwiseKronecker (or
Khatri–Rao) product [11]. To locatethedirectionof theoriginal axes(columnsof F) in thecurrent
plot, we simply usethat F = F̃T71. Hence,with respectto the current axes(the columnsof F̃), the
locationsof thecolumnsof F aregiven by theco-ordinatesin thecolumnsof T71. Thustheoriginal
axescanbeplottedthrough thevectorsgiven by therowsof (T')71. It canbeverifiedthatthelocation
of the plotted objectscan now be found as the linear combination of the vectors representing the
obliqueaxes,usingasweightsthe(original)scoresof theobjects(in A), which,in fact, in theoriginal
CPrepresentation,give the co-ordinatesof the objectswith respectto the oblique CPaxes.

In orderto let A carryall therelevant scalesize information,onemaynormalize bothB andC to
haveunit sums of squarescolumnwise(which canalwaysbearrangedin theCPmodel, without loss
of fit, by multiplying thecolumnsof A by thesquare rootsof thesumsof squaresof theassociated
columnsin B andC). ThenF hasunit columnsumsof squaresaswell. If, furthermore,F̃ is chosen
suchthatF̃'F̃ = I , thentherowsof (T')71 haveunit sumsof squaresandhenceall vectorsrepresenting
the CP axes are unit-length vectors; this follows from the fact that F = F̃T71 and Diag
(F'F) = Diag((T')71F̃'F̃T71) = Diag((T')71T71), hencethe row sumsof squares (T')71 equalthe
columnsums of squaresof F, which in this caseareall unity.

5.3. Illustration

Theprocedurefor plotting entitiesof onemodecanbeuseful if onewishesto getanoverview of the
similaritiesamong(subsetsof) suchentities.Sometimessuchentities haveno intrinsic interest. For
instance,if oneor two of themodes pertain to different (emission/absorption) wavelengths,thereis
little point in showing similarities between suchwavelengths.Hence in suchinstancesonewill be
mainly interestedin thesimilaritiesbetween entitiesof theother mode, whichmaypertainto samples
consistingof differentmixtures.In otherexamplesonemaybeinterestedin similaritiesbetweenall
entities of all modes. A casein point is the following.

To illustrate the procedure for plotting the entities of onemode,we usethe resultsof a Tucker
analysisof athree-waydataset[22,23]consistingof tenmeasuresof pollution(temperature,flux, pH,
conductivity, O2, biochemical O2 demand,chemical O2 demand,NH4, NO3, PO4), taken at six
different ‘stations’ along theriver Meaudret,at four differentoccasions(February,June,August and
November).Thuswehavea6� 10� 4 dataset.It wasassumedthatto modelthesedataby meansof
a three-way Tucker model, we need additional (unknown) additive terms for the variables
(‘intercepts’),asdescribedby Xa = 1(16m)'�AGa(C6B)'�Ea, where 1 denotesa vector with unit
elementsand� denotesavector with unknown interceptsfor thevariables.Ratherthanestimating the
intercepts explicitly, we eliminatetheseby centeringacrossmodeA andfit themodel ÃGa(C6B)',
whereÃ representsthecenteredversion of A. To account for differences in scalesizeof thedifferent
variables,wenormalizethethuscentered datawithin modeB; thatis, for eachof thevariables,across
all scoreson it. The fit valuesfor the thuscentered andnormalized datafor severalsolutionswith
different dimensionalitiesaregiven in Table I. The bold entities pertainto the best-fittingsolution
within a classof solutions with the sametotal number of dimensions. We choosethe solution for
which thehighestincrease of fit wasfounduponincreasing thesumof dimensionsoneby one[24],
which in this caseleadsus to the choiceP = 3, Q = 3 andR = 2.

A full interpretationof theresultswouldinvolveinspection of all componentmatricesandthecore,
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and would, in addition, make useof displays of some setsof entities.Here we do not consider
interpretationof thecomponentmatricesandthecore,butonly illustratetheprocedurefor displaying
onesetof entities,namely thestations.In theleft-handpanelof Figure3 thestationsareplottedwith
respectto anorthonormal basisin the three-dimensional subspaceusedto represent these data.The
co-ordinates used in this plot are obtained after first transforming (C6B)Ga' to columnwise
orthonormality andapplying theinversetransformationto Ã. To seewhatwouldhappenwithout this
transformation,theright-handpanelof Figure 3 gives a plot basedon simply usingtherowsof Ã as
co-ordinates.In bothcasesthecenteringensuredthat theconfigurationis givenwith thecentroidof
the stationsasorigin.

Stations 1–5 are ordered downwards along the river Meaudret, and station 6 is located in a
confluent at,asfar aspollutionis concerned,asimilar locationasstation5.Thelocationof station 1 is
specialin that it is locatedjust beforethepoint wheretwo other confluentsjoin theMeaudret.This
causes,asfar aspollution is concerned,station1 to bemoresimilar to thestationsfurtherdownthe

TableI. Three-wayTuckerfit valuesfor severalcombinations
of dimensions

P Q R Fit (%)

1 2 2 58⋅0
2 1 2 57⋅3
2 2 1 65⋅3
2 2 2 68⋅6
2 2 3 69⋅5
2 3 2 71⋅9
3 2 2 69⋅8
2 3 3 74⋅2
3 2 3 71⋅8
3 3 2 76⋅9
3 3 3 80⋅5

Figure3. The left-handplot displaysthe low-dimensionalapproximationfor the original configurationfor the
stations;the right-handplot is basedon simply usingthe rowsof thecomponentmatrix asco-ordinatesfor the

stations.
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river than the ones topographically closest to it. It can be seen that the configurations differ
considerablywith respectto thelocation of thisspecialstation1. In theleft-handplot in Figure3 it is
closeto stations5 and6, whereasin theright-handplot it is far off from all other stations.‘In reality’,
station1 is not very far from stations 5 and 6, as we verified on the actualdata, as follows. We
computed Euclidean distancesbetweenthe stations,as they are located in the original high-
dimensional space(basedon centeredandnormalizeddatain X̃). Specifically, thedistance between
stationsh and i is expressedby

dhi �
���������������������������������������XJ

j�1

XK

k�1

�exhjk ÿ exijk �2
vuut

Thesedistancesaregiven in TableII. It canbeseenthatstation 1 is muchcloserto stations5 and6
thanto station2. Furthermore, it canbeseenthatstations2 and3 arefartherapartthanstations1 and
5, whereas the right-handplot in Figure3 clearly displaysthe reverse.As a final remark on these
displays, it canbeseenthatstation2, which,according to TableII, is clearly mostdifferentfrom the
otherstations,is indeed an outlier in the left-handplot, whereas this is by no meansasclear in the
right-handplot. Thus the left-handplot in Figure3, basedon the actualprojectedconfiguration, is
considerably morerealistic thanthe right-handplot.

6. PLOTTING IN THREE-WAY ANALYSIS: CONFIGURATIONS FORCOMBINATIONS
OF ENTITIES OF TWO MODES(TRAJECTORIES)

In Section5 we discussedhow onecanplot the entities of onemode.However,sometimesoneis
interested in visualizing the location of combinationsof entities of two modes.This is especially
interesting in caseswhere we havea sequence of measurements. For instance, suppose we have
repeatedmeasurementsof a numberof objects on a set of variables (e.g. in batchMSPCstudies,
whereanumberof batchesis measuredonanumberof variables,atasequenceof time points). Then
it can be of interest to seehow the location of the objects in the spacespanned by the variables
changesover time. In otherwords,we would like to depict the trajectory along which the objects
‘travel’ in the spacespannedby the variables,similar to trajectoriesusedin, for instance, STATIS
[25]. Sincewe cannotdepictthe trajectoriesin the full-dimensionalspace, we usethe projection of
thesetrajectorieson thelow-dimensionalapproximation foundby meansof thethree-waymethodat
hand.For this purposewebasicallyfollow thesameprocedureasin Section4⋅2, aswill beexplained
now.

Supposewehaveathree-waydataarray,organizedsuchthatmodeA pertainsto theobjects,mode

TableII. Full data—baseddistancesbetweenstations

Station1 Station2 Station3 Station4 Station5 Station6

Station1 — 2⋅82 1⋅81 1⋅73 1⋅45 1⋅52
Station2 2⋅82 — 2⋅14 2⋅64 2⋅94 2⋅94
Station3 1⋅81 2⋅14 — 0⋅99 1⋅55 2⋅02
Station4 1⋅73 2⋅64 0⋅99 — 0⋅97 1⋅52
Station5 1⋅45 2⋅94 1⋅55 0⋅97 — 1⋅34
Station6 1⋅52 2⋅94 2⋅02 1⋅52 1⋅34 —
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B to the variablesandmodeC to the measurement occasions. Thenafter CP or three-way Tucker
analysis we have X̂a = AGa(C'6B'), but also X̂b = BGb(A'6C') and X̂c = CGc(B'6A'), as
mentionedin Section 5.1. Now, to plot the objectsat eachtime point (i.e. to plot all combinations
of A- andC-modeentities),we haveto find a representation for thesetconsistingof thecolumnsof
X̂b, becauseeachcolumn pertains to one object/occasioncombination. In X̂b the co-ordinatesfor
thesecolumnsaregiven with respectto the full variablespaceRJ, but theyareall located in a low-
dimensional subspace,a basisfor which is given by B. Specifically, therowsof F:(A6C)Gb' give
the co-ordinatesof each object/occasion combination with respect to the basis spanned by the
columnsof B. In thecaseof aTuckeranalysisthematrixB is usuallycolumnwiseorthonormal,hence
the co-ordinatescanbe usedimmediately to plot the object/occasioncombinationswith respectto
Cartesian axes.In othercases(notably in caseof CP) we haveto transform B into an orthonormal
basismatrix and apply the inversetransformationto (A6C)Gb' to obtain the object/occasionco-
ordinateswith respectto thisbasis.Havingthusfoundthelocationof eachobjectat eachoccasion, it
is oftenusefulto connect pointspertaining to thesameobjectat consecutiveoccasions,soasto find
the projected trajectory of eachof the objects.

As in thePCAsituation, it maybeinterestingto visualizethelocationof theoriginalvariablesafter
projection on thesubspace.Theprocedureis fully analogousto thatdescribedin Section4.2.Thus,if
transformation T yields an orthonormal basis matrix B̃ = BT, then F = (A6C)Gb' is to be
transformed by (T')71 to find the co-ordinatesF̃ = F(T')71 for all object/occasion combinations.
Now, in analogyto the derivation in Section4⋅2, the rows of B̃ give the vectorsdescribing the
projectedvariables.Furthermore, we can superimpose the original CP axes on the plot, in an
analogousway as in Section 5.2. That is, the original CP axesaregiven by the columnsof B. To
expressthemwith respectto thecolumnsof B̃, thecurrentlyusedaxes,wesimply usetheco-ordinates
in thecolumnsof T71, becauseB = B̃T71, andwe plot thesecolumnsasvectorsin thecurrentplot.
Note that when B hasunit column sumsof squares,the columnsof T71 also haveunit sumsof
squares(compareSection5.2),andthusthesevectorsall haveunit length.TheCPaxescanbeplotted
as the lines running through these vectors. The co-ordinates of the actual object/occasion
combinations can now also be found as the linear combination of the vectors representing the
obliqueaxes,using asweights the(original) co-ordinateswith respectto theseobliqueaxes.It canbe
verified that theselinear combinations exactly lead to the locationsat which the object/occasion
combinations havenow beenplotted.Thus in the caseof CP onecandisplay in a single plot: the
trajectoriesof theobjectsalongwhich theytravel over theoccasions,theprojectedaxesrepresenting
the variables,andthe uniqueCPaxes.

Rather than plotting trajectories for objects (combinations of A- and C-modeentities), in some
casesonemightbeinterestedin plottingcombinationsof A- andB-modeentitiesor of B- andC-mode
entities.Theprocedurefor findingproperco-ordinatesis fully analogousto thatdescribedabove,but
thenbasedon X̂c = CGc(B'6A') and X̂a = AGa(C'6B') respectively. We havechosento describe
only the procedure for plotting combinationsof A- and C-modeentities, because thesewill often
pertainto trajectoriesovertimefor objects,whichseemsthemostinteresting applicationof combined
plotting.

The procedurewill now be illustratedfor a datasetdescribed by NomikosandMacGregor[26].
The dataset consists of (simulated)measurementson 52 batches(A-mode) with respectto nine
variables(B-mode), at 200 consecutive time points, with 5 min intervals (C-mode). The first 50
batchesaremoreor less‘normally behaving’ batches,whereasthe51stand52ndareknownto behave
abnormally. Theninevariables,asdescribedby NomikosandMacGregor[26], are:(1) flow ratesof
styrene, (2) flow ratesof butadiene,(3) temperatureof the feeds,(4) temperatureof the reactor,(5)
temperatureof thecooling water,(6) temperature of thereactorjacket, (7) densityof thelatex in the
reactor,(8) total conversionand(9) instantaneousrateof energyrelease.
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The datawerepreprocessedby centering acrossthe 52 batches,andby normalizing eachof the
variables(i.e. acrossbatchesand time points) suchthat for eachvariable the sumof squareswas
unity. The thuspreprocesseddatahavebeenanalyzedby three-way Tuckeranalysis using various
dimensionalities,andit wassoonfoundthatsolutionsusingmorethantwo componentsfor eachmode
addedrelatively little to thefit of themodel.For instance, the(2,2,2)solutiongave22⋅0% fit, while
(3,2,2),(2,3,2)and(2,2,3)gave23⋅3%, 22⋅4% and23⋅3% fit respectively. It wasalsoverified how
well the two-componentCP model fitted these data,and it wasseenthat this led to a degenerate,
uninterpretable solution. Therefore we choseto use results of the Tucker analysis, using two
components for eachmode,to illustrateour plotting procedure.

Wefirst producedaplot of thebatches(Figure4),henceof theA-modeentities,in thesamewayas
described in Section5⋅1. Batches1,…,52werelabeled a,…,z,A,…,Z. It canbeseenclearly that the
abnormal batches(Y andZ) differ considerably from theother batchesaswell asfrom eachother.The
mainpurposeof thepresentsection, however, is to illustrateaplot of trajectoriesof batches.As each
trajectory pertainsto 200timepointsandasthereare52 batches,theplot would getclutteredif we
were to display all batchessimultaneously.Therefore in Figure 5 we give the trajectoriesfor four
batchesonly: batches2, 12,51 and52.Thesewereselectedbecausetheycouldbeexpectedto differ
considerably, asfollows from Figure 4: batches2 and12 arenormallybehavingbatches(in theplot
denotedby b and l) and can be seento be relatively wide apart:batches51 and 52 are the two
abnormal onesandwerealreadynoted to be wide apart both from the others aswell asfrom each
other. In the plot we also give the projections of the variable axesonto the subspace displayed.It
shouldberealized,however,thatvariables1, 2, 3 and4 arerepresentedratherpoorly by thisTucker3
analysis(fit percentagessmallerthan4%), andhenceinterpretation of theplot with respect to these
variablesmay not be very reliable.

Figure4. Plot of the 52 batches.
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From Figure 5 we learn quickly that the trajectories for the four batches displayed differ
considerably. The trajectories for batches2 and 12 remain mostly on the right side of the plot,
whereas thosefor batches51 and52 run from the right to the left. Batch52 is known to startbeing
deviantonly halfway throughthe process(seeReference[26] p. 1365); it can be seento indeed
remainin the‘normalarea’for arelatively longtime,beforeit startsdivergingtowardsthelower left.
Batch 51 divergesright from the start.Furthermore, we can follow eachseparate trajectory more
closely, and see,for instance, that batch2 starts moving in the direction of arrows7 and 8 (thus
indicating a gradualgrowth of scoreson variables7 and8), andeventually bendstowardsarrow 6
(implying thatscoreson variable 6 eventually increaseconsiderably). The trajectory for batch12 is
totally different: it moves quite consistently towards the right (mainly indicating increasingly high
scoreson variables7, 8 and9). As said, thetrajectoriesfor batches51and52mainly movefrom right
to left and henceshow decreasingscores on variables 7, 8 and 9. It can also be seenfrom the
projection of thesetrajectoriesonarrow6 thatbatch52getsincreasingly highscoresonthisvariable,
whereas for batch 51 this holdsonly for thefirst three-quartersof the trajectory,whilst, towardsthe
end,thereis a decreasein scoreson variable6.

Forbatches2 and52wealsoplotted theactual(preprocessed)scoreson thevariables5, 6, 7 and9
(Figures6 and7) to demonstrate that, indeed,the generaltendencydisplayedin the single plot in
Figure5 conforms to thedata. Of course,theplotsin Figures6 and7 give much moredetail, but the
generaltendenciesof increaseor decreaseconform verywell to thedata, andit canbeconcludedthat
theplot in Figure5 nicely summarizesthemaininformationin thedata.Theadvantageof Figure5 is
that it captures all the information in a single plot, which allows for easymutual comparisonof
trajectoriesof different batches.

Figure5. Trajectoriesfor batches2, 12, 51 and52. All trajectoriesstartnearthe origin (markedby ‘�’); the
arrowsrepresenttheprojectedvariableaxes(5 and6 coincide).
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7. DISCUSSION

Thepresentpaperhasdescribedsomeproceduresfor plottingthelow-dimensionalconfigurationsthat
are obtained by meansof three-way analysisas approximations to the high-dimensional data
configuration for onesetof entities or for a combinationof two sets of entities.The main rule that
shouldbe obeyedis that, to adequately plot one set of entities, one shoulduseco-ordinateswith
respectto orthonormal basisvectors. In theproceduresdescribed,it is derivedhow theco-ordinates
shouldbecomputedfor suchplotsandhowtheoriginal axescanbeprojectedinto thesameplot. The
procedureis describedfor thegeneral R-dimensionalsituation, but in theactualpracticeof producing
plots,R is usuallyrestrictedto 2 or 3. In caseswherehigher-dimensional configurationsareused,one
can display these by either plotting co-ordinates for all combinations of pairs (or triples) of
dimensions(which actuallycomesdownto orthogonal projectionsof thefull configuration),or only
useconsecutivepairs(or triples).The lattermayvery well suffice, if carehasbeentakenthatpoints
are located reasonablyclose to theseplanes(or subspaces), as is typically achievedby simple
structurerotations. Thus, in cases wheremore than two or three dimensionsare to be used,it is
stronglyrecommended to precedethese plottingsby procedures for simplestructurerotation[27].

The plotting proceduresdescribedin the presentpaperfocuson displaying the approximation of
thehigh-dimensionalconfigurationsentailedby theoriginal data. Otherplottingprocedures(e.g.joint
plots [8]) focus on plotting ‘latent’ data configurations, which together, by meansof linear

Figure6. Plotsof preprocessedscoresof batch2 on variables5, 6, 7 and9.
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combinations, approximate the data. Both approaches are mainly meant to supplement the
interpretationof theresultsof one’sthree-wayanalysis,andshould notcompletelyreplacetheresults
thatareusuallygiven in tabularform (such asthose for thecorearrayin three-way Tuckeranalysis),
nor do they obviate the dimension-by-dimensioninterpretationusedin CP.

In thepresentpaper,only in the illustrativeanalyses, mention hasbeenmade of how thedataare
treatedbeforeanalysis.It shouldbenoted, however, thatcenteringthedataacrossonemodeseriously
affectsthemeaning of thedataelementsandshouldhencebetakeninto account. Oftenthiscentering
is mainly meantto eliminate additive constants from the data. In suchcases,estimates of these
eliminated additive constantscould be used when interpreting the complete model, or else, in
interpreting the results, the estimateddatashould be consideredasdeviationsfrom theseconstants
(for instance,deviationsfrom the means).What is most appropriate dependson the particular
situation athand.In caseswhereadditiveconstantsareexplicitly modeledwith thedata,in displaysof
thedatatheseadditivetermscouldalsobetakeninto account asadditionaldimensions. For instance,
suppose the data are modeled as X̂a = 1m'�AGa(C'6B'), where1 denotesan I-vector with unit
elementsonly andm denotesaJK-vectorcontaining additive termsfor all combinationsof B- andC-
modeentities.In caseswhereinterest is in plotting theA-mode units,onemaychooseto simply plot
the (usually columnwisecentered)matrix A, andconsider these co-ordinatesasco-ordinateswith
respectto a translatedorigin (e.g.translatedto thecentroidof theconfiguration).Wheninterestis in
plotting the combined B- and C-mode units, it is useful to write this model as

Figure7. Plotsof preprocessedscoresof batch52 on variables5, 6, 7 and9.
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X̂a = (1jA)(mj(C6B)Ga')' = ÃF̃', thusinvolving oneadditionaldimension for the whole configura-
tion. If interestis in displayingotherconfigurations(e.g.thatfor theB-modeentitiesor thecombined
A- andC-modeentities), it should benotedthatthefull modeldoesnot represent projectionsof these
configurationson a low-dimensionalsubspace, andhencethe present plotting procedures make no
sense.In suchcases, either the results shouldbe interpretedin termsof configurations of centered
data,or analternativeapproachto modeling additivetermsthat is in line with theconfigurationsthat
are to be displayed should be used. Such alternative models would be of the form
X̂a = ma(161)'� 1(16mb)'� 1(mc61)'� AGa(C'6B'), possibly with one or two of the additive
termsleft out.Foreachmodethelattermodelgivesaprojectiononasubspacewhich is atmost three
dimensionshigherthanthe subspacesinvolved in AGa(C'6B').

Theplotting proceduresdescribed in thepresentpaperareusedfor displaying resultsfrom three-
way methods, but actually only rely on two-way (PCA) models, obtained after rewriting the three-
waymodelsathand.It follows thattheplotsdonotcaptureall theinformation available in theresults
of a three-way method,and they shouldneverbe usedto replace the full results of a three-way
analysis.Rathertheyshould beusedto complementsuchresults.Resultsfrom four- and,in general,
N-way methodscanlikewise bedisplayedby rewriting themodelsbackinto two-way PCA form. In
this respectthepresentpaperis by nomeanslimited to three-way data.However,for higher-way data
it will benotbeasfeasibleto represent theentitiesof all modesin oneplot, aswasdonein Section 6.
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APPENDIX. SUMMARY OF MAIN PLOTTING PROCEDURESFORTHREE-WAY
METHODS

In Sections5 and6, procedureshavebeendescribedfor plotting oneor two modesof entities,on the
basisof resultsfrom three-way methods.Thesecanbe summarized asfollows.

Given: X̂a = AGa(C'6B'), where Ga = Ia in caseof CP;defineF:(C6B)Ga'.

1. Displayingapproximateconfiguration of A-modeentities

(a) Find T suchthat, for F̃ = FT,F̃'F̃ = I holds(e.g.by Gram–Schmidt orthonormalization).
(b) Plot rowsof Ã = A(T ')71 to displaythe I A-mode entities.
(c) Plot rowsof F̃ to display projectionsof the JK original axesonto subspace.
(d) (In caseof CP)Plot rows of (T')71 to display projection of unique axes(columnsof F) onto

subspace.

2. Displayingapproximateconfiguration of combination of B- andC-modeentities

(a) Find T suchthat, for Ã = AT, Ã' Ã = I holds(e.g.by Gram–Schmidt orthonormalization).
(b) Plot rowsof F̃ = F(T ')71 to displaytheJK combinationsof B- andC-modeentities(forming

trajectories).
(c) Plot rowsof Ã to displayprojectionsof the I original axesontosubspace.
(d) (In caseof CP)Plot rowsof (T')71 to display projectionof unique axes(columnsof A) onto

subspace.
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