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SUMMARY

This paper presents a standardized notation and terminology to be used for three- and multiway analyses,
especially when these involve (variants of) the CANDECOMP/PARAFAC model and the Tucker model. The
notation also deals with basic aspects such as symbols for different kinds of products, and terminology for three-
and higher-way data. The choices for terminology and symbols to be used have to some extent been based on
earlier (informal) conventions. Simplicity and reduction of the possibility of confusion have also played a role in
the choices made. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The first proposals for three- and higher-way generalizations of factor and principal component
analysis date back to the 1960s [1,2] and early 1970s [3,4]. The model proposed by Tucker
[1,2] generalized the principal component and factor analysis model in that it used one
component matrix for all three ‘ways’ of a three-way data array; these component matrices are
related to each other by a so-called core array. The model proposed independently by Carroll
and Chang [3] and Harshman [4], called the ‘CANDECOMP’ and ‘PARAFAC’ model
respectively, also uses component matrices for all three ways, but in their model each
component is related to only one component of each of the other two ways. The latter aspect
entails that its solution is (under mild conditions) unique. This uniqueness has made the model
very popular for purposes of estimation of parameters in situations where two-way data would
not allow for unique estimation (e.g. estimating concentrations of chemical analytes in a
mixture). In certain situations, however, the model is too restrictive or the uniqueness
conditions are not satisfied. In such situations the model proposed by Tucker offers a useful
alternative.

The above two models can be considered the fundamental models underlying most currently
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usedthree-waymodelsand their multiway generalizations [3,5]. Unfortunately, the models,
having beendevelopedwithin psychometrics,havenot alwaysbeenwidely known and have
been reinvented under different names. Moreover, even when the models are properly
attributed,the notation in which they are describeddiffers widely over different papersand
disciplines,andso doesthe terminologyemployed(evenasfar asthe namesof the modelsare
concerned).Some informal attempts have been made towards a standard notation and
terminology,but this hasnot beensuccessfulyet. The presentpaperis an attemptto formally
standardizenotationand terminologyof the most importantaspectsin multiway analysis.The
proposal takes into account any informal conventions the author is aware of; in casesof
severalcompetingchoicesencounteredin the literature,mnemonicsimplicity and conceptual
clarity are the main criteria for adopting a standard.

2. DATA

2.1. General

In statistics,dataare generallydenotedby the symbol X. In the caseof two-way data(i.e. a
datamatrix) the bold-faceversionX is used.To distinguishthe moreor lessstandardtwo-way
datasetsfrom the lesscommonthree-andhigher-waydatasets,the latter are indicatedby an
underlinedbold-faceX. When,in additionto X, thereareotherdatasets,it is preferredto use
subscriptsor to denote them by other lettersat the far end of the alphabet(V, W, Y, Z). For
example,in the caseof regressioninvolving three-waydata,the three-wayarraypertainingto
the predictor variablesis denotedby X and that pertaining to the criterion variablesby Y.

Data to be analysedare usually real numbers,but in someinstancesthey are complex. In
the presentpaper,only real-valueddata are considered.Mostly, the notation and properties
mentionedin the presentpaperreadily generalizeto complex-valueddata,but one shouldbe
awareof exceptions(e.g. the complex conjugatediffers from the simple transpose).

2.2. Indices

The elementsof a three-wayarray X are denoted by xijk, where the indicesare taken to run
from 1 to their capital version: i = 1,…,I, j = 1,…,J, k = 1,…,K. For higher-way arrays,
additionalsubscriptsare used,chosen as the next letters in the alphabet(e.g. an elementof a
six-way array is denotedas xijklmn). In some higher-way casesone may thus run out of
symbols(consideringthat we needother running indicesas well). In that caseone can resort
to the more complexuseof indices i1, i2, i3, i4, etc. running from 1 to I1, I2, I3, I4, etc.

2.3. Tensors

An N-way dataarray is sometimes genericallycalled a tensor(seee.g. Reference[6], p. 10).
Thusthe notion ‘tensor’ capturesarraysof different sizes:a vector of order I is a tensorin RI,
an I � J matrix is a tensorin RI � J, an I � J� K three-wayarray is a tensorin RI � J � K, etc.
In general,an I1� I2�…� IN N-way array is a tensorin RI1 � I2 �… � IN.

2.4. Modes of an array

In Figure1 a three-wayarray is depicted.The entitiesalong the vertical axis are indicatedby
the first index (i), thosealong the horizontalaxis by the secondindex (j) and thosealong the
depthaxis by the third index (k). Note that the useof the first andsecondindicesis the same
as what is commonfor matrices. The three setsof entities define the three ‘ways’ or three
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‘dimensions’of the three-wayarray. Becausethe term ‘way’ is not very specificand the term
‘dimension’ may be confusedwith the conceptof dimensionsof a factor spacein factor
analysis,here,following Tucker [7], we usethe term ‘mode’ to refer to a setof entities.In the
caseof three-wayarraysthe first modeis denoted asmodeA, the secondmodeasmodeB and
the third modeas modeC. This terminologycan be extendedto higher-waydata(leading to
modesD, E, etc.),but often for higher-waydatait is moreconvenientto denotethe modesby
numbers,henceas mode1, mode2,…, modeN.

Figure1. Three-wayarray,cut into (a) horizontal,(b) lateraland(c) frontal slices.
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2.5. One-mode,two-modeand three-modethree-waydata

Carroll and Arabie [8] distinguishedthree-waydata into three types as follows. If the three
modespertainto threedifferent setsof entities,thenthe dataaredenoted as three-modethree-
way dataor simply three-waydata.If two modespertainto the samesetof entities(e.g.when
dealingwith correlationsbetweenvariables or (a)symmetricproximities betweenobjects)and
henceonly two different modesare involved, this can be indicatedby specifyingsuchthree-
way data as two-modethree-waydata.Finally, if all three modespertain to the sameset of
entities(e.g. in the caseof transitionsbetweena numberof statesover threeconsecutive time
points), the datacan be denoted as one-modethree-waydata.This terminology can easily be
extendedto N-way databy simply countingthe numberof different modes,but is not always
fruitful then, becauseit doesnot distinguish,for instance,betweenfour-way arrayswith two
modesthat both occur twice and four-way arrayswith one modethat occursthreetimes and
onemodethat occursonly once.Thereis oneexceptionin which thereis no doubt aboutthe
meaning:one-modeN-way datapertainto datain which all modespertainto the sameentities.
Incidentally, it shouldbe notedthat evenin caseswheresomeof the modesareequal, we will
still refer to them by different names(modeA, modeB, modeC, etc. or mode1, mode2,…,
modeN), as describedin Section2⋅4.

2.6. Matrices,vectorsandother subarraysof three-andhigher-way arrays

A three-wayarray is frequentlyconsideredin termsof a setof matrices.Thesematricesform
the horizontal, lateral and frontal slicesof the three-wayarray,asvisualizedin Figures1a–1c.
Specifically, the I horizontal slices pertain to the entities i = 1,…,I of mode A, the J lateral
slicespertainto the entitiesj = 1,…,J of modeB andthe K frontal slicespertainto the entities
k = 1,…,K of modeC. For higher-wayarrays,submatricescan be definedas well, but it no
longer makessenseto give them intuitive namesas is done in the three-waycase.

Sometimesit is useful to considera three-wayarray as a set of vectors. Then threesetsof
suchvectors(denoted as fibers) can be distinguished,namelyvertical fibers,horizontalfibers
and ‘depth’ fibers,which run over the modeA entities,modeB entitiesand modeC entities
respectively,as visualizedin Figures2a–2c. To comparewith matrices:horizontal fibers are
rows and vertical fibers are columns.In general,thesevectorsare called ‘mode n vectors’
(compareReference[6]), where n denotesthe mode over which the vectors run. They are
associatedwith particular vector spaces, to be called the ‘mode n spaces’.Thus for a three-
way arraythe modeA spaceis the (sub)spacespannedby all vertical fibers,the modeB space
is the (sub)spacespannedby all horizontal fibers and the mode C spaceis the (sub)space
spannedby all depthfibers. Thesespacesare subspacesof RI, RJ and RK respectively.

To give a numericalexample,considerthe 4� 3� 2 array with frontal planes

Figure2. Three-wayarray,cut into (a) horizontal,(b) vertical and(c) depthfibers.
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are two vertical fibers (or mode A vectors)of the array, the vectors (1 2 0), (1 071) and
(1 2 0) areexamplesof threehorizontalfibers(or modeB vectors)andthe vectors(1 0), (2 1)
and (0 1) are examplesof depthfibers (or modeC vectors). The modeA spaceis the space
spannedby the vectors
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which can readily be seento be the whole R
4. The modeB and modeC spacesare defined

analogously.
In general,for N-way arrayswe candefinesubarraysof any size desired.For instance,one

may definethe three-way arraysthat area subsetof a four-way array.Sucharrayscanhardly
be given intuitive names as we did for matrices and vectors embeddedwithin three-way
arrays,but they can be specifiedusing a notation systemsimilar to that usedin MATLAB,
where we use subscript colons for the modes that remain intact and ordinary indices to
indicatethe entitieswith which the subarrayis associated.For example,X i::, X:j: andX::l then
denote the horizontal, lateral and frontal planes of a three-way array respectively, and
examplesof submatricesof a four-way arrayareXi::l andX:jk:. Fibers(or moden vectors)can
be denotedby small bold lettersusing the sameindexing system.For example, x:jk denotesa
modeA vector(vertical fiber) in a three-wayarrayandxij :l denotesa modeC vector in a four-
way array. Furthermore,three-or higher-waysubarraysthen are denotedby underlined bold
capitals, again with the same indexing system. For example X::kl: denotes the three-way
subarrayof the five-way arrayX associatedwith the kth entity of mode3 andthe lth entity of
mode4. Thus any subarrayof an N-way array can be identified unambiguously. In practice,
the colonswill often be omitted, as in many casesthere will be no reasonfor confusion.A
commonsituation is that where a three-wayarray is only subdividedinto its frontal planes.
Theseare then simply denotedas X1,…,XK.

2.7. Matricization: transforminga three-wayor N-way array into a matrix

It is sometimesfruitful to collect all moden vectorsin a single matrix. The supermatrixwith
all vertical fibers of a three-wayarray collectednext to eachother in an I � JK matrix, with
modeB entities(j = 1,…,J) nestedwithin modeC entities(k = 1,…,K), is denotedasXa. This
matrix simply containsall the frontal slices of thearraynext to eachother(seeFigure 3a).The
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processof rearranging the elementsof X into Xa is often called ‘unfolding’ in chemometrics,
but this term is confusing,becausein psychometricsunfolding [9] is a particulartechniquefor
multidimensionalscaling of datawith distancesbetweentwo setsof entities.Herethis process
is denotedas ‘matricizing’ a three-wayarray into a matrix (in analogyto the more common
term ‘vectorizing’ for rearranginga matrix into a vector), and the reverse processis then
called ‘reshaping’a matrix into a three-wayarray.Othermatricizationsarethosethat form the
supermatricesXb (of orderJ� KI, with modeC entitiesnestedwithin modeA entities)andXc

(of orderK� IJ, with modeA entitiesnested within modeB entities)(seeFigure3b and3c).
Other nestingsare possible,but without further specification,matricizationpertainsto one of
the aboveprocedures.

The abovematricizationsare relatedto eachother by a simple cyclic permutationof the
modes.Analogousto Xa containingfrontal planesof X next to eachother, Xb containsfrontal
planesof the three-wayarray that is obtainedupononcecyclically permutingthe modesof X
(i.e. the secondindex becomesthe first, the third index becomesthe second andthe first index
becomesthe third), andXc containsfrontal planesof the three-wayarraythat is obtainedupon
twice permutingthe modesof X. For the numericalexamplein Section2⋅6 we have that

Figure3. Matricizing a three-wayarray:(a) modeA matricization;(b) modeB matricization;(c) modeC
matricization.
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Xa �

1 2 0 0 1 0

0 1 0 1 0 0

1 0 ÿ1 1 2 0

ÿ1 0 0 0 0 1

0BBB@
1CCCA

Xb �
1 0 0 1 1 1 ÿ1 0

2 1 1 0 0 2 0 0

0 0 0 0 ÿ1 0 0 1

0B@
1CA

Xc �
1 0 1 ÿ1 2 1 0 0 0 0 ÿ1 0

0 1 1 0 1 0 2 0 0 0 0 1

� �
Matricization is not only useful for three-wayarrays.In fact, N-way datausually are to be

readfrom file in a two-way structure.An N-way array is ‘matricized’ in essentiallythe same
way as a three-wayarray. For instance,Xa (or X1 if it is preferred to denotemodesby
numbersrather than letters,as is the casewhen there are many modes)containsall vertical
fiberscollectednext to eachother in an I � JKLM… matrix, with in the columnsthe modeB
entities nestedwithin mode C entities, mode C entities nestedwithin mode D entities, etc.
Likewise, Xb (or X2) is the J� KLM…I matrix, with in the columns the mode C entities
nestedwithin modeD entities,modeD entitiesnestedwithin modeE entities,etc.,with mode
A entities as the ‘outermost’ entities. Thus, again, Xb is obtainedfrom the once cyclically
permutedarray X in the same way as Xa is obtained from X itself. This permutational
equivalencemakes programmingwith N-way arrays relatively straightforward, even when
proceduresare to employ matricizedversions.If the matricizedversionsof arraysare to be
given namesin addition to symbols,we call Xa the modeA matricizedversionof X, Xb the
modeB matricized versionof X, etc., and Xa the moden matricizedversionof X.

Obviously, other possibilities exist for transforming a tensor into a matrix. The above
proceduresshouldbe seenas the standardand preferable ones,and the useof othersshould
alwaysbe explicitly described.For example,the procedureof writing an I � J� K� L arrays
asan IJ� KL matrix canbe denoted as ‘matricization by combining modes1 and2 (1 nested
within 2) and modes3 and 4 (3 nestedwithin 4)’.

2.8. Vectorization: transforminga three-wayor N-wayarray into a matrix

Sometimesit is usefulto representall the elementsof a three-or N-way arrayasa vector.This
can be doneby ‘vectorizing’ the array.For matrices,‘vectorization’ is definedas putting the
successivecolumnsof the matrix below eachother in a singlevector.The vectorizationof the
matrix U into a vector u is denotedas u = Vec(U). To vectorizea three-wayor higher-way
array,we simply vectorizethe modeA matricizedversionof it andobtain x = Vec(Xa) as the
vectorizedversionof an array of arbitrary order.

2.9. Moden rank and tensor rank

To definethe ‘rank’ of a three-or N-way arrayis morecomplexthanfor a matrix. In fact, two
typesof rank havebeendefined.The simplestis the moden rank [6], which is definedasthe
rank of the moden space(seeSection2⋅6). For instance,the modeA rank (or mode1 rank) of
an I � J� K� L array X is the rank of the spacespannedby the JKL ‘mode A vectors’ x:jkl.
Clearly, the modeA rank is the rank of the matrix Xa. The modeB rank (or mode2 rank) of
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this array is the rank of the spacespannedby the IKL ‘mode B vectors’ xi:kl, henceit is the
rank of Xb. The mode C and mode D ranksof X are definedanalogously.For matrices the
moden rank canbeviewedasthe columnrank (modeA rank) or row rank (modeB rank) of a
matrix. Sincethe row andcolumnranksof matricesareknown to be equal,for two-way arrays
the modeA andmodeB ranksareequal.For three-andhigher-wayarrayssuchan equality no
longer holds.

The usual definition of (tensor) rank [10] usesa decomposition of a tensoras a sum of
‘rank-1 tensors’. A rank-1 tensor is a tensor for which the elementscan be written as
xijkl… = aibjckdl…. The rank of a tensorthenis the smallestnumber of rank-1tensorssufficient
to fully decomposethe tensoradditively. In the caseof matricesthis rank is equalto the row
and column ranks,but for three- and higher-wayarraysno such equivalence exists and the
rank canactuallybe considerablyhigherthan(andis neverlessthan)any of the moden ranks.

2.10. Specialtensors

A tensor which has all elementszero is called the ‘zero tensor’ (or ‘zero array’). For
(hyper)cubic tensors, i.e. tensors with all modes of equal size, we have some special
terminology.A tensorwhich hasall elementszero except thosefor which all indicesare the
same(which arecalled the ‘superdiagonal’elements) is calleda ‘superdiagonal’ tensor.In the
casewhere thesesuperdiagonalelementsall equal one, it is called the ‘unit superdiagonal’
tensor,denotedby the symbol I (chosenbecause,as far as its elementsare concerned,it
resemblesthe identity matrix). Note that the unit superdiagonal tensor should not to be
denotedas‘identity’, becauseit doesnot performa role similar to that of the identity element
(1) or matrix (I ) in ordinary (matrix) algebra (seeReference[6], p. 26).

3. SOME SPECIALSYMBOLS AND PROPERTIES

In multiway analysis,certainspecific matrix productsandoperatorsare often used.They will
be summarizedin this section.Hereaij or ai,j is usedto denoteelement(i,j) of a matrix A, and
al denotesthe lth column of A. Furthermore, a ‘prime’ denotestransposition of a matrix or
vector.

The Kronecker product is denoted by the symbol 6 and is defined according to
(U6V)ik,jl = uij�kl. Thus we have

U
 V �
u11V . . . u1JV
. . . . . . . . .

uI1V . . . uIJ V

0@ 1A
The columnwiseKroneckerproduct (alsodenotedasthe Khatri–Raoproduct;seeReference

[11], p. 13), denotedby the symbol�, canbe computedbetweenmatricesof the samecolumn
order and is definedaccording to (U�V)ik,l = uil�kl. Hence,if U and V both haveL columns,
we haveU�V = (u16v1j…juL6vL).

The elementwiseor Hadamardproduct, denotedby the symbol*, canbe computedbetween
matrices of the same order only and is defined according to (U*V)ij = uijvij . In multiway
analysis the latter product is typically encounteredupon matrix multiplication of two
columnwiseKroneckerproducts,because(U�V)'(U�V) = (U'U)*(V'V). This propertycan be
derivedas follows:
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�U� V�0�U� V� �
u01
 v01

. . .

u0L 
 v0L

0B@
1CA�u1 
 v1j . . . juL 
 vL�

�
u01u1 
 v01v1 . . . u01uL 
 v01vL

. . . . . . . . .

u0Lu1 
 v0Lv1 . . . u0LuL 
 v0LvL

0B@
1CA � �U0U� � �V0V�

The moden multiplication, denotedby the symbol� n (seeReference[6], p. 15; seealso
Reference[12] for a similar definition),definesthemultiplication of anarrayby a matrix along
moden of thearray.Specifically, multiplicationof thearrayG by thematrix Sn (with anarbitrary
numberof rows and In columns)alongmoden is written as G̃ = G� n Sn and the outcomeis
equivalentto thematrix multiplicationG̃n = SnGn involving themoden matricizedversionsof G
andG̃, Gn andG̃n (of order In� I1I2…IN/In) respectively.For example, let X be the 2� 2� 2
arraywith frontal planes

1 0
0 2

� �
and

2 1
0 0

� �
andlet

S� 1 0
ÿ1 1

� �
and U � 0 1

2 1

� �
ThenX � 1S canbeobtainedin modeA matricizedversionas

SXa � 1 0
ÿ1 1

� �
1 0 2 1
0 2 0 0

� �
� 1 0 2 1
ÿ1 1 ÿ2 ÿ1

� �
andhencehasasfrontal planes

1 0
ÿ1 2

� �
and

2 1
ÿ2 ÿ1

� �
To find X � 3U, we computeits modeC matricizedversionas

UXc � 0 1
2 1

� �
1 0 0 2
2 0 1 0

� �
� 2 0 1 0

4 0 1 4

� �
andfrom this recoverits frontal planesas

2 1
0 0

� �
and

4 1
0 4

� �
An overview of propertiesof the above special productscan be found, for instance,in

Reference[13]. There(p. 263)thefollowing notverywell-knownbut importantpropertyrelating
vectorizationof a productof matricesto theKronecker productis given:

Vec�UVW� � �W 0 
 U�Vec�V� �1�
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4. FUNDAMENTAL THREE-WAY MODELS

4.1. Names: TuckermodelsandCANDECOMP/PARAFAC

As alreadymentionedin Section1, the fundamentalmodelsusedin three-wayanalysisarethe
modelproposed by Tucker [1] andthat proposedby Carroll andChang[3] andHarshman[4].
The former was termedthe ‘three-mode factor analysis’model by Tucker. Kroonenberg and
De Leeuw[14], who proposed an algorithmfor leastsquaresfitting of this model,called their
procedure‘three-mode principal componentanalysis’(to distinguishit from the morenarrowly
defined term factor analysiswhich usually is fitted by meansof fitting covariances,using
assumptionsof uncorrelatedunique factors). They also distinguished two special cases:the
casewhereonemodeis representedby asmanycomponentsasthereareentities(no reduction
in this mode),and the casewhereno reductiontakesplacein two modes. Consequently,they
denotedthe original model as the Tucker3 model (reduction in all three modes),the model
whereonly two modeswere reducedwasdenotedas the Tucker2model, and that whereonly
onemodeis reducedis called the Tucker1 model. This distinctionbetweenmodelsis a useful
oneand is often made,albeit not necessarilyby thesenames.Here it is proposedto generally
follow this terminology for denotingthe models,but we make two modifications.Firstly, in
caseswhereconfusionmay arise,we addthe term ‘three-way’ to indicatethat thesearethree-
way models,and thuswe cananalogouslyspecify four- andhigher-waymodelswherenot all
modesare reduced;for instance,the ‘four-way Tucker2 model’ indicatesa four-way model in
which only two of the modesarereduced.Secondly,in the casewhereall modesarereduced,
which we seeas the ‘default’, we may simply drop the numberindicating how many modes
arereduced;thusthe three-wayTucker3modelcanbe denotedasthe three-wayTuckermodel,
and more generally,the N-way Tucker model indicatesthe Tucker model for N-way data in
which all modesare reduced.The methodsfitting thesemodelsin the leastsquaressenseare
thencalled N-wayTucker analysisif a modelwith all modesreducedis considered, or N-way
Tucker1analysis,N-way Tucker2analysis, N-way Tucker3analysis, etc. if only somemodes
are reduced.In fact, N-way Tucker1analysiscomesdown to a principal componentanalysis
(PCA) of all fibers pertaining to one mode, and henceof a matricized version of the data
array. For three-way data this method has also been denoted as PCASUP [15], and in
chemometricsit is sometimesdenotedas ‘unfold PCA’ or ‘multiway PCA’, but, asmentioned
in Section 2⋅7, the term ‘unfolding’ is confusing and the term ‘multiway PCA’ is easily
confusedwith other multiway generalizationsof PCA.

The modelproposedby Carroll andChang[3] andHarshman[4] receivedentirely different
namesby its two proposers,referring to different featuresof the model.To give credit to both
proposersand to both types of features,the model is referred to as the CANDECOMP/
PARAFAC modelor, abbreviated,CP model.The orderof the constituent namesin the name
of the modelhasbeenchosenalphabetically and leadsto the leastconfusing abbreviation(PC
model resembles PC (personal computer) or PCA). The CP model can be written
mathematicallyas a constrainedvariant of the three-way Tucker model. This property is
often used,andthereforeterminologyandnotationin the two modelsshouldbe well adjusted.

4.2. Standard notation for models

The most generalmodel is the three-wayTucker model. This is given by
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xijk �
XP

p�1

XQ

q�1

XR

r�1

aipbjqckrgpqr � eijk �2�

In (2), aip, bjq andckr denoteelementsof the componentmatricesA (for the modeA), B (for
the modeB) andC (for the modeC) of ordersI � P, J�Q andK� R respectively.Thus for
the mode A components the running index is p, which runs from 1 to P, for the mode B
componentsthe running index is q, which runs from 1 to Q, and for the modeC components
the running index is r, which runs from 1 to R. Furthermore,gpqr denotes the element(p,q,r)
of the P�Q� R core array G. Finally, eijk denotesthe error term for elementxijk and is an
elementof the I � J� K array E. Up to six-way generalizationscan be definedanalogously
usingcomponentmatricesA, B, C, D, E andF andcomponentindicesp, q, r, s, t andu. For
clarity, in caseswhere E denotesthe E-mode componentmatrix, the error array may be
denotedby a different symbol,eventhoughno confusionis likely to arise,becausethe error
array and the componentmatrix play entirely different roles and do not emergein the same
term. From seven-wayon, however, we would need a componentmatrix G, which could
becomeconfusingwith the core G. Thereforefor N-way arrayswith N> 6 (or, if preferred,
even for N> 3) we use subscripts to distinguish the componentmatrices for the different
modes:A1, A2,…, AN. The elementsof An are then indexedby in andpn andhencegiven by
ainpn,n, wherethe matrix subscriptis separatedfrom the othersby a comma.Note that in this
general form the final subscriptn is unnecessary,but in specific caseswe need all three
subscriptsto identify a particularelementof a particularcomponentmatrix (e.g.a34,2 denotes
element(3,4) of componentmatrix A2 andclearly a34 would be incomplete). With this general
formulation the N-way Tuckermodel [5] can be written as

xi1i2...iN �
XP1

p1�1

XP2

p2�1

. . .
XPN

pN�1

YN
n�1

ainpn;n

 !
gp1...pN � ei1i2...iN �3�

The main advantageof (3) is that it is fully general.It is, however,ratherhard to read,hence
this formulation shouldonly be usedif the specificnotation,preferablyusing different letters
for different modes,is unfeasible.

The (three-way) CP model is given by

xijk �
XR

r�1

air bjr ckr � eijk �4�

Hereair, bjr andckr againareelementsof the componentmatricesA (for the modeA), B (for
the mode B) and C (for the mode C), now of orders I � R, J� R and K� R respectively.
Thusall componentmatriceshavethe samenumberof columns(R). Analogously,the N-way
CP model is given by

xi1i2...iN �
XR

r�1

YN
n�1

ainr;n

 !
� ei1i2...iN �5�

For completenesswe also give the three-wayTucker2and Tucker1models
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xijk �
XP

p�1

XQ

q�1

aipbjqgpqk� eijk �6a�

xijk �
XP

p�1

aipgpjk � eijk �6b�

which arespecialcasesof the three-wayTuckermodelwith C = IK andG of orderP�Q� K
(Tucker2) and B = I J, C = IK and G of order P� J� K (Tucker1). All models are usually
fitted to a datasetby minimizing the sumof squarederror terms,

P
ijkeijk

2, over A, B, C and
G.

4.3. Matrix formulationsof models

Matrix formulationsof the Tucker and CP modelsare often given. For the three-wayTucker
model this formulation is

Xa � AGa�C0 
 B0� � Ea �7�

From (4) and (2) it is clear that the CP model is the constrainedversion of the three-way
Tucker model with all elementsin the core equal to zero, exceptthe elementsg111, g222,…,
gRRR which are equal to one [3]. Thus, using the R� R� R three-wayunit superdiagonal
array I (see Section 2⋅10), which has unit elementsin the positions (r,r,r ), r = 1,…,R, and
zeroselsewhere, we canview the CP modelasthe specialcaseof the three-wayTucker model
with the core equal to the unit superdiagonalarray. Hencethe CP model is

Xa � AI a�C0 
 B0� � Ea �8�

An alternativenotationcanbebasedon the columnwiseKroneckerproduct(seee.g.Reference
[16], p. 25). Then we obtain

Xa � A�C� B�0 � Ea �9�

which expressesthe structuralpart of the modelonly in termsof its threeparametermatrices.
Note that whereas(C6B)' = (C'6B'), we do not have that (C�B)' equals(C'�B').

For higher-waygeneralizationsof the three-wayTucker model the matrix formulationsare
obtainedstraightforwardly. For instance,the four-way Tucker model given by

xijkl �
XP

p�1

XQ

q�1

XR

r�1

XS

s�1

aipbjqckrdlsgpqrs� eijkl �10�

can be written in matrix representationas

Xa � AGa�D0 
 C0 
 B0� � Ea �11�
More generally,the matrix formulation of the N-way Tucker model (3) is given by

X1 � A1G1�A0N 
 . . .
 A3
0 
 A2

0� � E1 �12�
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whereX1 and G1 denote mode1 matricizedversions,hencewith the row order equal to the
order of mode1. The N-way CP model (5) is similarly definedas

X1 � A1�AN � . . .� A3 � A2�0 � E1 �13�
Models for cyclically permuted versions of the array are easily obtained by cyclic

permutationof the lettersor numbersthat indicatethe modes;for the three-wayTuckermodel
we thus have

Xb � BGb�A0 
 C0� � Eb �14�

Xc � CGc�B0 
 A0� � Ec �15�

and it becomesclear that the componentmatricesplay fully symmetric roles.

4.4. Vectorformulationsof models

By applying (1) (seeSection3) to (7), we can write the vectorizedversionof the three-way
Tucker model as

x � �C
 B
 A�g� e �16�

wherex, g and e denotethe vectorizedversionsof X, G and E respectively.Expression(16)
better displays the symmetry of the three-wayTucker model than does (7), and also gives
insight into the role of the elementsof the core (as regressionweights for the columns of
C6B6A). Moreover,the N-way versionof (16) is obtainedby straightforwardgeneralization
as

x � �AN 
 ANÿ1
 . . .
 A2
 A1�g� e �17�

Finally, the three-and N-way CP modelsare now given by

x � �C� B� A�1R� e �18�

and

x � �AN � ANÿ1 � . . .� A2 � A1�1R� e �19�

respectively,where1R denotes a vector of order R with unit elementsonly.

5. PRE-AND POSTPROCESSING

5.1. Centering andscaling‘within ’ and ‘across’

Beforeactually carrying out a multiway analysis,it is often useful to preprocessthe data,just
as in two-way analysis.In two-way analysis,data are often centeredand/or normalized(the
combination being called ‘standardized’ or ‘autoscaled’) across the rows to eliminate
unwanteddifferencesin level and scale.For three- and higher-waydata one may similarly
wish to eliminate such unwanteddifferences,but it is no longer obvious how each of the
modesshould be dealt with. Thereforeit is most important to carefully explain how the data
are centeredand/or normalizedprior to analysis.In their detailed accountof preprocessing
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three-way data, Harshman and Lundy [17] and Ten Berge [18] used the following
terminology.

The type of centeringis indicatedby specifyingacrosswhich modesthe dataare centered.
For instance,‘centeringacross(mode)A’ is carried out by first averagingthe data(only) over
the entitiesof modeA andthensubtractingeachthusobtainedaveragefrom all dataelements
that partakein it (seeFigure4a). Analogously,‘centeringacrossthe combination of modesA
andB’ is carriedout by first averagingthe dataover the entitiesof modesA and B and then
subtractingeachsuchaverage from the datathat partakein it. In formulae for three-waydata,
‘centering acrossA’ leadsto computingcentereddataas

exijk � xijk ÿ x:jk �20�

where the subscriptdot is usedto indicate the meanacrossi = 1,…,I; ‘centering acrossthe
combinationof modesA and B’ leadsto computing centereddataas

exijk � xijk ÿ x::k �21�
The type of normalization usedis indicatedby specifyingthe entitieswithin which the data

are normalized.Specifically, ‘normalization within (the levels of mode) A’ consistsof, per
entity, first computingthe sum of squaresof all dataelementsassociatedwith this particular
entity and then dividing all theseelementsby the squareroot of this sum of squares(see
Figure4b for ‘normalization within B’). In formulae,for three-waydata,normalizing within A
leadsto computinga normalizationfactor

�i �
����������������������XJ

j�1

XK

k�1

x2
ijk

vuut �22�

and computingthe normalized dataas

Figure4. Visualizationof ‘centeringacross’and‘normalizing within’.
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exijk � xijk=�i �23�

Normalization‘within the combinationof modesA and B’ consistsof, for eachcombination
of an entity of modeA andoneof modeB, first computingthe sumof squaresover all other
modesand then dividing all associated elementsby the squareroot of this sum of squares.

Why do we proposedifferent terminology for centeringandnormalization?For instance,for
four-way data, normalizing within A could also be denoted as normalizing across the
combinationof modesB, C and D. One reasonfor using acrossfor centeringand within for
normalizationis that in computingthe centereddatathe subtractedaverageis bestrecognized
by the mode(s)acrosswhich the averageis computed(the onesfor which dot subscriptsare
used: x̄.jk containsthe averageacrossi), whereasin normalizationthe scaling factor usually
carriesthe subscriptfor the entitiesof the mode(s)within which the normalizationtakesplace
(e.g. �j). A secondreasonis that the preferred proceduresfor centering and normalizing
multiway dataarecenteringacrossonemodeat a time andnormalizing within onemodeat a
time (seeReference[17], where it is arguedthat only thesetypesof preprocessing leave the
structureof the CP or three-wayTucker model intact); with the above terminology these
procedurescanbe referredto in a simpleway. If the ‘inappropriate’preprocessingprocedures
are to be used,this (justly) requiresrathercomplex terminology. In three-wayanalysisthese
preferred forms of centering and scaling are called fiber centering and slab scaling. In
multiway analysisthe term fiber centeringcan still be usedfor centeringacrossone mode
only; normalizing within a modeshould then no longer be called slab scaling,however.

It canbe useful to centeracrossseveraldifferent modessuccessivelyor to normalizewithin
severalmodessuccessively.For instance,we may first centeracrossA and then acrossB (or
vice versa, which gives the sameresult). We denotethis as ‘(fiber) centeringacrossA and
acrossB’ (or, for short, ‘centeringacrossA andB’). Similarly, normalizingfirst within A and
thenwithin B canbe denotedasnormalization‘within A andwithin B respectively’.Hereit is
importantto give the orderof the normalizations,becauseonenormalization affectsthe other,
and the reversed order generally leads to a different outcome.Proposals have been made
[17,18] for iterative normalizations within different modes.If such iterative proceduresare
used,this shouldbe mentionedspecifically. Also, when using combinationsof centeringand
normalizationin most cases,the order should be specified,and if the procedure is performed
iteratively, this shouldbe mentionedas well.

5.2. Rotation: transformation of Tuckermodels

The CP modeltypically givesuniquesolutionsup to permutations andscalings.The three-way
Tucker model,on the other hand,is by no meansidentifiable.Specifically,(7) can be written
as

Xa � AGa�C0 
 B0� � Ea � eAeGa�eC0 
 eB0� � Ea �24�

with Ã = AS, B̃ = BT, C̃ = CU and G̃a = S71Ga(U
71'6T71'). Here the matricesS, T and U

arenon-singularsquarematricesof ordersP� P, Q�Q andR� R respectively.*Sometimes

*Clearly, it wouldhavebeennicerif thesymbolsto denotetheordersof thematricesandthesymbolsfor thematriceswerethe
same.However,usingsymbolsP, Q andR for rotationmatriceswould be confusing,sinceR usuallyrefersto a correlation
matrix. Conversely, usingS, T andU for the numbersof componentswould bypassthe commonchoicesfor denotingthe
numberof componentsasQ andR. Thereforeit seemsbestto ignorethis inconsistency.
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they are takenorthonormal,in which casethey arecalledorthogonalrotation matrices. When
they are not orthonormal, we call them oblique rotation matrices.

For the N-way Tucker model a similar rotational freedomholds. However,for higher-way
caseswe will denote the rotation matricesas S1, S2, …, SN, of ordersP1� P1, P2� P2,…,
PN� PN respectively,and we have

eA1 � A1S1; eA2 � A2S2; . . . ; eAN � ANSN and eGa � S1
ÿ1Ga�SN

ÿ10 
 . . .
 S2
ÿ10 � �25�

Obviously, (25) could also be usedfor the three-waycase,but it has the disadvantagethat
subscriptedmatricesare needed.This rendersformulaesomewhatmore difficult to read(and
write) and is particularly embarrassingin caseswhere elementsof such matricesare to be
specified,as we then needthree indices.

It frequently happensthat rotation in only one ‘direction’ is to be performed.This comes
down to multiplication of an N-way array with a matrix. Although such multiplications can
easily be written in matrix algebra,as can be seenabove,it is sometimes useful to use the
mode n multiplication (see Section 3). Specifically, multiplication of the array G by Sn

71

along the mode n is written as G̃ = G̃�n Sn
71 and the outcomeis equivalent to the matrix

multiplication G̃n=Sn
71Gn involving the moden matricizedversionsof G and G̃, Gn and G̃n

respectively.Successivemultiplications can then be written as G̃ = G�n Sn
71�m Sm

71, etc.
The full rotational freedom of the N-way Tucker model is represented by
G̃ = G̃�1S1

71�2S2
71…�NSN

71. The form has a nice symmetric treatmentof all modes,
but for practicalpurposes,whereactualmatrix multiplicationsareto be carriedout, expression
(25) is much more useful.

6. OTHER MULTIWAY MODELS AND CONCLUSION

6.1. Extendedmodels

A first classof other multiway modelsthat can be consideredis that where the fundamental
models(CP or Tucker) are extendedby additive terms.Suchmodelshavebeendescribedin
Reference[17] andvariousvariantshavepoppedup at severalplacesin the literature.Adding
additive terms implies combination with the general linear model, and it is therefore
appropriateto follow commonnotationusedthere.Thusfirst-orderadditive termsaredenoted
by single-indexed�, �, 
, etc., with as indicessimply thosethat we usedfor modesA, B, C,
etc., leadingto �i, �j, 
k, etc. Second-ordertermsare denoted as double-subscripted ��, �
,
etc. Thus��ij denotesthe interactioneffect of modeA entity i with modeB entity j, etc. For
higher-orderterms this systemof combiningsymbolsis simply extended.

6.2. Structurally different N-waymodels

The presentoverview of notationalconventionsis basedon only two modelsandhenceis by
no meanscomplete.For other modelsit is suggestedto choosenotationas much as possible
along the samescheme.Thus first-mode entities are denotedby the letter ‘a’ and index i,
while their componentsare indexedby p, and the associatedrotation is denotedby S, and
analogouslyfor the secondmode, etc. Furthermore,as far as other modelshave parameter
matricesin commonwith the ‘fundamental’ models,theseshould have the samesymbol. If
parametersplay the samerole as thosein the fundamentalmodel but differ in certaindetails,
this could be expressedby using the samesymbol but with a subscriptindicating its special
role.
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6.3. Concluding remarks

The presentpaperprovidesa largenumberof suggestionsfor notationandterminology.These
suggestionsare basedon notionsand operationsthat are currently in use in N-way analysis.
Somenotions,e.g.symmetryof (hyper)cubicarrays,havebeenignoredgiven their ratherhigh
complexity and limi ted use.The sameholds for operationsthat rearrangeN-way arraysinto
M-way arrays.The two mostcommonof thesearevectorizationandmatricization(hencewith
M = 1 and M = 2 respectively),and thesecan indeed be expectedto remain the two most
common rearrangingoperations,because they are sufficient prerequisitesfor using matrix
algebra.However,arrangingN-way arraysinto three-wayarrays may becomequite common
too, and so may other operations.For arranging tensors into three-way arrays, the term
‘ternarizing’ would seemappropriate(as a ternaryarray is sometimesusedto denotea three-
way array), but we are not awareof similar terminologicalpossibilitiesfor arranging tensors
into four- or higher-wayarrays.It shouldbe noted that, as for matricizing, for ternarizingit
would be necessaryto indicatespecificallywhich modesare combinedand how this is done
(seeSection2⋅7).

Obviously, the presentpaperon notation and terminology is basedon subjectivechoices
that may not alwaysbe deemed most fortunateor useful. However, the aim of this paperis
that the notationschemeset out heresets‘a default’: when thereare no reasonsto choosea
different notation scheme,use the presentone. The use of a common notation schemeis
expectedto increasereadabilityof multiway literatureby enhancingrecognizabilityof model
formulations.
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APPENDIX: OVERVIEW OF NOTATION

X, Y N-way arrays
I ‘unit superdiagonal’tensor
Xa, Xb, Xc,… or X1, X2, X3, … matricizedversionsof X
Vec() vectorizedversionof a matrix
i, j, k, … or i1, i2, i3,… runningindicesfor respectivemodes
I, J, K, … or I1, I2, I3,… sizesof respectivemodes
G corearrayin Tuckermodel
A, B, C,… or A1, A2, A3,… componentmatricesfor respectivemodes
p, q, r,… or p1, p2, p3,… runningindicesfor componentsfor respectivemodes
P, Q, R,… or P1, P2, P3,… numbersof componentsfor respectivemodes
S, T, U … or S1, S2, S3,… rotationmatricesfor respectivemodes
�i, �j, 
k, … additivetermsfor respectivemodes
��ij , �
ik, ��
ijk, etc. examplesof additiveinteractionterms
6 Kroneckerproduct
� columnwiseKroneckerproduct(Khatri–Raoproduct)
* elementwiseor Hadamardproduct
�n moden multiplication
X1 = A1G1(AN'6…6A3'6A2')� E1 mode1 matricizedversionof N-way Tuckermodel
X1 = A1(AN�…�A3�A2)'� E1 mode1 matricizedversionof N-way CPmodel
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