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Towards a standardized notation and terminology in multiway
analysis
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SUMMARY

This paper presents a standardized notation and terminology to be used for three- and multiway analyses,
especially when these involve (variants of) the CANDECOMP/PARAFAC model and the Tucker model. The
notation also deals with basic aspects such as symbols for different kinds of products, and terminology for three-
and higher-way data. The choices for terminology and symbols to be used have to some extent been based on
earlier (informal) conventions. Simplicity and reduction of the possibility of confusion have also played a role in
the choices made. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The first proposals for three- and higher-way generalizations of factor and principal component
analysis date back to the 1960s [1,2] and early 1970s [3,4]. The model proposed by Tucker
[1,2] generalized the principal component and factor analysis model in that it used one
component matrix for all three ‘ways’ of a three-way data array; these component matrices are
related to each other by a so-called core array. The model proposed independently by Carroll
and Chang [3] and Harshman [4], called the ‘CANDECOMP’ and ‘PARAFAC’ model
respectively, also uses component matrices for all three ways, but in their model each
component is related to only one component of each of the other two ways. The latter aspect
entails that its solution is (under mild conditions) unique. This uniqueness has made the model
very popular for purposes of estimation of parameters in situations where two-way data would
not allow for unique estimation (e.g. estimating concentrations of chemical analytes in a
mixture). In certain situations, however, the model is too restrictive or the uniqueness
conditions are not satisfied. In such situations the model proposed by Tucker offers a useful
alternative.

The above two models can be considered the fundamental models underlying most currently
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usedthree-waymodels and their multiway generalizatios [3,5]. Unfortunately, the models,
having beendevelopedwithin psychometricshave not always beenwidely known and have
been reinvented under different names. Moreover, even when the models are properly
attributed, the notation in which they are describeddiffers widely over different papersand
disciplines,andso doesthe terminologyemployed(evenasfar asthe namesof the modelsare
concerned). Some informal attempts have been made towards a standard notation and
terminology, but this hasnot beensuccessfulet. The presentpaperis an attemptto formally

standardizenotationand terminology of the mostimportantaspectsn multiway analysis.The
proposaltakesinto accaint any informal conwentionsthe authoris awae of; in casesof

severalcompetingchoicesencounteredn the literature, mnemonicsimplicity and conceptual
clarity are the main criteria for adoging a standard.

2. DATA
2.1. General

In statistics,dataare generallydenotedby the symbol X. In the caseof two-way data(i.e. a
datamatrix) the bold-faceversionX is used.To distinguishthe more or lessstandardwo-way
datasetsfrom the lesscommonthree-and higher-waydatasets,the latter are indicatedby an
underlinedbold-faceX. When,in additionto X, thereare otherdatasets,it is preferredto use
subscriptsor to dende them by other lettersat the far end of the alphabet(V, W, Y, Z). For
example,in the caseof regressiorinvolving three-waydata,the three-wayarray pertainingto
the predictorvariablesis denotedby X and that pertainirg to the criterion variablesby Y.
Data to be analysedare usually real numbers,but in someinstancesthey are complex.In
the presentpaper,only real-valueddata are considered Mostly, the notation and properties
mentionedin the presentpaperreadily generalizeto complexvalued data, but one shouldbe
awareof exceptions(e.g. the complex conjugatediffers from the simpe transpose).

2.2. Indices

The elementsof a three-wayarray X are dended by x;, wherethe indicesare takento run
from 1 to their capital version: i=1,...l, j=1,...J, k=1,... K. For higher-way arrays,
additional subscriptsare used,chos@ asthe next lettersin the alphabet(e.g. an elementof a
six-way array is denotedas Xjjmn). In some higher-way casesone may thus run out of
symbols(consideringthat we needother running indicesaswell). In that caseone canresort
to the more complexuse of indicesiy, i», i3, ig, €tc. running from 1 to 14, |5, I3, 14, etc.

2.3. Tensos

An N-way dataarray is sometima genericallycalled a tensor(seee.g. Referencd6], p. 10).
Thusthe notion ‘tensor’ capturesarraysof different sizes:a vecta of order| is a tensorin R',
an| x J matrix is atensorin R' 7, anl x J x K three-wayarrayis a tensorin R' * 7 * ¥ etc.
In general,an I, x I x ... x Iy N-way arrayis a tensorin R'= > 2> - >IN,

2.4. Modss of anarray

In Figure 1 a three-wayarrayis depicted.The entitiesalongthe vertical axis are indicatedby
the first index (i), thosealong the horizontal axis by the secondindex (j) andthosealongthe
depthaxis by the third index (k). Note that the useof the first and secondindicesis the same
as what is commonfor matices. The three setsof entities define the three ‘ways’ or three
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Figure 1. Three-wayarray,cutinto (a) horizontal,(b) lateraland(c) frontal slices.

‘dimensions’of the three-wayarray Becausehe term ‘way’ is not very specificandthe term
‘dimension’ may be confusedwith the conceptof dimensionsof a factor spacein factor
analysis here,following Tucker[7], we usethe term ‘mode’ to referto a setof entities.In the
caseof three-wayarraysthe first modeis dended as modeA, the secondmodeas modeB and
the third mode as modeC. This terminology can be extendedto higher-waydata (leadingto
modesD, E, etc.), but often for higher-waydatait is more convenientto denotethe modesby
numbers,henceas model, mode?2,..., modeN.
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2.5. One-node,two-nodeand three-modehree-waydata

Carroll and Arabie [8] distinguishedthree-waydatainto three types as follows. If the three
modespertainto threedifferent setsof entities,thenthe dataare dended asthree-modehree-
way dataor simgy three-waydata.If two modespertainto the samesetof entities(e.g. when
dealingwith correlationsbetweenvarialdes or (a)symmetricproximities betweenobjects)and
henceonly two different modesare involved, this can be indicatedby specifyingsuchthree-
way data as two-modethree-waydata. Finally, if all three modespertainto the sameset of
entities(e.g. in the caseof transitionsbhetweena numberof statesover threeconsecutie time
points), the datacan be dended as one-modethree-waydata. This terminology can easily be
extendedto N-way databy simpy countingthe numberof different modes,but is not always
fruitful then, becausdt doesnot distinguish,for instance,betweenfour-way arrayswith two
modesthat both occur twice and four-way arrayswith one modethat occursthreetimes and
one modethat occursonly once.Thereis one exceptionin which thereis no doubtaboutthe
meaning:one-modeN-way datapertainto datain which all modespertainto the sameentities.
Incidentally,it shouldbe notedthat evenin casesvheresomeof the modesare equal we will

still refer to them by different names(modeA, modeB, modeC, etc. or model, mode?2,...,
modeN), asdescribedin Section2[4.

2.6. Matrices,vectorsand othe subarrysof three-and highe-way arrays

A three-wayarrayis frequentlyconsideredn termsof a setof matrices.Thesematricesform
the horizortal, lateral andfrontal slicesof the three-wayarray,asvisualizedin Figuresla—1c.
Specifically, the | horizontal slices pertainto the entitiesi =1,...] of mode A, the J lateral
slicespertainto the entitiesj = 1,...,J of modeB andthe K frontal slicespertainto the entities
k=1,...K of modeC. For higher-way arrays, subnatrices can be definedas well, but it no
longer makessenseto give them intuitive namesasis donein the three-waycase.

Sometimest is usefulto considera three-wayarray as a set of vectas. Thenthree setsof
suchvectors(dended as fiberg can be distinguished namely vertical fibers, horizontal fibers
and ‘depth’ fibers, which run over the mode A entities,mode B entitiesand mode C entities
respectively,as visualizedin Figures2a—2. To comparewith matrices:horizontalfibers are
rows and vertical fibers are columns.In general,thesevectorsare called ‘mode n vectors’
(compareReference[6]), where n denotesthe mode over which the vectorsrun. They are
associatedvith particular vector spacesto be called the ‘mode n spaces’.Thus for a three-
way arraythe modeA spaceis the (sub)spacepanneddy all vertical fibers,the modeB space
is the (sub)spacespannedby all horizontal fibers and the mode C spaceis the (sub)s@ce
spannedby all depthfibers. Thesespacesare subspacesf R', R’ and R® respectively.

To give a numericalexample,considerthe 4 x 3 x 2 array with frontal planes

a. b. B [

Figure2. Three-wayarray,cut into (a) horizontal,(b) vertical and(c) depthfibers.
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1 2 0 010
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are two vertical fibers (or mode A vectors)of the array, the vectas (1 2 0), (1 0—1) and
(1 2 0) areexamplesof threehorizontalfibers (or modeB vectors)andthe vectors(1 0), (2 1)
and (0 1) are examplesof depthfibers (or mode C vectas). The mode A spaceis the space
spannedby the vectors

1 2 0 0 1 0
0 1 0 1 0 and 0
1| o -1 1) 2 0
-1 0 0 0 0 1

which can readily be seento be the whole R*. The mode B and mode C spacesare defined
analogously.

In general,for N-way arrayswe can definesubarrayf any size desired.For instance one
may definethe three-way arraysthat are a subsetof a four-way array. Sucharrayscan hardly
be given intuitive names as we did for matricesand vectors embeddedwithin three-way
arrays,but they can be specifiedusing a notation systemsimilar to that usedin MATLAB,
where we use subscript colons for the modesthat remain intact and ordinary indices to
indicatethe entitieswith which the subarrayis associatedFor example,X;.., X,;. and X.,; then
denote the horizontal, lateral and frontal planes of a three-way array respectively, and
examplesof submatricef a four-way array are X;.,, and X ;... Fibers(or moden vectors)can
be denotedby small bold lettersusing the sameindexing system.For exanple, x denotesa
modeA vector (vertical fiber) in a three-wayarray andx;;,, denotesa modeC vectorin a four-
way array. Furthermore three-or higher-waysubarrayshen are denotedby undelined bold
capitals, again with the same indexing system. For exanple X.... dendes the three-way
subarrayof the five-way array X associatedvith the kth entity of mode3 andthe Ith entity of
mode 4. Thus any subarrayof an N-way array can be identified unamlguously. In practice,
the colonswill often be omitted, asin many casestherewill be no reasonfor confusion.A
commonsituationis that where a three-wayarray is only subdividedinto its frontal planes.
Theseare then simply denotedas X,...,Xk.

2.7. Matricization: transforminga three-wayor N-way array into a matrix

It is sometimedruitful to collect all moden vectorsin a single matiix. The supermatrixwith
all vertical fibers of a three-wayarray collectednext to eachotherin an| x JK matrix, with
modeB entities(j = 1,...,J) nestedwithin modeC entities(k=1,... K), is denotedas X,. This
matrix simply containsall the frontal slices of the array nextto eachother(seeFigure 3a). The
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Figure 3. Matricizing a three-wayarray: (a) modeA matricization;(b) modeB matricization;(c) modeC
matricization.

processof rearrangig the elementsof X into X, is often called ‘unfolding’ in chemometrics
but this termis confusing,becausen psychometricaunfolding [9] is a particulartechniquefor

multidimensionalscaling of datawith distarcesbetweentwo setsof entities.Herethis process
is denotedas ‘matricizing’ a three-wayarray into a matrix (in analogyto the more common
term ‘vectorizing’ for rearranginga matrix into a vector), and the reveise processis then
called ‘reshaping’a matrix into a three-wayarray.Other matricizationsare thosethat form the

supermatriceXy, (of orderJ x Kl, with modeC entitiesnestedwithin modeA entities)and X

(of orderK x 1J, with modeA entitiesnesta within modeB entities) (seeFigure 3b and 3c).

Other nestingsare possible,but without further specification,matricization pertainsto one of

the aboveprocedures.

The above matricizationsare relatedto eachother by a simple cyclic permutationof the
modes.Analogousto X, containingfrontal planesof X nextto eachother, X, containsfrontal
planesof the three-wayarray that is obtainedupononcecyclically permutingthe modesof X
(i.e. the secondindex becomesghe first, the third index becomeghe secoml andthe first index
becomesghe third), and X, containsfrontal planesof the three-wayarraythatis obtainedupon
twice permutingthe modesof X. For the numericalexamplein Section26 we have that
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0 1 O 1 00
Xa:
1 0 -1 1 20
-1 0 O 0 0 1
10 01 11 -1 0
Xp=12 1 10 0 2 0O O
00 00 -1 0 0 1

X_101—1 21 00 00 -10
c“\o11 o 1020 00 0 1

Matricization is not only usefu for three-wayarrays.In fact, N-way datausually areto be
readfrom file in a two-way structure.An N-way array is ‘matricized’ in essentiallythe same
way as a three-wayarray. For instance,X, (or Xy if it is preferredto denote modesby
numbersratherthan letters, as is the casewhen there are many modes)containsall vertical
fiberscollectednextto eachotherin anl x JKLM... matiix, with in the columnsthe modeB
entities nestedwithin mode C entities, mode C entities nestedwithin mode D entities, etc.
Likewise, X, (or X»,) is the J x KLM...I matrix, with in the columnsthe mode C entities
nestedwithin modeD entities,modeD entitiesnestedwithin modeE entities,etc., with mode
A entities as the ‘outermost’ entities. Thus, again, X;, is obtainedfrom the once cyclically
permutedarray X in the sameway as X, is obtainedfrom X itself. This permutaipnal
equivalencemakes programmingwith N-way arrays relatively straightforvard, even when
proceduresare to employ matricized versions.If the matricized versionsof arraysare to be
given namesin additionto symbols,we call X, the mode A matricizedversionof X, X, the
mode B matiicized versionof X, etc., and X, the mode n matricized versionof X.

Obviously, other possibilities exist for trandorming a tensorinto a matrix. The above
proceduresshould be seenas the standardand preferable ones,and the use of othersshout
alwaysbe explicitly describedFor example,the procedureof writing anl x J x K x L arrays
asan|J x KL matrix canbe dended as ‘matricization by combhing modesl and2 (1 nested
within 2) and modes3 and 4 (3 nestedwithin 4)’.

2.8. Vectorization: transforminga three-wayor N-wayarray into a matrix

Sometimest is usefulto representll the elementsof a three-or N-way arrayasa vector. This
can be doneby ‘vectorizing’ the array. For matrices,'vectorization’ is definedas putting the
successiveolumnsof the matrix below eachotherin a single vector. The vectorizationof the
matrix U into a vector u is denotedas u = Vec(U). To vectorizea three-wayor higher-way
array, we simply vectorizethe mode A matricizedversionof it and obtainx = Vec(X,) asthe
vectorizedversionof an array of arbitrary order.

2.9. Moden rank andtensr rank

To definethe ‘rank’ of a three-or N-way arrayis more complexthanfor a matrix. In fact, two
typesof rank have beendefined.The simplestis the moden rank [6], which is definedasthe
rank of the moden space(seeSection2(8). For instance the modeA rank (or mode1l rank) of
anl x Jx K x L array X is the rank of the spacespannedoy the JKL ‘'mode A vectors’X.jq.
Clearly, the modeA rank s the rank of the matrix X, The modeB rank (or mode2 rank) of
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this array is the rank of the spacespannedby the IKL ‘mode B vectors’x;., henceit is the
rank of Xp,. The mode C and mode D ranksof X are definedanalogously.For matiices the
moden rank canbe viewedasthe columnrank (modeA rank) or row rank (modeB rank) of a
matrix. Sincethe row and columnranksof matricesareknownto be equal,for two-way arrays
the modeA andmodeB ranksare equal.For three-andhigher-wayarrayssuchan equaity no
longer holds.

The usual definition of (tenso) rank [10] usesa decompodion of a tensoras a sum of
‘rank-1 tensors’. A rank-1 tensoris a tensor for which the elementscan be written as
Xijii ... = aibjcid,.... Therank of atensorthenis the smallestnumber of rank-1tensorssufficient
to fully decomposehe tensoradditively. In the caseof matricesthis rank is equalto the row
and column ranks, but for three- and higher-way arraysno such equivalerce exists and the
rank canactually be considerablyhigherthan (andis neverlessthan)any of the moden ranks

2.10. Specialtensors

A tensor which has all elementszero is called the ‘zero tensor’ (or ‘zero array’). For

(hypepcubic tensors,i.e. tensorswith all modes of equal size, we have some special
terminology. A tensorwhich hasall elementszero excet thosefor which all indicesare the
same(which are called the ‘superdiagonal’element} is called a ‘superdiagonal tensor.In the
casewhere thesesuperdiagonaklementsall equal one, it is called the ‘unit superdiagonal’
tensor, denotedby the symtol | (chosenbecauseas far as its elementsare concerned,it

resemblesthe identity matrix). Note that the unit superdiagnal tensor should not to be
denotedas ‘identity’, becauseat doesnot performa role similar to that of the identity elenent
(1) or matrix (1) in ordinary (matix) algebra (seeReference[6], p. 26).

3. SOME SPECIALSYMBOLS AND PROPERIES

In multiway analysis,certainspecfic matrix productsand operatorsare often used.They will
be summarizedn this section.Herea; or a; is usedto denoteelement(i,j) of a matrix A, and
g denotesthe Ith column of A. Furthermae, a ‘prime’ denotestransposibn of a matrix or
vector.

The Kronecker product is denoted by the symlnl ® and is defined according to
(U®V)ik’j| = Ujjri- Thus we have

ulvV ... ugV
UV = e
uilv ... U|JV

The columnwiseKroneckerprodict (also denotedas the Khatri-Raoproduct; seeReference
[11], p. 13), denotedby the symbol ®, canbe computedbetweenmatricesof the samecolumn
orderandis definedaccading to (U®V)ik, = Ujv. Hence,if U andV both havelL columns,
we have UGV = (U1 ®V4]...|Ju ®V).

The elementwiser Hadamardproduct denotedby the symbol*, canbe computedbetween
matrices of the sameorder only and is defined accordingto (U*V); =u;jvy. In multiway
analysis the latter product is typically encounteredupon matrix multiplication of two
columnwiseKroneckerproducts,becausqUoV) (UoV) = (U'U)*(V'V). This propertycan be
derived as follows:
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u; ®@ V)
UoV)UoeV)= (UL @Vi|...lu ®@Wv)
up ® Vi
U1 ® ViVe ... UjUL ® ViVe
= = (U'U) % (V'V)
UUi®ViV1i ... UUL®VVL

The moden multiplication, denotedby the symtol x , (see Referencel6], p. 15; seealso
Referencd12] for a similar definition), definesthe multiplication of anarrayby a matrix along
moden of thearray.Specifically, multiplication of thearrayG by thematriix S, (with anarbitrary
numberof rows and|,, columns)along moden is written as§ =G x n S, andthe outcomeis
equivalentto the matiix multiplication G,=S.Gp involving themoden matricizedversionsof G
andG, G,, andG,, (of orderl, x I4l5...I\/l) respectively For exanple, let X bethe2 x 2 x 2

arraywith frontal planes
10 and 21
0 2 0O

1 0 0 1
S:<_1 1> and U:(2 1>
ThenX x ;S canbe obtainedin modeA matricizedversionas
1 0\/1 0 2 1 1 0 2 1
5% = (—1 1)(0 2 0 o) - (-1 1 -2 —1>

andhencehasasfrontal planes

(52) = (% 4)

To find X x gU, we computeits modeC matricizedversionas
UX. — 0 1\/1 0 0 2y (2 0 1 0
c“\21)\2010) \40114

andfrom this recoverits frontal planesas

2 1 and 4 1
00 0 4
An overview of propertiesof the abow special productscan be found, for instance,in

Referencd13]. There(p. 263)thefollowing notvery well-knownbutimportantpropertyrelating
vectorizationof a productof matricesto the Kronecker productis given:

andlet

Vec(UVW) = (W’ @ U)Vec(V) (1)
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4, FUNDAMENTAL THREE-WAY MODELS
4.1. Names Tuckermodelsand CANDECOMP/PARAFAC

As alreadymentionedin Sectionl, the fundamentaimodelsusedin three-wayanalysisarethe
model propo®d by Tucker[1] andthat proposedby Carroll and Chang[3] andHarshman[4].
The former was termedthe ‘three-modak factor analysis’ model by Tucker. Kroonenbeg and
De Leeuw[14], who propo®d an algorithm for leastsquaesfitting of this model, called their
proceduréethree-mock principal componentanalysis’(to distinguishit from the more narrowly
defined term factor analysiswhich usually is fitted by meansof fitting covariances,using
assumptionof uncorrelatedunique factors). They also distinguided two special cases:the
casewhereone modeis representedby asmanycomponentasthereare entities(no reduction
in this mode),and the casewhereno reductiontakesplacein two modes Consequentlythey
denotedthe original model as the Tucker3 modé (reductionin all three modes),the model
whereonly two modeswere reducedwas denotedas the Tucker2mode| and that where only
onemodeis reducedis calledthe Tuckerl model This distinction betweenmodelsis a useful
oneandis often made,albeit not necessarily by thesenames.Hereit is proposedo generally
follow this terminology for denotingthe models,but we make two modifications.Firstly, in
caseswhereconfusionmay arise,we addthe term ‘three-way’ to indicatethat thesearethree-
way models,and thuswe can analogouslyspecify four- and higher-waymodelswherenot all
modesarereduced;for instance the ‘four-way Tucker2 model’ indicatesa four-way modelin
which only two of the modesarereduced.Secondly,in the casewhereall modesare reduced,
which we seeas the ‘default’, we may simply drop the numberindicating how many modes
arereducedthusthe three-wayTucker3model canbe denotedasthe three-wayTuckermode)
and more generally,the N-way Tucker model indicatesthe Tucker model for N-way datain
which all modesare reduced.The methodsfitting thesemodelsin the leastsquaressenseare
then called N-way Tucler analysisif a modelwith all modesreducedis consideredor N-way
Tuckerlanalysis,N-way Tucker2analyss, N-way Tucker3analysis etc. if only somemodes
are reduced.In fact, N-way Tuckerlanalysiscomesdown to a principal componentanalysis
(PCA) of all fibers pertainingto one mode, and henceof a matiicized version of the data
array. For three-way data this method has also been denotedas PCASUP [15], and in
chemometricst is sometimegdenotedas ‘unfold PCA’ or ‘multiway PCA', but, asmentioned
in Section 21, the term ‘unfolding’ is confusing and the term ‘multiway PCA’ is easily
confusedwith other multiway generaliations of PCA.

The model proposedby Carroll and Chang[3] and Harshman4] receivedentirely different
namesby its two proposersreferringto different featuresof the model. To give creditto both
proposersand to both types of features,the model is referred to as the CANDECOMP/
PARAFAC modelor, abbreviatedCP model. The order of the constitueh namesin the name
of the modelhasbeenchosenalphabettally andleadsto the leastconfusing abbreviation(PC
model resembles PC (personal computer) or PCA). The CP model can be written
mathematicallyas a constrainedvariant of the three-way Tucker model This property is
often used,andthereforeterminologyand notationin the two modelsshouldbe well adjusted.

4.2. Standhrd notation for models

The most generalmodelis the three-wayTucker model. This is given by
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P Q R

Xik = Y>> @pbigCaGoar + 8k (2)

p= q:l r=1

In (2), &, bjq andc,, denoteelementsof the componentmatices A (for the modeA), B (for

the modeB) and C (for the modeC) of ordersl x P, J x Q andK x R respectively.Thusfor

the mode A componerd the running index is p, which runs from 1 to P, for the mode B

componentghe runningindexis g, which runsfrom 1 to Q, andfor the modeC components
the runningindexis r, which runsfrom 1 to R. Furthermore gy, dendesthe element(p,q,r)

of the P x Q x R corearray G. Finally, ey denotesthe error term for elementx;, andis an

elementof the | x J x K array E. Up to six-way generalizationsan be definedanalaously
usingcomponentmatricesA, B, C, D, E andF and componentindicesp, q, r, s, t andu. For

clarity, in caseswhere E denotesthe E-mode componentmatrix, the error array may be

denotedby a different symbol, eventhoughno confusionis likely to arise,becausehe error

array and the componentmatrix play entirely different roles and do not emergein the same
term. From seven-wayon, however,we would need a componentmatrix G, which could

becomeconfusingwith the core G. Thereforefor N-way arrayswith N > 6 (or, if preferred,
even for N > 3) we use subscmpts to distinguishthe componentmatricesfor the different

modes:A1, A,,..., An. The elementsof A,, arethenindexedby i, and p, and hencegiven by

& p,n Wherethe matrix subscriptis separatedrom the othersby a comma.Note thatin this

generalform the final subscriptn is unnecessarybut in specific caseswe needall three
subscriptso identify a particularelementof a particularcomponentmatrix (e.g. az4 > denotes
element(3,4) of componenmatrix A, andclearly az, would be incompleg). With this general
formulation the N-way Tuckermodel[5] can be written as

Pi P

Xigip..in = Z Z Z <H &ipn, >gp1---PN + €iz..in (3)

=1p=

The main advantageof (3) is thatit is fully general.lt is, however,ratherhardto read,hence
this formulation shouldonly be usedif the specific notation, preferablyusing different letters
for different modes,is unfeasible.

The (three-way CP modelis given by

R
Xik = Z ayr by Ckr + ik (4)
r=1

Herea;, b, andc, againare elementsof the componentmatricesA (for the modeA), B (for
the mode B) and C (for the mode C), now of ordersl x R, J x R and K x R respectively.
Thusall componentmatriceshavethe samenumberof columns(R). Analogously,the N-way
CP modelis given by

R
Xiliz...iN Z (H a| r, n> + %2 AN (5)

r=1

For completenessve also give the three-wayTucker2 and Tuckerl models
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P Q
Xijk - Z aipqugqu + ij (Ga)
p=1g=1
P
Xik = ) BipGpik + Eik (6b)
p—1

which are specialcasesof the three-wayTuckermodelwith C =1x andG of orderP x Q x K
(Tucker2)and B=1,;, C=1x and G of order P x J x K (Tuckerl). All models are usually
fitted to a datasetby minimizing the sum of squarederror terms,zijke.jkz, overA, B, C and
G.

4.3. Matrix formulationsof models

Matrix formulationsof the Tucker and CP modelsare often given. For the three-wayTucker
model this formulation is

Xa=AG4(C' ®B') + E, (7)

From (4) and (2) it is clear that the CP model is the constrainedversion of the three-way
Tucker model with all elementsin the core equalto zero, exceptthe elementsgi11, 0225, .-,

Orrr Which are equal to one [3]. Thus, using the R x R x R three-wayunit superdiagonal
array | (see Section 2[10), which has unit elementsin the positions(r,r,r), r=1,...,R, and

zeroselsewherewe canview the CP modelasthe specialcaseof the three-wayTucker model

with the core equalto the unit superdiagonahrray. Hencethe CP model is

Xa=Al4(C' ® B') + Ea (8)

An alternativenotationcanbe basedon the columnwise Kroneckerproduct(seee.g. Reference
[16], p. 25). Then we obtain

Xa=A(COB) +Ea 9)

which expresseshe structuralpart of the modelonly in termsof its three parametematrices.
Note that whereas(C®B)’ = (C’'®B’), we do not havethat (COB)’ equals(C'®B).

For higher-waygeneralization®f the three-wayTucker model the matrix formulationsare
obtainedstraightforwardly. For instance,the four-way Tucker model given by

>3

r=1

P

Xijkl = Z

p=1gq

@ipbjq CrAisGpars + Eijki (10)

Mo
EMV’

[|
iN

can be written in matrix representatioras

Xa=AG4D ®C ®B)+E, (11)

More generally,the matiix formulation of the N-way Tucker model (3) is given by

X1 =A1G1(Ay® ... A3 ®AY) + E1 (12)
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where X; and G, dende mode 1 matricizedversions,hencewith the row order equalto the
order of mode 1. The N-way CP model (5) is similarly definedas
X1 =A1(AN O ...@Ag@Az)/+ E1. (13)

Models for cyclically permuted versions of the array are easily obtained by cyclic
permutationof the lettersor numbersthat indicatethe modes;for the three-wayTucker model

we thus have
Xp = BGp(A' ® C') + Ep (14)

Xe=CG¢(B'®@A’) + E¢ (15)
and it becomesclear that the componentmatricesplay fully symmetrc roles.

4.4. Vectorformulaions of modds

By applying (1) (seeSection3) to (7), we canwrite the vectorizedversion of the three-way
Tucker model as

x=(C®B®A)g+e (16)

wherex, g and e denotethe vectorizedversionsof X, G and E respectively. Expression(16)
better displaysthe symmetry of the three-way Tucker model than does(7), and also gives
insight into the role of the elementsof the core (as regressionweights for the colurms of
C®B®A). Moreover,the N-way versionof (16) is obtainedby straightforwardgeneraliation
as

X=(AN®AN-1®...0A2®@A1)g+ € (17)
Finally, the three-and N-way CP modelsare now given by
x=(CoOBoA)lz+e (18)
and
X=(ANOAN10...0A,0A)lg+€ (19)

respectively,where 1 dendes a vector of order R with unit elementsonly.

5. PRE-AND POSTPR@ESSNG
5.1. Centeing andscaling‘within * and ‘across’

Before actually carrying out a multiway analysis,it is often usefulto preprocesshe data,just
asin two-way analysis.In two-way analysis,data are often centeredand/or normalized(the
combination being called ‘standardized’ or ‘autoscaled’) across the rows to eliminate
unwanteddifferencesin level and scale. For three- and higher-way data one may similarly
wish to eliminate such unwanteddifferences,but it is no longer obvious how each of the
modesshoul be dealtwith. Thereforeit is mostimportant to carefully explain how the data
are centeredand/or normalizedprior to analysis.In their detailed accountof preprocessing
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a. Centering across mode A b. Normalizing within mode B

Mode B
j=1...,J

Ty

Q ~

o

o

>~

Wﬁ \AAAA/

center all vertical fibers normalize complete lateral slices

(subtract fiber means) (divide by square roots of sum of
squares in slices)

Figure4. Visualizationof ‘centeringacross’and‘normalizing within’.

three-way data, Harshman and Lundy [17] and Ten Berge [18] used the following
terminology.

The type of centeringis indicatedby specifyingacrosswhich modesthe dataare centered.
For instance,'centeringacross(mode)A’ is carried out by first averagingthe data(only) over
the entitiesof mode A andthen subtractingeachthus obtainedaveragefrom all dataelements
that partakein it (seeFigure 4a). Analogously,‘centeringacrossthe combinaton of modesA
andB’ is carriedout by first averagingthe dataover the entitiesof modesA and B andthen
subtractingeachsuchaverae from the datathat partakein it. In formulaefor three-waydata,
‘centeringacrossA’ leadsto computingcentereddataas

Xk = Xijk — Xk (20)

where the subscriptdot is usedto indicate the meanacrossi =1,...,l; ‘centerirg acrossthe
combinationof modesA and B’ leadsto computirg centereddata as

Xijk = Xijk — X k (21)

The type of normalization usedis indicatedby specifyingthe entitieswithin which the data
are normalized. Specifically, ‘normalization within (the levels of mode) A’ consistsof, per
entity, first computingthe sum of squaresof all dataelementsassociatedvith this particular
entity and then dividing all theseelementsby the squareroot of this sum of squares(see
Figure4b for ‘normalization within B’). In formulae,for three-waydata,normalizng within A
leadsto computinga normalizationfactor

and computingthe normalizd dataas
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Xijk = Xijk /v (23)

Normalization‘within the combinationof modesA and B’ consistsof, for eachcombination
of an entity of modeA and one of modeB, first computingthe sum of squaesover all other
modesand then dividing all asso@ted elementsby the squareroot of this sum of squaes.

Why do we proposedifferentterminolagy for centeringand normalization?or instance for
four-way data, normalizing within A could also be dended as normalizing across the
combinationof modesB, C and D. One reasonfor using acrossfor centeringand within for
normalizationis thatin computingthe centereddatathe subtractedaverages bestrecognized
by the mode(s)acrosswhich the averageis computed(the onesfor which dot subscriptsare
used: X containsthe averageacrossi), whereasin normalizationthe scaling factor usually
carriesthe subscriptfor the entitiesof the mode(s)within which the normalizationtakesplace
(e.g. vj). A secondreasonis that the preferred proceduresfor centeringand normalizing
multiway dataare centeringacrossone modeat a time and normalizng within one modeat a
time (seeReference17], whereit is arguedthat only thesetypesof preprocesing leave the
structure of the CP or three-way Tucker model intact); with the above terminology these
procedurescan be referredto in a simpleway. If the ‘inappropriate’preprocessingrocedurs
areto be used,this (justly) requiresrather complexterminology. In three-wayanalysisthese
preferred forms of centering and scaling are called fiber centering and slab scaling. In
multiway analysisthe term fiber centeringcan still be usedfor centeringacrossone mode
only; normalizingwithin a mode shouldthen no longer be called slab scaling, however.

It canbe usefulto centeracrossseveraldifferent modessuccessivelyor to normalizewithin
severalmodessuccessivelyFor instance,we may first centeracrossA andthen acrossB (or
vice versa which gives the sameresult). We denotethis as ‘(fiber) centeringacrossA and
acrossB’ (or, for short, ‘centeringacrossA andB’). Similarly, normalizingfirst within A and
thenwithin B canbe denotedasnormalization‘within A andwithin B respectively’.Hereit is
importantto give the order of the normalizationspecausene normalization affectsthe other,
and the reversed order generally leads to a different outcome. Propals have been made
[17,18] for iterative normalizations within different modes.If such iterative proceduresare
used,this should be mentionedspecificaly. Also, when using combinationsof centeringand
normalizationin most casesthe order shout be specified,andif the procedire is performed
iteratively, this should be mentionedas well.

5.2. Rotaton: transfornmation of Tuckermodéds

The CP modeltypically givesuniquesolutionsup to permutaions andscalings.The three-way
Tucker model, on the other hand,is by no meansidentifiable. Specifically, (7) can be written
as

Xa=AG4(C' ®B') 4+ Ea=AG4C ®B') + Ea (24)

with A=AS, B=BT, C=CU and G,=S G, (U~ Y®T ~Y). Here the matricesS, T andU
are non-singularsquarematricesof ordersP x P, Q x Q andR x R respectively.*Sometimes

*Clearly, it would havebeennicerif thesymbolsto denotethe ordersof the matricesandthe symbolsfor thematriceswerethe
same However,usingsymbolsP, Q andR for rotationmatriceswould be confusing,sinceR usuallyrefersto a correlaton
matrix. Conversef, usingS, T and U for the numbersof componentsvould bypassthe commonchoicesfor denotingthe
numberof componentasQ andR. Thereforeit seemsestto ignorethis inconsisteny.
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they are takenorthonormal,in which casethey are called orthogonalrotation matrices When
they are not orthonornal, we call them oblique rotation matrices

For the N-way Tucker model a similar rotational freedomholds. However,for higher-way
caseswe will dende the rotation matricesas S,, S,, ..., S\, of ordersP, x Py, P> x P, ...,
Pn x Py respectively,and we have

AL=A1S1, A2 =A2S,..., AN=ASy and Ga=S G\ ' ®...0S ") (25

Obviously, (25) could also be usedfor the three-waycase,but it hasthe disadvantagdhat
subscriptedmatricesare needed.This rendersformulae somewhatmore difficult to read (and
write) and is particularly embarrassingn caseswhere elementsof such matricesare to be
specified,as we then needthree indices.

It frequently happenghat rotation in only one ‘direction’ is to be performed.This comes
down to multiplication of an N-way array with a matrix. Although such multiplications can
easily be written in matrix algebra,as can be seenabove,it is someimes useful to usethe
mode n multiplication (see Section 3). Specifically, multiplication of the array G by S
along the moden is written as G =G xp, S, ! and the outcomeis equivalen to the matrix
multiplication G,=S,~ *G,, involving the moden matricizedversonsof G andG, G, and G,
respectively.Successivemultiplications can then be written as Q =G xp S, Y% mSh L ete.
The full rotational freedom of the N-way Tucker model is represented by
G =Gx18 %S, .. x\ Sy~ The form has a nice symmetric treatmentof all modes
but for practicalpurposeswhereactualmatrix multiplicationsareto be carriedout, expresion
(25) is much more useful.

6. OTHER MULTIWAY MODELS AND CONCLUSION
6.1. Exterdedmodds

A first classof other multiwvay modelsthat can be considereds that where the fundametal
models(CP or Tucker) are extendedby additive terms. Suchmodelshave beendescribedin
Referencd17] andvariousvariantshave poppedup at severalplacesin the literature. Adding
additive terms implies combination with the general linear model, and it is therefore
appropriateto follow commonnotationusedthere. Thusfirst-orderadditive termsare dended
by single-indexedv, 3, ~, etc., with asindicessimpy thosethat we usedfor modesA, B, C,
etc., leadingto o, 5;, 7 etc. Second-ordetermsare dended as double-subscrifed o5, oy,
etc. Thus a3 denotegthe interactioneffect of modeA entity i with modeB entity j, etc. For
higher-orderterms this systemof combining symbolsis simpy extended.

6.2. Structually different N-waymodels

The presentoverview of notationalconventionsis basedon only two modelsand henceis by
no meanscomplete.For other modelsit is suggestedo choosenotationas much as possible
along the same scheme.Thus first-mode entities are denotedby the letter ‘a’ and index i,
while their componentsare indexed by p, and the associatedotaton is denotedby S, and
analogouslyfor the secondmode, etc. Furthermore, as far as other models have parameter
matricesin commonwith the ‘fundamental’ models,theseshoutl have the samesymbol. If
parameterplay the samerole asthosein the fundamentaimodel but differ in certaindetails,
this could be expressedy using the samesymbol but with a subscriptindicating its special
role.
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6.3. Concluding remarks

The presentpaperprovidesa large numberof suggestiongor notationandterminology.These
suggestionsare basedon notions and operationsthat are currently in usein N-way analysis.
Somenotions,e.g.symmetryof (hyper)cubicarrays,havebeenignoredgiven their ratherhigh

complexity and limited use. The sameholds for operationsthat rearrangeN-way arraysinto

M-way arrays.The two mostcommonof theseare vectorizationand matricization(hencewith

M =1 and M =2 respectively),and these can indeed be expectedto remain the two most
common rearrangingoperations,becaise they are sufficient prerequisitesfor using matrix

algebra.However,arrangingN-way arraysinto three-wayarrays may becomequite common
too, and so may other operations.For arranging tensorsinto three-way arrays, the term

‘ternarizing’ would seemappropriate(as a ternaryarray is sometimesusedto denotea three-
way array), but we are not awareof similar terminologicalpossibilitiesfor arrarging tensors
into four- or higher-wayarrays.It shouldbe notedthat, as for matricizing, for ternarizingit

would be necessaryto indicate specifically which modesare combinedand how this is done
(seeSection2(7).

Obviously, the presentpaperon notation and terminology is basedon subjectivechoices
that may not always be deenmed most fortunate or useful. However, the aim of this paperis
that the notation schemeset out here sets‘a default’: when there are no reasongo choosea
different notation scheme,use the presentone. The use of a common notation schemeis
expectedto increasereadability of multiway literature by enhancingrecognizability of model
formulations.
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APPENDX: OVERVIEW OF NOTATION

X, Y N-way arrays

I ‘unit superdiagonaltensor

Xa Xy Xgyevn OF Xq, X5, X3, ... matricizedversionsof X

Vec() vectorizedversionof a matrix

i j, K ...0riq, g is,... runningindicesfor respectivemodes
I, J,K, ...orly, Iy I3... sizesof respectivemodes

G corearrayin Tuckermodel

A, B,C,...0rA;, Ay Ag,...

p,q,r,... Or ps, P2, P3,...
P,Q,R,... or Py, Py, Ps,...

S, T,U..orS, S, S;,...

iy By Yier +e

afBij, ayike avik, etc.
®

©

*

Xn

X1=A1G1(AN® ... QAT ®AY) + E;1
X1=A1(ANO...OAz0A,) + E;

Copyright0 2000JohnWiley & Sons,Ltd.

componenmatricesfor respectivemodes
runningindicesfor componentgor respectivemodes
numbersof componentdor respectivanodes
rotationmatricesfor respectivemodes
additivetermsfor respectivanodes

examplesof additiveinteractionterms
Kroneckerproduct
columnwiseKroneckerproduct(Khatri-Raoproduct)
elementwiseor Hadamardproduct

moden multiplication

model matricizedversionof N-way Tuckermodel
model matricizedversionof N-way CP model
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