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Bootstrap confidence intervals for three-way methods
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Results from exploratory three-way analysis techniques such as CANDECOMP/PARAFAC and

Tucker3 analysis are usually presented without giving insight into uncertainties due to sampling.

Here a bootstrap procedure is proposed that produces percentile intervals for all output parameters.

Special adjustments are offered for handling the non-uniqueness of the solutions. The percentile

intervals indicate the instability of the sample solutions. By means of a simulation study it is

demonstrated that the percentile intervals can fairly well be interpreted as confidence intervals for

the output parameters. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For the analysis of three-way data sets (e.g. data with scores

of a number of environmental stations on a number of

variables under a number of conditions, or spectral profiles

of a number of samples for a number of emission wave-

lengths and a number of excitation wavelengths), various

exploratory three-way methods are available. The two

most common methods for the analysis of three-way

data are CANDECOMP/PARAFAC [1,2] and Tucker3

analysis [3,4]. Both methods summarize the data by compo-

nents for all three modes, and for the entities pertaining to

each mode they yield component loadings; in the case of

Tucker3 analysis, in addition, a so-called core array is given

which relates the components for all three modes to each

other.

If we denote our I� J�K three-way data array by X, then

the two methods can be described as fitting the model

xijk ¼
XP
p¼1

XQ
q¼1

XR
r¼1

aipbjqckrgpqr þ eijk ð1Þ

where aip, bjq and ckr denote elements of the component

matrices A (for mode A), B (for mode B) and C (for mode

C) of orders I�P, J�Q and K�R respectively, gpqr denotes

the element (p,q,r) of the P�Q�R core array G, eijk denotes

the error term for element xijk, and P, Q and R denote the

numbers of components for the three respective modes. The

difference between CANDECOMP/PARAFAC and Tucker3

analysis is that in CANDECOMP/PARAFAC the core is

actually set equal to a superidentity array (i.e. with gpqr¼ 1

if p¼ q¼ r, gpqr¼ 0 otherwise). As a consequence, in the case

of CANDECOMP/PARAFAC we have the same number

of components for all modes, and Equation (1) actually

reduces to

xijk ¼
XR
r¼1

airbjrckr ¼ eijk ð2Þ

Clearly, when these models are fitted to data, we end up

with component matrices A, B and C and, in the case of

Tucker3 analysis, we also get a three-way core array as

outcome of the analysis.

Often the analyses are applied to data pertaining to a

sample from a larger population, and usually the results for

the sample are assumed to be, at least to some extent,

generalizable to the population from which the sample was

drawn. In the practice of three-way analysis the general-

izability issue is usually dealt with by means of either cross-

validation or split-half comparisons (see e.g. Reference [5]).

However, neither procedure gives concrete estimates of the

uncertainties due to sampling fluctuations of all parameters

in our solutions.

There are techniques that do give uncertainty estimates for

three-way analysis solutions, but most of these are based on

analyzing derived rather than original data. For instance,

Bentler and Lee [6], and McArdle and Cattell [7] proposed

techniques for maximum likelihood fitting of the covariance

matrices associated with the Tucker3 and the CANDECOMP/

PARAFAC model respectively. These approaches ‘automa-

tically’ yield standard errors for all parameters that are

estimated, provided that appropriate distributional assump-

tions are made and the models are completely identified.

However, for the direct analysis (i.e. where the data rather

than their covariances are analyzed), very few attempts have

been made so far to provide estimates of the uncertainties of

all parameters in three-way analysis solutions. In fact, in the

case of direct analysis of the data, no theoretically derived
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standard errors seem to be available, and the best way seems

to be to resort to resampling techniques such as the bootstrap

or the jackknife [8]. In the literature, as far as is known to the

author, the bootstrap has been used in three-way methods

only for determining the instability of fit measures of a

Tucker3 solution [9] over five bootstrap samples, but no

attempt was made to offer standard errors or confidence

intervals. An approach that does yield standard errors has

been proposed by Riu and Bro [10], who offer a jackknife

procedure for estimating standard errors for CANDECOMP/

PARAFAC solutions. The jackknife can be seen as an approx-

imation to the bootstrap (see Reference [8], pp. 145–146); in

general, the bootstrap can be expected to be the more efficient

of the two procedures (see Reference [8], p. 146). Therefore

here we will focus on the bootstrap rather than the jackknife.

The use of the jackknife by Riu and Bro [10], however, also

offered further possibilities, e.g. outlier detection, which are

less easy to combine with the bootstrap.

The main purpose of the present paper is to describe how

to obtain uncertainty estimates, in the form of confidence

intervals, for all parameters resulting from a three-way

analysis (CANDECOMP/PARAFAC or Tucker3), by means

of the bootstrap. The application of the bootstrap itself is

relatively straightforward, as described in Section 2. The

more challenging aspect is how to deal with the under-

identification in the CANDECOMP/PARAFAC model and

especially in the Tucker3 model. One solution would be to

simply fully identify the model, but, as will be seen, this

leads to procedures that may give undesirably wide con-

fidence intervals. As will be shown in Section 3, this problem

can be solved by effectively exploiting the transformational

freedom in the solutions. In Section 4 the procedure is

illustrated for the Tucker3 analysis of an example data set.

In Section 5 the quality of the ensuing confidence intervals is

evaluated by means of an extensive simulation study. Fi-

nally, in Section 6 the computational feasibility of the com-

puter-intensive bootstrap method is dealt with and a simple

and effective way of speeding up the procedure is suggested

and evaluated empirically.

2. THE BOOTSTRAP FOR DETERMINING
CONFIDENCE INTERVALS

The bootstrap was introduced by Efron [11] as a method for

estimating standard errors for arbitrary statistics computed

in a sample drawn from a population. He also proposed the

bootstrap percentile interval, which is often used as a (some-

what crude) estimate of a confidence interval. Improvements

of the bootstrap percentile interval have been proposed,

most notably the BCA method (see Reference [8], Chap. 14),

but we will ignore this procedure here, because its general-

ization to situations with rotational freedom does not seem

straightforward.

The basic idea of the bootstrap is to mimic the sampling

process that generated our actual data sample, as follows

(see Figure 1 for a schematic overview). We suppose here

(and in the sequel) that the entities in mode A (e.g. the

different mixtures for which we have data) are considered a

random sample from a population of such entities (i.e. the

population of all conceivable mixtures). Then with the boot-

strap procedure we investigate what could happen if we

consider our sample as a population and if we randomly

(re)sample from this ‘pseudo population’. In fact, we con-

sider the distribution of score profiles in our actual sample as

an optimal estimate of the distribution of such profiles in our

population and we consider what could happen upon fre-

quently randomly sampling from this population. In prac-

tice, if our three-way data set of order I� J�K is denoted by

X and the score profiles are denoted by Xi, which is a matrix

of order J�K, then we randomly draw (with replacement) I

matrices Xi from the set of matrices {X1, . . . , XI}. This creates

one bootstrap sample (in which some matrices occur repeat-

edly and others not at all) which is then reorganized into a

three-way array. This bootstrap sample then represents one

case of ‘what could happen if we randomly sample from our

pseudo population’. To get an impression of ‘what else’

could happen or, more generally, of what can happen under

sampling fluctuation, we need many such bootstrap sam-

ples. Hence this procedure is to be repeated, for instance, 500

times. As a result we will get 500 bootstrap samples, asso-

ciated with which are 500 three-way arrays. Now to each

three-way array we apply a three-way analysis method in

exactly the same way as we applied it originally to our sample

(hence including the preprocessing procedure we use), and

we compute the statistics we are interested in. These statis-

tics can, for instance, be the fit or the misfit of a particular

model, the loading of an entity on a particular component, or

the correlation between components. Let the statistics of

interest be collected in a single vector h. The vector of

outcomes for our original sample is denoted as hs, whereas

those for the bootstrap samples are denoted as hb, b¼ 1, . . . ,

B, where B denotes the number of bootstrap samples drawn

(e.g. B¼ 500). Now the variation in the B bootstrap sample

outcome vectors indicates how and how much the outcome

vectors vary if we randomly resample from our pseudo

population, and this is used as an estimate of how much

real samples from our real population can be expected to

vary if we sample repeatedly from our actual population.

Specifically, in the bootstrap procedure the variation across

the outcome vectors hb, b¼ 1, . . . , B, is considered indicative

of the variation of vectors hs if we repeatedly sample from

the population.

A simple way to describe the variation across the boot-

strap sample outcomes is to give, for each parameter sepa-

rately, a percentile interval (e.g. a 95% percentile interval)

which describes the range in which we find the middle 95%

values of the parameter at hand. For instance, if we look at

the model fit of a particular model, which we denote by f,

then we have B bootstrap values fb, b¼ 1, . . . , B; we sort these

Figure 1. Summaryofthebootstrapprocedure.
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and determine the values flow and fup between which 95% of

the f values lie. In the case of B¼ 800 we would search the

values flow and fup between which lie 0.95� 800¼ 760 values;

hence we must also have 20 values smaller than flow and 20

values higher than fup. Then we find flow as the average

between the 20th and the 21st sorted f value and, likewise,

we find fup as the average between the 780th and the 781st

sorted f value. In other cases, for instance when B¼ 500, we

can use actual values of fb to determine flow and fup (which

then are the 13th and the 488th sorted f value respectively).

The interval [flow, fup] gives the 95% bootstrap percentile

interval for the fit value fs; likewise, percentile intervals can

be determined for all other parameter estimates resulting

from our three-way analysis. Such intervals tell us what we

could expect to happen if we repeatedly sample from our

pseudo population: we would expect to find a value in this

interval in 95% of the cases. Thus they are useful indicators

of the stability of our solution. However, we can make a

much stronger use of them if we consider them as 95%

confidence intervals for the population values of our para-

meter. Indeed, if our statistic is more or less symmetrically

distributed across the bootstrap samples, then the halfwidth

of the interval (say h) indicates the maximal distance of the

pseudo population parameter to the bootstrap sample in

95% of the cases; if this distance is a good estimate for what

happens in the actual population, then the halfwidth of the

interval also indicates (with 95% certainty) the maximal

distance of the actual population parameter to the obtained

sample parameter. Thus, if we know with 95% certainty that

the population parameter (�) is no more than h separated

from the sample value fs, the interval [fs� h, fs þ h] is a good

95% confidence interval for the population parameter �. In

fact, percentile intervals give proper confidence intervals

whenever a monotonic transformation of the parameter

exists such that its likewise transformed sample statistic

has a normal distribution (see Reference [8], p. 173). This

assumption is somewhat reminiscent of the use of the Fisher

z-transformation to obtain a confidence interval for a corre-

lation coefficient. There the idea is that the Fisher z-trans-

formation ensures that the sample correlation is distributed

normally (under certain population distribution assump-

tions). Here we also need that such a ‘normalizing’ transfor-

mation exists, but in this case we do not have to know which,

because, if such a transformation exists, the bootstrap per-

centile intervals are correct confidence intervals, irrespective

of the shape of the transformation. Whether or not our

assumption holds in practice is hard to verify. Therefore in

a simulation study in Section 5 we will test the quality of our

percentile intervals when considered as estimates of confi-

dence intervals.

It has been described above how we can determine a

bootstrap percentile interval for any parameter in the vector

h. This was based on computing the associated value in each

bootstrap sample. This implicitly requires that such a value

is uniquely determined. For the fit (here denoted as f)

indeed that is the case: the fit of a model is uniquely

determined. However, this does not hold for most other

outcome parameters resulting from CANDECOMP/PAR-

AFAC or Tucker3 analysis. One way to deal with this

problem is to simply identify the parameters completely,

but this will require us to even identify the order of the

components and the sign of the components, which, in

practice, can be difficult. In the next section, therefore, a

different procedure will be offered to deal with transforma-

tional non-uniqueness.

3. EXPLOITING TRANSFORMATIONAL
FREEDOM TO GET BETTER BOOTSTRAP
CONFIDENCE INTERVALS

In Section 2 it has been explained how the bootstrap can be

used to produce estimates of confidence intervals for any

parameter resulting from a three-way method. However, it

has also been mentioned that this procedure requires the

output parameters to be uniquely identified. Here it will first

be discussed to what extent three-way solutions are identi-

fied and how, if so desired, we can full identify them. Next it

will be described how the bootstrap can be adjusted to

handle non-identified solutions.

3.1. Identification of three-way solutions
One of the key features of the CANDECOMP/PARAFAC

model is that it is ‘essentially’ uniquely identified [1,2,12]. By

this it is meant that the component matrices A, B and C

resulting from a CANDECOMP/PARAFAC analysis are,

under mild assumptions, unique up to a joint permutation

of the columns of the three matrices and up to scaling of the

columns of the three matrices. The latter scaling should be

such that, if column ar is multiplied by � and column br is

multiplied by �, then column cr should be multiplied by

(��)�1. The freedom of permutation and scaling is a conse-

quence of the fact that such scalings and permutations leave

the model estimates
P

r airbjrckr unaffected. A somewhat

common procedure to further identify the CANDECOMP/

PARAFAC solution is to scale components such that the

component matrices for two modes (e.g. the first two modes)

have unit column sum of squares, or such that the component

matrices for all modes have equal column sum of squares.

The order of the components can be fixed by ordering

them in descending importance, i.e. such that the column

sums of squares decrease. However, even then the solution is

not completely identified, because an arbitrary multiplica-

tion by �1 of, for instance, ar compensated by multiplication

by �1 of br does not affect the model estimates, or the sum of

squares, or the descending order of the component sum of

squares. Hence, for a full identification, one would need to

also identify the sign of the component matrices. This can be

done in various ways which are, however, all rather arbi-

trary (e.g. ensure that the column sums in the component

matrices A and B are positive).

The Tucker3 model is also not uniquely identified. In fact,

here the lack of identification is much more dramatic. As

already shown by Tucker [3], the model estimates are not

affected by arbitrarily multiplying each of the component

matrices by a non-singular square matrix, provided that the

core is multiplied appropriately by the inverse of these

transformations. Specifically, in matrix notation we can write

model (1) as

X ¼ AGðC� BÞ0 þ E ð3Þ
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where X, G and E denote the A-mode matricized versions of

X, G and E [13] respectively and � denotes the Kronecker

product. Now multiplication of the component matrices A, B

and C by S, T and U respectively does not affect the model

estimates if the core is replaced by S�1G(U�1�T�1)0. This

follows from the fact that

AS S�1GðU�1 � T�1Þ0ðCU� BTÞ0

¼ AGðU�1 � T�1Þ0ðU� TÞ0ðC� BÞ0

¼ AGðC� BÞ0 ð4Þ
Clearly, the Tucker3 model has a great deal of transforma-

tional freedom. In fact, the only identified aspect of the

solution is the set of subspaces spanned by the component

matrices. In practice, however, one wishes to interpret the

individual elements of the component matrices, or at least

their relative sizes, and for practical purposes the subspaces

have no useful meaning.

It is possible to further identify the Tucker3 solution. A

first commonly used step is to require the component

matrices to be column-wise orthonormal, which reduces

the transformational non-uniqueness to rotational non-

uniqueness. A requirement to further identify the solution

is to rotate the component matrices to what we call here the

‘principal axes’ orientation of the Tucker3 solution (equiva-

lent to what Kroonenberg [14], pp. 152–153, called the ‘basic

output’ from the analysis). This solution has the property

that the component matrices then contain eigenvectors of

particular matrices, e.g. A contains eigenvectors of

X(C�B)(C�B)0X0; B and C contain eigenvectors of similarly

defined matrices. The components are ordered naturally in

the order of the eigenvalues associated with such eigenvec-

tors. In this way the components are ordered in terms of

importance. Thus the principal axes solution identifies the

rotation of all component matrices, as well as their permuta-

tion. What remains is to identify the sign of the columns

of component matrices, which can now be done as in

CANDECOMP/PARAFAC.

The principal axes solution has nice theoretical properties

but is usually not easy to interpret. Often some kind of

interpretation enhancing rotation is used, e.g. simple struc-

ture rotation of the core and component matrices [15]. By

means of simple structure rotation one can identify the

Tucker3 solution up to permutation and scaling, and we

thus end up in the same situation as with CANDECOMP/

PARAFAC. To further identify the solution, we can use

the same steps for identification as with CANDECOMP/

PARAFAC.

It has been shown above how the CANDECOMP/

PARAFAC solution and the Tucker3 solution can be identi-

fied completely. If we use exactly the same identification

procedure for all bootstrap solutions then we can compare

bootstrap solutions, and sensibly compute percentile inter-

vals, and use these as estimates of confidence intervals for

our parameters. However, in doing so, we imply that in our

actual data analysis we consider as our solution only the one

that we get from the exact same identification procedure. As

a consequence, if we have two samples from the same

population and we analyze both in exactly the same way,

and it so happens that the solutions are almost identical but

have a different ordering of the columns, then we would not

recognize this near identity of the solutions. To make the

example a bit more concrete, suppose the first sample gives a

CANDECOMP/PARAFAC solution with component ma-

trices A¼ (a1 a2), B¼ (b1 b2) and C¼ (c1 c2), where the

components are ordered in descending sum of squares; let

us further assume that vectors a1 and a2, b1 and b2, and c1

and c2 differ considerably, leading to entirely different

interpretations of the components. Now suppose the

scaling ensures that ||a1||
2¼||b1||

2¼||a2||
2¼||b2||

2¼ 1 and

||c1||
2 is slightly higher than ||c2||

2. Then the second sample

could give a solution A¼ (a2þ e1 a1þ e2), B¼ (b2þ e3

b1þ e4) and C¼ (c2þ e5 c1þ e6), where e1, . . . ,e6 denote vec-

tors of appropriate order and with relatively small elements;

the order of the components has changed because, appar-

ently, ||c2þ e5||
2 is slightly higher than ||c1þ e6||

2. Now com-

paring these two solutions, as far as interpretation is

concerned, we conclude that we have roughly the same

solutions: one dimension with component vectors roughly

equal to {a1, b1, c1} and one with component vectors roughly

equal to {a2, b2, c2}. However, if we compare the first

components with the first and the second components with

the second in the two fully identified solutions, we would

here conclude that we are dealing with two entirely different

solutions. Thus, if for such data, where the first and second

components are roughly equally important, we use fully

identified solutions with the bootstrap procedure, we would

get roughly half of the bootstrap solutions resembling

A¼ (a1 a2), B¼ (b1 b2) and C¼ (c1 c2), whereas the others

would more resemble the ‘reverse’ solution A¼ (a2 a1),

B¼ (b2 b1) and C¼ (c2 c1). In such cases, all bootstraps

would actually pertain to very similar solutions, and a

proper conclusion would be that the sample solution is

very stable across bootstrap sampling. However, if we

compute percentile intervals, we would get very broad

intervals, because for each component value the bootstrap

solutions do differ considerably (resembling either

A¼ (a1 a2), B¼ (b1 b2), C¼ (c1 c2), or A¼ (a2 a1),

B¼ (b2 b1), C¼ (c2 c1) ), and we would then conclude that

the solution is very unstable owing to sampling fluctuation.

However, in this case the sampling fluctuation is only caused

by the, for interpretational purposes uninteresting, identifi-

cation of the solution.

A similar situation may arise if we identify the sign of

components by requiring column sums to be positive; then,

if some such column sums are close to zero, the identification

may lead to differences across bootstrap samples that are

merely caused by the identification and not by differences

that pertain to really different solutions. Therefore, for

interpretational purposes, we should not ‘overidentify’ our

solution, but rather use the transformational freedom in the

three-way solutions in such a way that the bootstrap proce-

dure makes appropriate comparisons of bootstrap solutions.

3.2. Using freedom of scaling and permutation
In Section 3.1 it has been described how overidentification of

a solution can lead to percentile intervals that are much too

broad. In fact, it was described that bootstrap solutions that

are similar up to a permutation and scaling should indeed be

considered as similar also when we compute percentile

intervals. This can be attained when we use the freedom in
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scaling and permutation of all bootstrap solutions such that

they become as similar as possible. This idea has also been

used by Riu and Bro [10] in comparing their CANDECOMP/

PARAFAC jackknife solutions. One way of doing so would

be to design a procedure that finds those scalings and

permutations that optimize the average similarity of all

bootstrap samples. A straightforward way of doing this is

by using the actual sample solution as a reference solution.

That is, by transforming all bootstrap solutions such that

they optimally resemble the sample solution, it will be

ascertained that they also resemble each other well (see

also Reference [10]). In principle, it is possible to develop a

procedure for optimizing the average similarity of all boot-

strap samples, but this would increase the necessary com-

putational effort and would also make comparison with the

actual sample solution less straightforward, so this route is

not followed here. Specifically, it is here suggested to use the

following procedure.

Let A, B and C denote the CANDECOMP/PARAFAC

solution for our actual sample data and let Ab, Bb and Cb

denote a bootstrap solution. The scale of the columns is

identified by scaling the columns of the B- and C-mode

component matrices to unit sum of squares. The A-mode is

the sampling mode, so the bootstrap sample is a sample with

replacement from the original set of A-mode entities, and

hence the matrices A and Ab are not directly comparable. We

are interested in bootstrap percentile intervals for the ele-

ments of the B- and C-mode component matrices, so the

bootstrap solutions Bb and Cb must be made optimally

comparable to B and C respectively. Then the components

in Bb and Cb are first jointly permuted such that their

columns become optimally similar to those of B and C in

the sense that

XR
r¼1

j’ðbr;b
b
rÞj j’ðcr; cbrÞj ð5Þ

is maximal over all possible joint permutations of the col-

umns of Bb and Cb; here ’(x, y) denotes Tucker’s [16]

congruence coefficient (defined as x0y/||x||||y||). The best per-

mutation is found by simply trying all permutations. Note

that in (5) the absolute values of ’ are taken so as to ensure

that the sign of the components does not affect the choice of

the optimal permutation. Next the columns of Bb and Cb are

reflected (multiplied by �1) if necessary to ensure that ’(br,

br
b) and ’(cr, cr

b), r¼ 1, . . . ,R, all become non-negative. Note

that, when these permutations and reflections are compen-

sated for in Ab, then the fit of the bootstrap solution is not

affected. Thus we have used the remaining transformational

freedom in our CANDECOM/PARAFAC solutions to make

the bootstrap solutions optimally similar to the actual sample

solution. Note that, in practice, we are not interested in Ab, so

we do not actually carry out such compensating transforma-

tions. Also note that the above procedure is not the only

procedure to make bootstrap CANDECOM/PARAFAC so-

lutions optimally similar to the actual sample solution. In

fact, Riu and Bro [10] use a different procedure, also employ-

ing the freedom in scale of the components, but now using it

to scale the components jointly such that they optimally

resemble their sample counterparts. In our procedure the

freedom in scale was ‘identified away’ by scaling the matrices

Bb and Cb to unit column sums of squares. It can be expected,

however, that this procedure will give results very similar to

the one where the freedom in scale is also used.

In Section 3.1 it was mentioned that the Tucker3 analysis

can also be identified up to permutation and scaling, by

using for instance the principal axes solution or a simple

structure rotation of the solution. In the case of Tucker3

analysis we have an actual sample solution consisting of A,

B, C and G, and bootstrap solutions Ab, Bb, Cb and Gb. Now

we want to make Bb, Cb and Gb optimally similar to B, C and

G respectively, in some sense, by again using permutations

and scalings. Usually the component matrices are scaled to

have unit sums of squares, so it remains to find permutations

and reflections of the bootstrap solutions to make Bb, Cb and

Gb optimally similar to B, C and G. Since our primary

interest is usually in the component matrices, it is chosen

here to first find optimal permutations and reflections of the

columns of Bb and Cb. Since any transformation can be

compensated in the core, we no longer need joint permuta-

tions and we can separately find the permutation of the

columns of Bb that maximizes
P

q j’ðbq;b
b
qÞj, and the reflec-

tions of these columns that make ’(bq, bq
b), q¼ 1, . . . ,Q, non-

negative, and next do analogously for the columns of Cb.

These permutations and reflections must then be appropri-

ately compensated in the core Gb. Having thus made Bb and

Cb optimally similar to B and C and compensated for these

transformations in Gb, we now use the remaining freedom

(i.e. permutation and reflection of columns of Ab and hence

rows of Gb) to make the current version of Gb optimally

similar to G. For this purpose we first permute the rows of Gb

such that
P

p j’ðgp; gbpÞj is maximal, where gp and gp
b denote

the pth transposed row of G and Gb respectively. Next we

reflect the rows of Gb as far as necessary to make ’(gp, gp
b),

p¼ 1, . . . ,P, non-negative. These permutations and reflec-

tions should be compensated in Ab, but, since we are not

interested in Ab, we do not actually carry out such compen-

sating transformations. It should again be noted that the

above procedure is not the only procedure to make such

bootstrap Tucker3 solutions optimally similar to the actual

sample solution. In fact, a criterion could have been devised

in which similarities of Bb to B, Cb to C, and Gb to G were

combined. However, the optimization of such a criterion

does not seem straightforward. Moreover, it can be expected

that such a procedure will not give very different results,

especially not when, after permutation and reflection, the

bootstrap solutions differ very little, hence when the optimal

permutations and reflections are very clearly defined.

The above procedures have employed the remaining free-

dom in CANDECOMP/PARAFAC solutions and in Tucker3

solutions in which the rotations of the component matrices

have been identified. In the next subsection, procedures are

described that exploit the full rotational and transforma-

tional freedom of the Tucker3 solution.

3.3. Using freedom of transformation
(only for Tucker3 analysis)
In Section 3.2 it has been described how Tucker3 solutions

can be first partially identified by using the principal axes

solution or a simple structure rotation, and the remaining

freedom can be used to make the bootstrap solutions
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optimally similar to their actual sample counterpart. How-

ever, it is possible that the principal axes or simple structure

identification is not as ‘strong’ as one might hope. That is, it

is possible that bootstrap solutions differ considerably even

when rotations exist that make them almost equal. For

example, it is possible that we get bootstrap solutions B1,

C1 and G1, and B2, C2 and G2 for which G1(B1�C1) and

G2(B2�C2) are very similar indeed but yet B1 and B2, and G1

and G2 are not at all similar. This is possible in the case of the

principal axes solution in the following way. Remember that

in the principal axes solution the columns of each component

matrix are eigenvectors of a particular matrix (see Section

3.1), associated with the eigenvalues of this matrix; more-

over, the eigenvectors are given in the order of the eigenva-

lues with which they are associated, and the eigenvalues are

ordered from high to low. Now, if two of the columns of B

are associated with almost equal eigenvalues, then the

ordering of the eigenvectors will not be very stable over

perturbations of the data: a small perturbation of the data

will not affect the eigenvectors themselves very much, but it

may reverse the order when the size of the associated

eigenvalues happens to reverse in order. Hence, if bootstrap

samples are drawn, for some bootstrap samples the columns

of B will be similar to those in the original matrix B, but for

others the columns of B have reversed order. This reversed

order will also affect the core matrices (because these depend

on B), and this will ensure that, when B1 and B2 become quite

different only owing to such near equality of eigenvalues,

G1(B1�C1) and G2(B2�C2) are still very similar. In the case

of a simple structure rotated solution a similar thing may

happen when two rather different simple structure rotations

lead to roughly the same value of the simplicity criterion

optimized by the simple structure rotation procedure. Then

in some bootstraps the one orientation will be found, in

others the other.

We have seen above that bootstrap Tucker3 solutions may

differ considerably even when the model parts G1(B1�C1)

and G2(B2�C2) are very similar. If one very strictly adheres

to the interpretation entailed by the principal axes solution

or the particular simple structure solution that was obtained,

then such differences are important differences across boot-

straps. However, more often one will consider such boot-

strap solutions as in fact very similar. To handle this

situation, it is appropriate to consider as similar all bootstrap

solutions that are similar after an optimal transformation

towards each other or to a reference solution. This idea has

repeatedly been used in bootstrap or jackknife procedures

for two-way analysis techniques [17–21]. The two-way tech-

niques cannot as such be used in the three-way situation.

Therefore, here, two new procedures for transformations to

make three-way bootstrap solutions optimally similar to the

sample solution will be proposed. The first uses ‘only’

rotational freedom (leaving intact the orthonormality of the

component matrices); the other uses the full transforma-

tional freedom in the Tucker3 model.

3.3.1. Exploiting rotational freedom
Let a Tucker3 solution be given by A, B, C and G, and

bootstrap solutions be indicated by Ab, Bb, Cb and Gb. As in

the usual solutions the component matrices are column-wise

orthonormal. Now we want to transform Bb, Cb and Gb such

that they become optimally similar to B, C and G respec-

tively and remain column-wise orthonormal. Thus we search

for orthonormal rotation matrices S, T and U such that BbT,

CbU and S�1G(U�1�T�1)0 ¼S0G(U�T) become optimally

similar to B, C and G respectively. As in the case of finding

optimal permutations and reflections for Tucker3 solutions,

we primarily focus on the similarity of the bootstrap com-

ponent matrices to their actual sample counterparts, and

only after that on the similarity of the bootstrap core to the

actual sample core. Specifically, we first find the (orthonor-

mal) rotation matrices T and U that minimize

f1ðTÞ ¼ jjBbT� Bjj2 ð6Þ

and

f2ðUÞ ¼ jjCbU� Cjj2 ð7Þ

The optimal T and U are obtained via the singular value

decompositions B0Bb¼PTDTQT
0 and C0Cb¼PUDUQU

0 as

T¼QTPT
0 and U¼QUPU

0; see Reference [22] or Reference

[23] for a formulation in terms of eigenvectors. Thus Bb will

be replaced by BbT, and Cb by CbU. These rotations do not

affect the fit if they are compensated for in the core. This is

done by replacing the core Gb by Gb(U�T). Next the

rotational freedom of Ab is used to make the resulting Gb

optimally similar to the actual sample core matrix G. This is

done by minimizing

f3ðSÞ ¼ jjS0Gb �Gjj2 ð8Þ

over orthonormal matrices S. The optimal S is obtained via

the singular value decomposition GGb0 ¼PSDSQS
0 as

S¼QSPS
0. Hence Gb is replaced by S0Gb and, to ensure

that the fit is not affected, Ab is replaced by AbS, although

the latter does not have to be carried out in practice, since we

do not use Ab.

This concludes the description of our procedure for exploit-

ing rotational freedom to make bootstrap Tucker3 solutions

(in a particular sense) optimally similar to the actual sample

solution. The ensuing rotated bootstrap solutions are then

used for computing percentile intervals (and hence estimated

confidence intervals) for all parameters in the sample. It

should again be noted that the above procedure is not the

only procedure to make such bootstrap Tucker3 solutions

optimally similar to the actual sample solution. In fact, a

criterion could have been devised in which similarities of Bb

toB, Cb toC, andGb to G were combined, but the complexities

of such an approach have been avoided here, because again

little gain is expected by such a more complex procedure.

3.3.2. Exploiting full transformational freedom
Although using column-wise orthonormal component ma-

trices is rather common in the practice of Tucker3 analysis,

there is no intrinsic reason to do so. As we have seen in (4), the

Tucker3 model is unaffected by a joint non-singular transfor-

mation of the component matrices and the core. This trans-

formational freedom can be exploited for making bootstrap

solutions optimally comparable, by a simple adjustment of

the procedure sketched in Section 3.3.1, as follows.

We want to transform Bb, Cb and Gb such that they become

optimally similar to B, C and G respectively; thus we search
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for non-singular matrices S, T and U such that BbT, CbU and

S�1G(U�1�T�1)0 become optimally similar to B, C and G

respectively. As in Section 3.3.1, we primarily focus on the

similarity of the bootstrap component matrices to their actual

sample counterparts, hence we first find the non-singular

matrices T and U that minimize (6) and (7) over arbitrary

matrices T and U, which will in practice turn out to be non-

singular always. The optimal T and U are then obtained by

ordinary regression as

T ¼ ðBb0BbÞ�1Bb0B ð9Þ
and

U ¼ ðCb0CbÞ�1Cb0C ð10Þ
Thus Bb will be replaced by BbT, and Cb by CbU, and these

transformations are compensated for in the core by replacing

the core Gb by Gb(U�1�T�1)0. Next the rotational freedom of

Ab is used to make the resulting Gb optimally similar to the

actual sample core matrix G by minimizing ~SSjjGb �Gjj2 over

arbitrary matrices ~SS. The solution for ~SS (again obtained by

ordinary regression) is given by

~SS ¼ GGb0 ðGbGb0 Þ�1 ð11Þ

Hence Gb is replaced by ~SSGb and, to ensure that the fit is not

affected, Ab is replaced by Ab~SS�1, although the latter again

need not be carried out in practice, since we do not use Ab.

The present procedure using full transformational free-

dom has the advantage over the procedure using only

rotational freedom that it uses all freedom available in the

bootstrap solutions. However, in practice it may sometimes

turn out to be problematic, because it is possible that the

transformation matrices become nearly singular, and then

the inverses of such matrices become highly unstable. There-

fore, particularly in this case, a procedure that would simul-

taneously optimize similarities of Bb to B, Cb to C, and Gb to

G might turn out to give different and sometimes better

results. However, in this case the problem of maximizing

such a criterion seems most difficult. Again such difficulties

are avoided here. Instead it is tested how well these proce-

dures work, and if they seem to work well in practice, there

may be little need to improve upon the methods.

3.4. Interpreting percentile intervals as
estimates of confidence intervals
Four procedures have been described above for computing

bootstrap percentile intervals for all parameters resulting

from a CANDECOMP/PARAFAC or Tucker3 solution.

These percentile intervals are considered estimates of con-

fidence intervals. This means that, if we have a 95% percen-

tile interval, we would like to conclude from this that with

95% certainty it contains the true population parameter. If

we work with fully identified solutions, then it is clear what

the actual population parameters refer to. However, in the

present section we have used different forms of transforma-

tional freedom, and we should obviously take this into

account when interpreting our percentile intervals as esti-

mates of confidence intervals. For the three situations the

interpretations are as follows.

If we only allow for permutations and reflections of the

components, then we expect that, in 95% of all possible

samples from our population, after optimal permutations

and reflections of the population components towards the

sample components, the population parameters will fall in the

confidence intervals we set up. It may come as a surprise to

find in our statement that the population components are to be

transformed optimally towards the sample components. The

reason is that the sample solution is the only solution that we

actually have, and hence we are forced to take this solution as

our reference solution. Our confidence intervals will necessa-

rily be built around this sample solution. Therefore, if we

want to describe to what extent the unknown population

solution agrees with a confidence interval, we have to imagine

that the population solution will be transformed towards the

sample solution (and not the other way around).

If we allow for rotation of the component matrices and the

core, then we expect that, in 95% of all possible samples from

our population, after optimal rotation of the population

component matrices and core towards their sample counter-

parts, the population parameters will fall in the confidence

intervals we set up. Likewise, if we allow for non-singular

transformations of the component matrices and the core,

then we expect that, in 95% of all possible samples from our

population, after optimal non-singular transformations of

the population component matrices and the core towards

their sample counterparts, the population parameters will

fall in the confidence intervals we set up.

4. AN APPLICATION: BOOTSTRAP
CONFIDENCE INTERVALS FOR
RESULTS FROM A TUCKER3 ANALYSIS

To give an impression of the kind of confidence intervals that

one can get with a three-way analysis, bootstrap confidence

intervals were computed for the results from a Tucker3

analysis reported by Kiers [24]. The data set was described

by Nomikos and MacGregor [25]. It consists of (simulated)

measurements on 52 batches (A-mode) with respect to nine

variables (B-mode) at 200 consecutive time points with 5 min

intervals (C-mode). The first 50 batches are more or less

‘normally behaving’ batches, whereas the 51st and 52nd are

known to behave abnormally. The nine variables, as de-

scribed by Nomikos and MacGregor [25] are: (1) flow rates of

styrene, (2) flow rates of butadiene, (3) temperature of the

feeds, (4) temperature of the reactor, (5) temperature of the

cooling water, (6) temperature of the reactor jacket, (7)

density of the latex in the reactor, (8) total conversion and

(9) instantaneous rate of energy release.

Just as in Reference [24], the data were preprocessed by

centering across the 52 batches and by normalizing each of

the variables (i.e. across batches and time points) such that

for each variable the sum of squares was unity. The thus

preprocessed data were analyzed by Tucker3 analysis using

two components for each mode, which was considered the

most fruitful choice by Kiers [24]. The Tucker3 solution gave

a fit percentage of 22.0%. To identify the solution, here it was

chosen to first rotate the matrices A and B to simple structure

by means of varimax; the matrix C was not rotated to simple

structure, because this is usually inappropriate for com-

ponents referring to a time mode. Instead the remaining

rotational freedom was used to rotate C such that the core

was as simple as possible according to the varimax criterion.
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The resulting solutions for the variable component matrix

B and the time component matrix C are given in Table I and

Figure 2 respectively. The core array is given in Table II. It

can be seen that the variable component matrix has a clear

simple structure (as emphasized by the loadings higher than

0.50 in absolute sense being set in bold-face). The first

component is mainly related to the density of the latex and

the total conversion, while the second is mainly related to

some of the temperatures and (inversely) to the rate of

energy release. The time components differ mainly in that

the first gives a rather stable overall trend, while the second

is more fluctuating. The core array has various high ele-

ments; an interpretation of these is not given here, since this

would take us too far from our main goal now, which is

illustrating the use of bootstrap percentile intervals.

To obtain bootstrap percentile intervals, the procedure

described in Section 3.3.1 was used. Here we consider the

batches as a random sample from a population, and there-

fore 500 bootstrap samples were drawn from the sample of

52 batches. For each of these bootstrap samples the same

preprocessing and the same Tucker3 analysis were carried

out as for the original sample. Next the bootstrap sample

solutions were optimally rotated towards the original sam-

ple solution by the procedure described in Section 3.3.1.

Finally, 95% percentile intervals were obtained for each

element of the variable component matrix B, the time com-

ponent matrix C and the core array. The resulting 95%

percentile intervals for the elements of B and the core are

given in brackets in Tables I and II. It can be seen that the

loadings that play a key role in the interpretation of the B-

mode components usually have fairly small percentile inter-

vals (compared with their sizes) and hence seem rather

accurate estimates of the population loadings; the main

exception to this is the second loading of rate of energy

release. On the other hand, some of the small loadings have

broad percentile intervals, in particular the second loading of

flow rates of butadiene, which was only 0.12 in the sample

but has a percentile interval running from 0.01 to 0.48. If

these percentile intervals are to be interpreted as confidence

intervals, it can be concluded that the first component seems

a rather accurate estimate of the first population component,

while the second is a little less accurate, especially as far as

the contributions of flow rates of butadiene and rate of

energy release are concerned.

As to the core array, most percentile intervals tend to be

rather wide, hence most core values are not very stable; the

clearest exception is the highest value in the top left, which is

by far the highest, even if we consider the lower bound of its

percentile interval. Furthermore, it can be seen that most

percentile intervals indicate that the sign of the core value

can be taken seriously: in only one case (the core value 6.5)

does the interval start negatively and end positively.

For the time component matrix (C) the lower and upper

bounds of the 95% percentile intervals are drawn in the left-

and right-hand plots in Figure 3, with the original compo-

nent values plotted in between them. Thus we get confidence

bands for the time component values. Clearly the bands for

the second component are much wider than those for the

first. Moreover, for the second component the bands are

remarkably wide in the first time period and gradually

converge as time proceeds.

Table I. Variable componentmatrix fromTucker3 analysisof NomikosandMacGregor [25] data, with 95%percentile intervalsinbrackets

Flow rates of styrene �0.01 [�0.09, 0.06] �0.00 [�0.10, 0.10]
Flow rates of butadiene �0.10 [�0.16, 0.12] 0.12 [0.01, 0.48]
Temperature of feeds 0.00 [�0.03, 0.02] �0.00 [�0.05, 0.03]
Temperature of reactor �0.03 [�0.14, �0.01] �0.04 [�0.29, �0.02]
Temperature of cooling water 0.03 [�0.02, 0.05] 0.58 [0.48, 0.62]
Temperature of reactor jacket 0.03 [�0.05, 0.07] 0.62 [0.47, 0.69]
Density of latex in reactor 0.78 [0.69, 0.82] 0.06 [�0.06, 0.13]
Total conversion 0.62 [0.56, 0.70] �0.08 [�0.19, 0.03]
Rate of energy release 0.04 [�0.03, 0.15] �0.50 [�0.60, �0.27]

Figure 2. Plot of time components from Tucker3 analysis of
NomikosandMcGregor [25] data.

Table II. Corearray fromTucker3 analysisofNomikosandMacGregor [25] data, with 95%percentile intervalsinbrackets

Time component 1 Time component 2

Var. comp. 1 Var. comp. 2 Var. comp. 1 Var. comp. 2

Batch component 1 104.6 [84.7, 115.0] �31.4 [�53.9, �10.4] 6.5 [�8.4, 23.3] 20.3 [4.5, 43.7]
Batch component 2 �21.7 [�45.6, �6.9] 61.6 [21.3, 84.8] �49.8 [�73.7, �8.2] 38.7 [27.5, 66.9]
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The present analyses were not meant to give an in depth

analysis of the data set considered here, but to demonstrate

how bootstrap percentile intervals can be obtained and what

they may look like. The main question, however, still is how

well these percentile intervals approximate confidence inter-

vals. This has been investigated by means of the simulation

study reported in the next section.

5. A SIMULATION STUDY FOR
EVALUATING THE QUALITY OF
BOOTSTRAP CONFIDENCE INTERVALS

5.1. Main study
5.1.1. Design
Several bootstrap procedures have been proposed above for

obtaining percentile intervals for the parameters resulting

from a CANDECOMP/PARAFAC or Tucker3 solution, and

in Section 3.4 it has been described how these are to be

interpreted as estimated confidence intervals of population

parameters. That is, if we have a 95% percentile interval, we

would like to conclude from this that with 95% certainty it

contains the true population parameter (after proper trans-

formation of the population solution). To test whether the

percentile intervals work as such, a simulation study was set

up in which a number of population data sets were created

and analyzed by CANDECOMP/PARAFAC or Tucker3

analysis, samples were drawn from this population, the

sample data were analyzed by CANDECOMP/PARAFAC

or Tucker3 analysis, a bootstrap confidence interval was

computed for each element of the solution of each sample,

and each time it was checked for each population parameter

whether it fell in the interval or not. If this held for approxi-

mately 95% of the cases that we checked, then the coverage of

our interval would be approximately correct.

The first step in the simulation study was to create

population data and a population solution for these data.

This was done as follows. First, for each population a

(10 000�P) matrix A with elements drawn randomly from

the standard normal distribution was created, and fixed

matrices B (J�Q), C (K�R) and, in the case of Tucker3,

also a core array G (P�QR) were constructed in various

different ways to cover a diversity of possible data situations.

Specifically, for Tucker3 the following six choices for the

sizes of these matrices were used.

1. J¼ 4, K¼ 6, P¼ 2, Q¼ 2, R¼ 2.
2. J¼ 8, K¼ 20, P¼ 2, Q¼ 2, R¼ 2.
3. J¼ 4, K¼ 6, P¼ 3, Q¼ 3, R¼ 3.
4. J¼ 8, K¼ 20, P¼ 3, Q¼ 3, R¼ 3.
5. J¼ 4, K¼ 6, P¼ 4, Q¼ 3, R¼ 2.
6. J¼ 8, K¼ 20, P¼ 4, Q¼ 3, R¼ 2.

The component matrices B and C were usually taken such

that they had a reasonably simple structure. An example is

C ¼ 1 0:8 0:6 0 0 0
0 0 0 0:6 0:8 1

� �0

In one case, however, as indicated later, these matrices were

taken to be rather smooth, e.g.

C ¼ 1 0:8 0:6 0:4 0:2 0
0 0:2 0:4 0:6 0:8 1

� �0

The 2� 2� 2 core was taken equal to

G ¼ 1 0
0 1

0 1
�1 0

��

the 3� 3� 3 core was

G ¼
1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0
@

1
A

and the 4� 3� 2 core was

G ¼

1 0 0
0 1 0
0 0 1
0 0 0

0 0 0
1 0 0
0 1 0
0 0 1

0
BB@

1
CCA

In the case of CANDECOMP/PARAFAC, only choices

1, . . . , 4 for the sizes of the matrices were possible; choices

5 and 6 are impossible, because in CANDECOMP/PAR-

AFAC the number of components must be the same for all

modes. For CANDECOMP/PARAFAC the component

matrices were always chosen rather smooth. To be able to

use one general set-up including a core matrix, for CANDE-

COMP/PARAFAC we used as matrix G the matricized

version of the superidentity core array.

Figure 3. Plotsof 95%percentileintervalsfor timecomponents1 (left) and2 (right) fromTucker3analysisofNomikos
andMcGregor [25] data.
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As described above, Tucker3 population data were often

based on component matrices with simple structure, whereas

CANDECOMP/PARAFAC data were only based on rather

smooth component matrices. The reason for this is that

CANDECOMP/PARAFAC applications often involve

several smooth modes (e.g. spectra), whereas in Tucker3

applications finding simple components is often a useful

objective; this is not to say, however, that the reverse situa-

tions cannot be encountered. To get some comparative in-

formation, for one particular method, data were generated

based on both smooth and simple components, as explained

below.

From the component matrices and core array obtained as

described above, population data were computed as

X ¼ AGðC� BÞ0 þ "N ð12Þ

where N is a 10 000� JK matrix with elements drawn ran-

domly from a standard normal distribution, which are next

multiplied by a scalar such that ||AG(C�B)0||¼||N||; the

scalar " denotes the error level parameter, which was chosen

equal to 0.3, 0.6 or 1.0. The data in (12) represent the

population data.

The thus constructed population data were next analyzed

by Tucker3 or CANDECOMP/PARAFAC. To mimic what is

done in practice, the data were preprocessed before analysis.

A common procedure for preprocessing in practice is to

center across the mode representing the observation units,

mode A, and to normalize within the mode representing the

variables (which here is arbitrarily chosen to be mode B).

Therefore here we always center across mode A and normal-

ize within mode B.

To the thus preprocessed population data, CANDECOMP/

PARAFAC or Tucker3 analysis was applied to obtain the

population parameters for B, C and, in the case of Tucker3, G.

These were denoted as Bpop, Cpop and Gpop. To keep compu-

tations feasible, in both cases only a single, rationally started,

run of the common alternating least squares algorithm was

used, with as convergence criterion that the difference be-

tween consecutive least squares loss function values became

less than 10�4%; in the case of CANDECOMP/PARAFAC the

maximal number of iterations was set at 10 000.

From each of the above defined populations, random

samples were drawn of different sizes (I¼ 20, 50 or 100),

and on these sample data, exactly the same procedure was

applied as to the population data (i.e. the same preproces-

sing step and the same algorithm, with the same settings).

The solutions were denoted as Bs, Cs and Gs. Next, 95%

percentile intervals were constructed using each of the

procedures described in Section 3 (again using the same

preprocessing steps and the same algorithms), in each case

using B¼ 500 bootstrap samples. For the resulting 95%

percentile intervals their relative widths (i.e. the width

divided by the mean absolute value of the matrix at hand)

were recorded and, most importantly, it was recorded

whether, after optimally transforming the population solu-

tion towards the sample, the confidence interval contained

the population parameter. Specifically, the population solu-

tion was transformed to the sample solution in the very same

way as the bootstrap solutions were transformed towards

the sample solution; the only difference was that, to take into

account that the normalization of A (as used in Tucker3) has

different effects in the population than in the sample and will

hence affect the size of the population core elements, the

population core elements were adjusted for this size differ-

ence by multiplying them by (I/10 000)1/2. The coverage and

the relative interval width were assessed for each element of

each matrix, and for each matrix the average interval width

and the percentage of covered population parameters were

recorded. In addition, for each bootstrap analysis the com-

putation time was recorded.

It has been described above that population data were

constructed based on six (for Tucker 3) or four (for

CANDECOMP/PARAFAC) size conditions. In each condi-

tion, 10 different population matrices were constructed for

each of the three noise levels, so for a Tucker3 simulation

study, 6� 3� 10¼ 180 different population matrices were

created, whereas for a CANDECOMP/PARAFAC simula-

tion study, 4� 3� 10¼ 120 different population matrices

were created. From each of these population matrices, 10

sample matrices were drawn of size I¼ 20, 10 of size I¼ 50

and, only in the case of Tucker3, 10 of size I¼ 100. (For

CANDECOMP/PARAFAC, bootstrap analyses of this size

took very long, and hence have not been considered in the

main study here, but they are considered separately later in

Section 5.2.) Thus, in total, 5400 Tucker3 sample data sets

and 2400 CANDECOMP/PARAFAC sample data sets were

obtained. Each of these was next analyzed by the appropriate

method, followed by 500 bootstrap sample analyses. For

each different bootstrap procedure to be studied, a separate

simulation study was carried out.

For CANDECOMP/PARAFAC, only one simulation

study was carried out, employing the bootstrap procedure

described in Section 3.2. For Tucker3 the following proce-

dures were studied.

1. Tucker3 with principal axes solution, bootstraps opti-

mally permuted and reflected.

2. Tucker3 with simple structure solution, bootstraps opti-

mally permuted and reflected.

3. Tucker3 with simple structure solution, bootstraps opti-

mally rotated.

4. Tucker3 with simple structure solution, bootstraps opti-

mally transformed.

Procedures 1 and 2 have been described in Section 3.2,

procedure 3 in Section 3.3.1 and procedure 4 in Section

3.3.2. In the case of simple structure solutions, every time

the solution was chosen where B and C are optimally simple

in the varimax [26] sense, and after having compensated the

core for the varimax rotations of B and C, also the rows of the

core are rotated by varimax. Procedures 1–4 were all tested

on data constructed on the basis of simple component

matrices. In addition, procedure 1 was tested on data con-

structed on the basis of rather smooth component matrices.

5.1.2. Results

5.1.2.1. Coverage. The main criterion of interest is the

coverage percentage. This should be close to 95% for each

individual parameter. To verify this for each individual

parameter separately, we should use only samples from
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the same population, because individual parameters are not

comparable across populations (e.g. there is no relation

between the first loading of the first variable on the first B-

mode component across populations). However, from each

population we have only 10 samples of the same size and

hence only 10 comparable percentile intervals. Thus we

would have to check whether the 10 percentile intervals

contain the true parameter in 95% of the cases, which clearly

cannot even approximately be the case (at best it is 90% or

100%). Thus with 10 samples we cannot verify accurately

whether the procedure covers the population parameter in

roughly 95% of the cases. Taking more samples, if this were

practically still feasible, could be a solution, but then it

should be realized that even as many as 100 samples still

leads to a rather inaccurate assessment: if the true proportion

were 0.95, then an estimate of the standard error of a sample

proportion would be ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95 � 0:05

100

r
¼ 0:022

hence a 95% confidence interval based on this standard error

would still give a margin of � 0.05 to this proportion, or 5%

when using percentages. Given that the simulations already

take rather long, this does not seem a viable way to go.

Moreover, a priori, there does not seem to be much reason to

expect that percentile intervals for different parameters in

the same component matrix will have different coverage

properties. Therefore, rather than assessing coverage per-

centages for each individual parameter, average coverage

percentages for parameter matrices were studied. That is, for

each parameter matrix the percentage of covered population

parameters was recorded, and these percentages were used

as the criterion variable. Indeed, also these percentages

should, ideally, be equal to 95% on average.

For each cell in the design (6� 3� 3 for Tucker3 and

4� 3� 2 for CANDECOMP/PARAFAC), 100 coverage per-

centages for B, C and (only for Tucker3) G were available

(i.e. for 10 samples from each of 10 populations) for six

different procedures. Table III lists the overall average cover-

age percentages for each procedure for each parameter

matrix. It is clear from Table III that the average coverage

percentages for CANDECOMP/PARAFAC are close to the

desired 95%. In fact, this may seem almost more than

we could hope for, because the interpretation of percentile

intervals as confidence intervals depends on unverifiable

assumptions (see Section 2). However, the coverage proper-

ties could still depend strongly on various conditions, and

only happen to be close to 95% when averaged across those

conditions. Therefore it is important to qualify the results in

Table III. Detailed insight could be gained by inspecting all

54 cell means underlying each of the 17 reported average

percentages. However, analyses of variance revealed that

main effects or interaction effects in the design rarely

accounted for more than 5% (or even 1%) of the overall

variance in the coverage percentages. Thus, in the great

majority of cases, differences across conditions were small

compared with those across replications within cells. If

considerable differences across conditions were found (ac-

counting for, say, more than 5%), these were found across

the size conditions. Specifically, for the first, second and

third Tucker3 procedures (principal axes permuted/re-

flected, simple structure permuted/reflected and simple

structure optimally rotated) the difference across size con-

ditions accounted for 5.2%, 10.6% and 11.3% respectively of

the overall variance of the B-mode coverage percentages.

When inspecting average coverage percentages for each of

the size conditions (i.e. averaged across the other condi-

tions), we found that these range from 85.8% to 93.9% for the

first procedure and from 87.0% to 95.0% for both the second

and the third procedure. Clearly, this gives a somewhat less

favorable picture. Indeed, some conditions lead to a rather

large amount of undercoverage of 10% on average. These

conditions are not always the same.

The above analyses indicate that coverage percentages do

differ across conditions and seem to warrant a more detailed

study. Rather than presenting averages for all cells sepa-

rately, we report the ranges of average cell percentages and

the associated standard errors of the upper and lower

bounds of these ranges in Table IV. Thus Table IV gives an

indication of ‘the worst that may happen’ and also indicates

how reliable such average percentages are. From Table IV it

can be seen that the worst cases sometimes are quite far off

from the ideal 95%. Not reported in Table IV is that, except

for one case, all lowest percentages were obtained in cases

with the smallest sample size (I¼ 20); however, for other

sample sizes also, percentages that were considerably too

low were found. The most problematic cases were found

with the Tucker3 bootstrap procedure based on permutation

and reflection only of the principal axes solution: percen-

tages of only 72.1% and 75.8% can hardly be seen as

approximating the ideal of 95%. The standard errors for

these cases were quite high, leading to 95% error margins

around the observed percentages of roughly � 4% and even

� 6% respectively. However, even with such error margins it

is clear that these values are considerably too low.

The best results are clearly obtained for the CANDECOMP/

PARAFAC bootstrap procedure, which did not miss the

ideal 95% by more than 3.5%. The other Tucker3 bootstrap

Table III. Average coveragepercentagesof variousprocedures foreachof theparametermatrices

Procedure B C G

Bootstrap for CANDECOMP/PARAFAC 95 94 —
Tucker3 principal axes, bootstraps permuted/reflected 91 85 87
Tucker3 simple structure, bootstraps permuted/reflected 92 94 93
Tucker3 simple structure, bootstraps optimally rotated 92 94 93
Tucker3 simple structure, bootstraps optimally transformed 95 94 95
Tucker3 principal axes, bootstraps permuted/reflected, non-simple B and C used in construction 95 94 94
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procedures yielded results that deviated roughly 10% at most

from the ideal 95%. The standard errors were of the order of

1% or 2% (implying 95% error margins of � 2% to � 4%).

Thus we see that the methods tend to suffer from under-

coverage (which was actually observed quite frequently) of up

to 10%. Overcoverage was less strong and observed less

frequently.

From these results we can conclude that the 95% percentile

intervals are fairly good approximations to 95% confidence

intervals in most cases, although some improvement remains

to be desired. The exception to this was the Tucker3 bootstrap

procedure based on the principal axes solution. It should be

noted, however, that these results were found for the case

where the population data were based on B and C matrices

with simple structure; for data based on smooth B and C

matrices (last row in Tables III and IV), the resulting percen-

tile intervals gave considerably better approximations to

confidence intervals. The former data sets are the very cases

for which difficulties with the principal axes solution could

be expected. In fact, the permutation and reflection should

eliminate this problem, but possibly the problem is so strong

that it still determines the coverage of the intervals.

5.1.2.2. Interval width. The first four Tucker3 boot-

strap procedures can be expected to give increasingly small

confidence intervals. This is because the first procedure does

not use the simple structure of the data, the next one only

uses permutation and reflection to increase similarity of

bootstrap samples, the third uses more freedom (full rota-

tion), whereas the fourth uses most freedom (arbitrary

transformations). To verify whether, for our simulated

data, indeed the procedures give increasingly small percen-

tile intervals, we compare the average interval widths in

Table V. Note that here we did not consider the procedure of

using Tucker3 principal axes followed by permutation and

reflection applied to smooth data, because these results are

based on a different kind of data, so that differences in

interval widths of this procedure compared with the others

may to some extent be caused by this different data genera-

tion process. It can be seen from Table V that, as expected,

indeed the interval widths decrease on going down the table.

5.1.2.3. Computation time. Finally, some remarks are

to be made about the computation time. Each single simula-

tion study took a lot of time, but this is to a large extent

caused by the fact that we needed many replications to get a

decent estimate of the coverage percentages. However, a

single bootstrap analysis requiring 500 three-way analyses

did not turn out to take very long, especially not for Tucker3.

To give some idea about the computation times of all

procedures, in Table VI the average computation times for

the largest data sizes in the design are reported. Analyses were

Table IV. Rangesofaverage coveragepercentageswithincells for variousprocedures foreachof theparametermatrices; inparentheses,
standarderrorsof lowerandupperboundsof ranges

Procedure B C G

Bootstrap for CANDECOMP/PARAFAC 91.5–98.2 (1.4, 0.3) 91.8–97.4 (0.4, 0.5) —
Tucker3 principal axes, bootstraps permuted/reflected 81.2–96.8 (1.8, 0.7) 72.2–92.1 (2.0, 1.9) 75.8–92.8 (3.2, 1.6)
Tucker3 simple structure, bootstraps permuted/reflected 84.3–95.8 (0.8, 0.5) 91.8–96.5 (0.5, 0.6) 88.8–96.8 (1.6, 0.4)
Tucker3 simple structure, bootstraps optimally rotated 84.2–95.8 (0.8, 0.5) 92.0–95.7 (0.5, 0.7) 86.0–95.0 (1.9, 0.9)
Tucker3 simple structure, bootstraps optimally transformed 91.1–98.1 (1.9, 0.5) 92.1–95.6 (0.5, 0.7) 89.4–96.8 (1.5, 0.6)
Tucker3 principal axes, bootstraps permuted/reflected, non-simple B and 90.7–98.1 (1.2, 0.5) 86.4–97.2 (2.8, 0.5) 85.4–98.3 (2.0, 0.3)
C used in construction

TableV. Mean (normalized) intervalwidths

Method B C G

Tucker3 principal axes, bootstraps permuted/reflected 0.85 1.45 2.14
Tucker3 simple structure, bootstraps permuted/reflected 0.19 0.34 0.87
Tucker3 simple structure, bootstraps optimally rotated 0.19 0.34 0.83
Tucker3 simple structure, bootstraps optimally transformed 0.19 0.33 0.27

TableVI. Average computationtimesof 500 bootstrapanalysesfor largest data sizes

Mean computation
Method Largest size time (s)

Bootstrap for CANDECOMP/PARAFAC I¼ 50, J¼ 8, K¼ 20, R¼ 3 312.8
Tucker3 principal axes, bootstraps permuted/reflected

I ¼ 100;
J ¼ 8;K ¼ 20;

P�Q� R ¼ 4 � 3 � 2
and

P�Q� R ¼ 3 � 3 � 3

9>>>>=
>>>>;

35.7
Tucker3 simple structure, bootstraps permuted/reflected 30.5
Tucker3 simple structure, bootstraps optimally rotated 20.8
Tucker3 simple structure, bootstraps optimally transformed 20.6
Tucker3 principal axes, bootstraps permuted/reflected, 39.3

non-simple B and C used in construction
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carried out on a 2.5 GHz Pentium 4 computer with 768 MB

RAM; all analyses were run using MATLAB [27]. It can be

seen that the computation times for the Tucker3 bootstrap

analyses are by no means prohibitive: even for the medium

sized data of order 100� 8� 20, using quite a few compo-

nents, the average computation time of a full bootstrap

analysis (i.e. including the analyses of 500 bootstrap sam-

ples) takes roughly 0.5 min. For CANDECOMP/PARAFAC

the situation is less positive: for data of size 50� 8� 20, using

three components required on average about 5 min. This is

obviously not unfeasible, but some speed-up would be

welcome here. This is studied in Section 6.

5.2. Some detailed studies

5.2.1. Some simulations for CANDECOMP/
PARAFAC with I¼ 100
As mentioned in Section 5.1.1, using samples of size I¼ 100

CANDECOMP/PARAFACinthe full simulationstudywould

make the simulation study extremely time-consuming. To yet

get some insight into results for I¼ 100, simulations have been

carried out for the first three size conditions, with noise level

fixed at the middle level (0.6), thus extending the original

4� 2� 3 design with three extra cells.

The coverage percentages were 96.1%, 93.1% and 95.3%

for B and 94.5%, 94.6% and 95.1% for C. Upon comparing

these values with the ranges reported in Table IV, it is clear

that these results are similar to those for other sample sizes.

The computation times can best be evaluated when com-

pared with the corresponding conditions for the smaller

sample size I¼ 50. For the first condition (J¼ 4, K¼ 6,

R¼ 2) the average computation time for I¼ 50 was 12 s and

for I¼ 100 now is 44 s; the second condition (J¼ 8, K¼ 20,

R¼ 2) gave 161 s for I¼ 50 and now 596 s for I¼ 100; the third

condition (J¼ 4, K¼ 6, R¼ 3) gave 41 s for I¼ 50 and now 95 s

for I¼ 100. Clearly, computation time has increased by a

factor of 2–4. With 10 min in the worst case studied here, the

bootstrap procedure is still feasible, although clearly some

speed improvement would be desirable.

5.2.2. Some simulations with 100 rather
than 10 samples
In Section 5.1.2.1 it was remarked that the reliability of the

coverage percentages may not be as high as desired. Indeed,

standard errors for the extreme cases were (in Table IV) seen

to be sometimes as high as 2% or 3%. By taking 100 samples

rather than 10 samples, we can expect these standard errors

to decrease roughly by a factor
ffiffiffiffiffi
10

p
, so they would no longer

exceed 1%. To see whether these more reliable analyses

would lead to similar or rather different results, we ran

simulations for three cells in the designs for both the CAN-

DECOMP/PARAFAC simulations and the Tucker3 simula-

tions and compared coverage results. These are given in

Table VII. It is clear that the differences are small and do not

essentially alter the picture given before.

6. IMPROVING COMPUTATIONAL
FEASIBILITY

From the results on computation times reported in Table VI,

it can be seen that the computational problems are most

severe for CANDECOMP/PARAFAC. In fact, the computa-

tional procedure used in the simulation study was relatively

simple, using only one rational start. Still, some improve-

ment can be obtained by starting the algorithms for the

bootstrap runs using as a start the solution from the actual

sample. Thus it can be expected that convergence will be

attained more quickly. However, using this sample based

start might also detract from the coverage, because it may

yield bootstrap solutions that remain too close to the sample

solution. To test the latter, a second simulation study was

carried out in which two procedures were compared. The

first ‘optimal’ procedure uses the rational and four randomly

started runs to find the optimal solution for the sample and

TableVII. Average coveragepercentagesof variousproceduresforeachof theparametermatrices (using100 samples), in threeparticular
cellsof thedesign (valuesbasedon10 samplesinparentheses)

Procedure Cell B C G

Bootstrap for CANDECOMP/PARAFAC Cond. 1, I¼ 20, "¼ 0.6 93.8 (91.5) 92.3 (91.8) —
Cond. 2, I¼ 20, "¼ 1 94.1 (94.4) 92.9 (92.8) —
Cond. 3, I¼ 50, "¼ 1 96.5 (97.3) 95.7 (97.4) —

Tucker3 principal axes, bootstraps permuted/reflected Cond. 1, I¼ 50, "¼ 0.6 93.7 (94.1) 85.1 (89.5) 92.7 (75.8)
Cond. 3, I¼ 20, "¼ 1 93.7 (94.1) 85.8 (85.1) 90.8 (90.3)
Cond. 6, I¼ 50, "¼ 1 82.0 (84.0) 84.1 (87.0) 87.2 (88.5)

Tucker3 simple structure, bootstraps permuted/reflected Cond. 1, I¼ 50, "¼ 0.6 93.6 (95.1) 93.8 (94.3) 93.6 (91.8)
Cond. 3, I¼ 20, "¼ 1 85.1 (84.7) 97.1 (96.5) 96.6 (96.8)
Cond. 6, I¼ 50, "¼ 1 94.4 (94.6) 93.8 (93.5) 93.4 (92.8)

Tucker3 simple structure, bootstraps optimally rotated Cond. 1, I¼ 50, "¼ 0.6 93.6 (95.3) 94.0 (94.0) 93.2 (91.5)
Cond. 3, I¼ 20, "¼ 1 84.1 (83.8) 96.1 (95.7) 93.9 (94.2)
Cond. 6, I¼ 50, "¼ 1 94.4 (94.7) 93.8 (93.4) 93.1 (92.2)

Tucker3 simple structure, bootstraps optimally transformed Cond. 1, I¼ 50, "¼ 0.6 93.7 (95.1) 93.9 (94.0) 93.7 (94.1)
Cond. 3, I¼ 20, "¼ 1 97.7 (97.0) 95.5 (95.3) 95.7 (96.3)
Cond. 6, I¼ 50, "¼ 1 94.4 (94.5) 93.8 (93.5) 95.4 (95.5)

Tucker3 principal axes, bootstraps permuted/reflected, Cond. 1, I¼ 50, "¼ 0.6 93.8 (93.5) 93.9 (92.7) 89.8 (89.8)
non-simple B and C used in construction Cond. 3, I¼ 20, "¼ 1 96.8 (97.8) 94.4 (94.2) 98.0 (97.6)

Cond. 6, I¼ 50, "¼ 1 95.1 (94.3) 94.6 (93.8) 95.8 (95.1)
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does the same to find the optimal solution for each bootstrap.

The second ‘fast’ procedure uses only the rationally started

run to find the optimal solution for the sample and uses the

sample solution as a start in the (single run of the) algorithm

used for each bootstrap analysis. The data construction was

as in the earlier CANDECOMP/PARAFAC simulations, but

as size condition only J¼ 4, K¼ 6, R¼ 3 was considered. The

results are reported in Table VIII. For comparison, in

Table VIII also the results with our original procedure,

used in the simulation study reported in Section 5, are

reported for the same conditions. From Table VIII it can be

seen that the fast procedure is indeed considerably faster

than the optimal procedure (by roughly a factor of 6) and

also quite a bit faster than the original procedure (by roughly

a factor of 1.6). The speed improvement is not really surpris-

ing. The main question, however, is whether the fast proce-

dure still gives adequate coverage percentages. It can be seen

that this is indeed the case: both coverage percentages

deviate by only 0.3% from the ideal 95%. More importantly,

the coverage percentages are not farther off from 95% than

those by the original method (indeed, they are actually better

than those from the original procedure) or those by the

optimal method. It can hence be concluded on the basis of

this simulation study that the fast procedure works well and

is indeed faster than the original procedure and much faster

than the optimal procedure. The optimal procedure seems to

be needlessly time-consuming: the use of several runs of the

algorithm does not appear to improve the coverage percen-

tages.

Obviously, a similar speed improvement could be imple-

mented for Tucker3. However, the algorithm usually con-

verges fast, and little gain can be expected from using a

better start of the Tucker3 algorithm. Moreover, in the

simulations reported in Section 5, the Tucker3 bootstrap

procedure did not appear to be overly time-consuming.

7. DISCUSSION

In the present paper a procedure has been described for

determining bootstrap percentile intervals for all parameters

resulting from a Tucker3 or CANDECOMP/PARAFAC

three-way analysis. These can be used as such, i.e. intervals

indicating the stability of solutions across resampling from

the same data, and hence give an important primary indica-

tion of their reliability. However, it was found that the 95%

percentile intervals also turn out to be fairly good approx-

imations to 95% confidence intervals in most cases, in the

sense that they show coverage percentages that are not too

far from the desired 95%. Thus the present bootstrap ap-

proach offers a procedure that yields intervals that, in most

cases, can at least tentatively be used as confidence intervals

as well. Some improvement of these intervals, however, still

remains to be desired.

The approximate confidence intervals given here pertain

to each individual output parameter. However, obviously,

the output parameters are not independent from each other.

For instance, already the unit column sums of squares

constraints on the component matrices ensure that elements

within columns of such matrices depend on each other.

Moreover, the optimality of a solution does not depend on

each parameter individually, but on the complete configura-

tion of all output parameters. Thus one may expect that, if a

percentile interval for a particular element of B, say, does not

contain the population parameter value, then it is relatively

likely that percentile intervals for other elements of B do not

cover their population counterparts either. Such dependence

even holds for elements from different matrices: consider

that an ‘extreme’ solution for B is found (such that the

associated percentile intervals miss most of the population

parameters), then this will most likely also affect the solution

for the core G (and hence lead to misfitting percentile

intervals for many elements of G). If there were only two

or three parameters, this dependence problem could be dealt

with by constructing percentile regions (or volumes) and

using these as approximate confidence regions or volumes,

and these could be displayed graphically. However, in the

case of the present kind of three-way models we usually deal

with very many parameters and hence we would require

construction (which is feasible) and display (which is un-

feasible) of high-dimensional percentile volumes. Clearly,

further research is needed to deal with the dependence of

output parameters. For now it suffices to remark that the

confidence intervals are each taken as if they ‘were on their

own’, and in interpreting the confidence intervals, their

dependence should not be overlooked, in particular when

they are to be used to make probability statements on sets of

parameters jointly.

The present bootstrap procedure is meant for situations

where the entities from one mode can be viewed as a random

sample from a population. In practice the entities are not

always sampled randomly. In experimental situations it may

happen that the A-mode entities (e.g. the mixtures) are

deliberately chosen to cover a particular range of values, or

they may even be chosen by a particular design. In such

cases the A-mode entities are clearly not to be considered a

random sample. In other situations the sampling mode may

refer to a series of consecutive time points. Even when the

starting point of such a series is chosen randomly, the

consecutive points are clearly dependent, and again we do

not have an ordinary random sample. In such cases the

TableVIII. Comparisonof threeproceduresforCANDECOMP/PARAFACbootstrapanalysis (inallcasesJ¼ 4,K¼ 6 andR¼ 3)

Mean Mean Mean
Bootstrap procedure computation time (s) coverage B (%) coverage C (%)

Optimal procedure. Sample and bootstrap analyses using 5 runs 146.5 95.5 95.1
Fast procedure. Sample analysis using 5 runs, bootstrap analyses using 22.8 95.3 94.7

sample solution as start
Original procedure. Sample and bootstrap analysis using 1 rationally started run 35.9 95.4 95.5
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bootstrap does not work when applied in the way described

in the present paper. A suitable alternative in such cases

would be a procedure based on constructing bootstrap

samples on the basis of residuals from the sample solution

(see e.g. Reference [8], p. 113). The basic idea here is that the

residuals resulting from a particular analysis of the sample

data are considered themselves as a random sample, from

which we construct bootstrap samples by drawing random

samples from the profiles of residuals, with replacement.

These profiles of resampled residuals are then added to the

modeled part of the data to construct the data for a bootstrap

sample. From then on the procedure continues as with the

ordinary bootstrap procedure, thus analyzing all bootstrap

samples by the same method and constructing percentile

intervals for all output parameters. A disadvantage of this

approach is that it depends on the validity of the model

chosen, and hence it does not make sense when the residuals

stem from a model that is far from correct for the data. For

the type of dependent samples described above, however,

there does not seem to be a viable alternative.

The bootstrap method is sometimes called a computer

intensive method. When we apply it to three-way analysis,

indeed, this intensity becomes apparent, especially when

using CANDECOMP/PARAFAC. Computation times for

moderately sized problems are non-negligible, though not

prohibitive. Some speed improvement was obtained and

further speed improvement may be possible. All in all,

however, it can be concluded that the bootstrap now is a

viable procedure for estimating confidence intervals for the

results from exploratory three-way methods.
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