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Abstract: Carroll’s method for generalized canonical analysis of two or more sets of variables is
shown to optimize the sum of squared inner-product matrix correlations between a consensus
matrix and matrices with canonical variates for each set of variables. In addition, the method that
analogously optimizes the sum of squared RV matrix correlations (proposed by Escoufier, 1973)
between a consensus matrix and matrices with canonical variates, can be interpreted as an
application of Carroll and Chang’s ip1oscaL. A simple algorithm is developed for this and other
applications of ipioscaL where the similarity matrices are positive semi-definite.
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1. Introduction

Canonical correlation analysis is a method for finding “common” dimensions
in two sets of variables measured on the same observation units. In Canonical
correlation analysis, linear combinations (canonical variates) of the variables in
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both sets are constructed such that the canonical variates in one set have
optimal correlations with corresponding canonical variates in the other. Carroll’s
(1968) generalized canonical analysis (GCA) is an extension to the analysis of
two or more sets of variables where we maximize the sum of squared correla-
tions of canonical variates with a “consensus” variable to be found. Explicitly,
let X, denote the n X m, data matrix for set &, k =1,..., K, and a, a vector of
weights to form a canonical variate X,a, for set k. Then GCA finds a
consensus variable z such that

K
— 2
filay,...;ay, z)= Zwkr (z, Xpa;), (1)
k=1

is maximized over a,,...,a, and z, where r(-,-) denotes the correlation
between the variables between parentheses, and w, denotes a fixed (nonnega-
tive) weight for set k. Carroll has shown that the solution for this problem is to
take z equal to the first eigenvector of

K
' -1y
0= ) we X (X X)) Xy (2)
k=1
The vectors a,,...,a, can be obtained by regression as a, = (X, X,)”'X/z. If

more than one dimension is required, Carroll suggests taking a second dimen-
sion such that it is the best dimension orthogonal to the first one; the third is the
best one orthogonal to the first two dimensions, etc. The complete r-dimen-
sional solution is then given by a matrix Z containing the first r eigenvectors of
Q. The solution for the a, columns, now collected in (m, X r) matrices A,, is
given by 4, =(X/X,) " 'X/Z.

In the way Carroll proposed GCA, it is conceived of as a method in which
dimensions are found successively and afterwards collected in one ‘consensus
matrix’ Z. Although this does not imply that the complete matrix Z is optimal in
any particular way, it is readily verified that GCA maximizes

r K

Z E wir?(z;, Xyay), (3)

I=1k=1
over arbitrary vectors a,;, k=1,...,K, /[=1,...,r, and a matrix Z with
columns z,,...,z,, subject to Z'Z =1 (e.g., Tenenhaus and Young, 1985, p.
100). Thus, GCA optimizes (3) both simultaneously and successively.

Lazraq et al. (1992) proposed a different way of handling more than one
dimension simultaneously in (variants of) GCA by optimizing the sum of
squared matrix correlations between X, A, and Z, k=1,..., K, instead of the
sum of dimension-wise squared correlations. A number of different matrix
correlation coefficients have been proposed (see Ramsay et al. 1984, for a
review), and Lazraq et al. (1992) have developed variants of GCA based on two
such matrix correlations coefficients. The first is the one implicitly proposed by
Lingoes and Schonemann (1974), which they call RLS. This coefficient measures
agreement between two matrices after they have been rotated to optimal
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agreement. If X and Y are two matrices of the same row order, then the RLS
matrix correlation between X and Y is defined as

RLS(X. V) = (XYY 'x)"?]
(X, )_(tr(X’X) tr(Y'Y))?

(4)
Lazraq et al. proposed to maximize

K
fZ(Al""’AK’Z)ZkZ kaLSz(Z, X AL), (5)
-1
over arbitrary A4,,..., A and columnwise orthonormal Z, as a method for the
canonical analysis of more than two sets employing more than one dimension
simultaneously. They demonstrate that maximizing the sum of squared matrix
correlations in (5) is equivalent to Carroll’s original GCA method, thus showing
again that Carroll’s method can be seen as a method in which the dimensions
are optimized simultaneously, albeit based on a different criterion. However,
this is not the only way GCA can be considered as maximizing a sum of squared
matrix correlations between Z and X, A, k =1,..., K. The first purpose of the
present paper is to show that GCA also maximizes the sum of squared correla-
tions computed according to a more popular matrix correlation coefficient,
namely the “inner product” matrix correlation coefficient defined by Ramsay et
al. (1984).

The main contribution of Lazrag et al.’s (1992) paper is in showing that
Carroll’s GCA is just one member of a family of methods for generalized
canonical analysis based on matrix correlation coefficients. Employing other
matrix correlation coefficients might lead to other potentially interesting meth-
ods for generalized canonical analysis. Lazraq et al. (1992) discussed one such
method, based on the RV matrix correlation coefficient proposed by Escoufier
(1973). The RV -coefficient expresses the correlation between X and Y as

tr(X'YY'X)
ler(x x> (v vy ]

RV(X,Y)= (6)

Like the RLS-coefficient, the RV-coefficient measures agreement between two
matrices up to a rotation. An advantage of the RV-coefficient is that it is easier
to compute because it does not involve computation of a square root of a matrix.
The RV-based variant of GCA proposed by Lazraq et al. optimizes

K
f(Ay. o Ay, Z) = X wRVA(Z, X, A)), (7)
k=1

in analogy to the RLS-based criterion. In the optimization of the function f;,
the matrix Z is again constrained to be columnwise orthonormal. The resulting
method differs from Carroll’s GCA. In fact, it seems that the RV-based method
for GCA will tend to differentiate the contribution of different sets of variables
(of which the scores are collected in the matrices X, ..., X)) such that sets that
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contribute much to the ordinary matrix correlation will do even more so in the
RV-based GCA. This can be understood most easily by considering the one-di-
mensional case in which RV(z,X, a,) is simply the squared correlation between
z and X, a,. Maximizing a sum of squared RV-coefficients then comes down to
maximizing a sum of fourth powers of correlations, which will result in more
extreme correlations than maximizing a sum of squared correlations would. In
the case of more than one dimension a similar reasoning can be used. Thus,
RV-based GCA finds a kind of implicit weighting of the sets, that might well
obviate the use of a priori known weights w,. The second purpose of the present
paper is to propose an algorithm for the RV-based variant of GCA. In order to
derive this algorithm, we first show that the RV-based variant of GCA is
equivalent to I1proscaL applied to a particular set of (weighted) projector
matrices. Next, a simple algorithm for this and similar applications of IDIoscAL
is proposed.

2. GCA as maximizing a sum of squared inner product matrix correlations

According to Ramsay et al. (1984), the most common matrix correlation
coefficient is the ‘inner product’ matrix correlation coefficient, defined as
tr(X'Y)
R(X,Y)= , ——75 . (8)
(tr(X'X) tr(Y'Y))

It will now be shown that maximizing

K
g(Al""’AK’ Z)= ZWkRZ(Z, XkAk)’ (9)
k=1
over A,,..., A, subject to Z'Z =1 is equivalent to Carroll’s GCA. Explicitly,
maximizing (9) over 4,, k=1,..., K, disregarding Z, reduces to maximizing
, , ~1/2, +, 1/2 2
oy Iz XA [tr(2/X, (XX T A(X X, )2 4,)] 10)
BIL) T (AL, X[ X A tr( A, X, X, A,) ‘

From the Cauchy-Schwartz inequality we have
t(Z' X (Xi X)X\ Z) tr( A X[ X\ A,)
tr( A Xg X Ay)

gk(Ak) <

—tr(Z'X,(X( X)) ' X, Z)

= tr(Z'P,Z), (11)
where P, is the projector matrix P, =X, (X, X,)"'X,. The inequality in (11)
gives an upper bound for g,(A,), which is attained by taking A, =

(X/X,) 'X/Z. This shows that for every Z, the 4, that maximizes g, can be
expressed in terms of Z as A, =(X/X,) 'X/Z. Note that this expression for
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A, is identical to the one obtained from GCA. Substituting this expression for
A, k=1,...,K in (9) we can rewrite g as

K
g(*, Z)= Y. w, tr(Z'P,Z)
k=1

=tr Z’(wk fjpk)z. (12)

The original problem of maximizing (9) over 4, and Z has been reduced to
maximizing (12) over Z only. The maximum of (12) over Z, subject to Z'Z =1,
is obtained by taking Z equal to the matrix containing the first » eigenvectors of
Q =(X¥_,w, P,), which shows that the solution for Z also is equal to the one
obtained from GCA. This establishes the equivalence of GCA and maximizing
the (weighted) sum of squared inner-product matrix correlations between Z and
A,, k=1,...,K. Lazraq et al.’s (1992) result that GCA optimizes the sum of
squared RLS matrix correlations between Z and A,, k=1,..., K, follows at
once. Specifically, the RLS-coefficient is the inner-product matrix correlation
between two matrices after (optimal) rotation of one (say X,) of the matrices to
the other (Z) (see Lazraq et al., 1992). Because GCA maximizes R(Z, X, A,)
over arbitrary transformations A4, of X,, it subsumes the optimal rotation of X,
to Z; hence, after optimizing 4,, k=1,...,K, RLS(Z, X, A,)=R(Z, X, A,).
This implies that GCA maximizes both Y,w, R¥(Z, X, A,) and ¥,w, RLS?
(Z, X, A,).

3. RV-based GCA as IDIOSCAL applied to projector matrices

Lazraq et al. (1992) discussed a variant of GCA based on the (matrix
correlation) coefficient RV, which will now be shown to be an application of
mioscaL (Carroll and Chang, 1970, 1972) to the projector matrices P,,..., Py.
Lazraq et al. demonstrated that the maximization problem in their RV-based
variant of GCA can be solved as follows. Maximizing (7) over A4,, k=1,..., K,
disregarding Z, reduces to maximizing

[tr(Z'X, A, A, X Z)]
tr(X, A, A, XY

hk(Ak) =

[tr(ZZ’XkAkA;‘,Xk’)]z 13)
tr(X, A, AL X)) (

Using P, X, = X, and applying the Cauchy-Schwartz inequality to the numera-
tor of (13), we have

tr(P,ZZ'P,) tr(X, A, A, X])
tr(XkAkA;ch,)z

ho(A,) < =tr(Z'P.Z). (14)
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The upper bound (14) for k, is attained for A, =(X/X,) 'X/Z, which shows
that for every Z the maximum over A4, is obtained in this way. Substituting this
expression for 4, in the original function (7), and thereby eliminating A4, from
the optimization problem, we end up with the problem of maximizing

K
, 2
f(*, Z) = X W, tr(Z'PZ), (15)
k=1
over Z subject to Z'Z=1. It will now be shown that maximizing (15) is
equivalent to applying 1pIOSCAL to the matrices w,'/?P,, k=1,..., K.
pioscaL is a method for multidimensional scaling of a number of (n X n)
similarity matrices, S,,..., Sx. IDIOSCAL minimizes the function
K -
o(Z,Cy,...,Cx) = Z IS, —ZC,Z'|", (16)
k=1

over arbitrary matrices Z (nXr) and C, (rXr), k=1,..., K, where C, is
required to be positive semi-definite (p.s.d.). Without loss of generality, it can be
assumed that Z is columnwise orthonormal. Then o can be written as

K K
02, CroosCi) = B 8- 22'5,22' I*+ P z's.zI’,  (17)
=1 =1
which is minimized over C, by taking C, =Z'S, Z, for k=1,..., K. Clearly, if
S, is p.s.d., the obtained matrix C, is p.s.d., and hence a valid iDIOsCAL solution.
In the present paper, we only consider cases in which §; is p.sd., k=1,..., K.
Substituting the above expression for C,,...,Cy in oy, simplifies the problem to
that of minimizing

K
UI(Z’ *)= Z ||Sk_ZZ'SkZZ'“2
k=1

K
= Z || Sk “2_ Z tr(Z’SkZ)z. (18)
k=1 k=1

It follows from (18) that minimizing o, subject to Z'Z =1, and hence IDIOSCAL,
is equivalent to maximizing

K
k(Z)= Y t(Z'S, 2, (19)
k=1
over Z, subject to Z'Z=1,.

Above, it has been shown that the RV-based variant of GCA maximizes
YK _w, t(Z'P,Z)?, which can be rewritten as Lf_; trlZ'(w;/*P,)ZF. Tt fol-
lows from (19) that this method is equivalent to applying mioscaL to the
“similarity” matrices S, =w,'/?P,. Note that the condition that S, be p.s.d. is
satisfied for these weighted projector matrices.

An important application of GCA is multiple correspondence analysis (MCA;
e.g., Tenenhaus and Young, 1985; also, see Gifi, 1990). MCA can be considered
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as an application of GCA to the indicator matrices for the nominal variables
(each of which are considered a set of variables). Recently, Marchetti (1988) has
proposed some alternatives for MCA, one of which is based on applying
proscaL to the (centered) projectors derived from the indicator matrices. It
follows directly from the relation derived above that Marchetti’s method can be
seen as the RV-based variant of GCA applied to the indicator matrices of the
nominal variables.

4. A simple algorithm for IDIOSCAL applied to positive semi-definite matrices

Algorithms for approximating the mpioscaL solution have been suggested by
Carroll and Chang (1970), and De Leeuw and Pruzansky (1978). The first
monotonically convergent algorithm for ipioscar was given by Kroonenberg and
De Leeuw (1980, p. 78) who suggested using their TuckaLs2 algorithm to find
the m1oscaL solution. The TuckaLsz algorithm, however, minimizes the function

K
(X, Y, Cy,...,C)= L IS, —XC,.Y'|, (20)
k=1

which is equal to the ip1oscaL function only if X is constrained to be equal to
Y. However, it is not guaranteed that the optimizing X and Y matrices will be
equal (Kiers, 1989, p. 516). For this reason, Kiers (1989) proposed a different
algorithm that does minimize the ipioscaL function and converges monotoni-
cally. This algorithm is based on updating one column of Z at a time, and
cycling through all columns during all iterations. However, in case TUCKALS2 is
applied to p.s.d. matrices, the Tuckars2 algorithm does converge to a solution
with X =Y, as has been proved recently by Ten Berge et al. (in press). In the
present paper, we follow an almost equivalent approach, where no distinction
between X and Y is made at all. Specifically, Z is started with initial values Z“
(e.g., a random columnwise orthonormal matrix). Next, Z® is updated by Z",
ZD by Z9, etc. In general, a current matrix Z is updated by a matrix

Z4Y=UV", (21a)
where U and V' are taken from the singular value decomposition
K
). 8,Z2Z'S, Z=UDV"’, (21b)
k=1

with U'U=V'V =1 and D diagonal and nonnegative. This procedure is re-
peated until convergence. It will now be shown that this procedure monotoni-
cally increases the function k(Z)=3YF_, t(Z'S,Z)* which is the function
maximized in 1DIOSCAL, subject to Z'Z =1,. That is, it will be shown that
k(Z") = k(Z).

To prove that k(Z") > k(Z), we develop the following inequalities. From

|si2zz'sy? ~ si2zezes) | = o, (22)
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it follows that
k(Z)+k(Z")

K K K
= Y (Z'S, 2+ Y tr(ZVS, 2 22 ¥ t(ZVS, Z)(Z'S Z"),
k=1 k=1 k=1
(23)
and from
12,2 -2%S,Z|’, (24)
it follows that
K K
Y tr(Z9S, Z)Z'S, Z%) 22 X tr(ZVS, Z)(Z S Z) — k(Z). (25)
k=1 k=1
Finally, the particular choice (21) of the update Z" guarantees that
K K
Y tr ZV(S,ZZ'S,Z) > Y tr Z'(S,ZZ'S, Z) = k(Z), (26)
k=1 k=1
(Cliff, 1966). Rewriting (23) as
K
K(Z) 22t Y, (ZVS, Z)(Z'S, Z") — k(Z)
k=1
and combining this with (25), we find
K
k(Z%)>2 ) t(ZVS, Z)(Z'S, 2"y —k(Z)
k=1
K
>4 ) tr(Z¥S, ZWZ'S, Z) - 3k(Z). (28)
k=1

Finally, from the combination of (28) with (26) it follows at once that k(Z") >
4k(Z) — 3k(Z) = k(Z). So updating Z according to (21) increases the value of
k, and because the function k is bounded from above, the function value will
converge to a stable value.

Instead of updating Z according to (21), a slightly simpler procedure is to
update Z as

K
Z¥= GS( Y SkZZ’SkZ), (29)
k=1

where GS denotes the Gram-Schmidt orthonormalized version of the matrix
between parentheses. The matrices Z¥ in (29) and Z" in (21b) are columnwise
orthonormal and span the same column spaces. Hence, they are the same up to
an orthonormal transformation, that is, Z¥Y=Z"T for a certain orthonormal
matrix 7. It is readily verified that k(Z¥) = k(Z"), and thus the update Z" is just
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Table 1
Average performance of old and new IDIOSCAL algorithms on 40 random data sets
Type of data r Computation time Number of Comp. time

(in seconds) iterations per iter.

Old New Old New Old New
3xX10x10 3 37.8 14.8 8.9 27.5 43 0.5
3x20x20 3 402.5 43.1 12.1 345 333 1.3
6x10x10 3 58.0 23.1 11.8 30.3 4.9 0.7
3x10x10 6 108.5 24.3 20.6 37.3 5.3 0.7

as good as update Z" but typically easier to calculate. This procedure has been
proposed in a different context by Gifi (1990, p.99).

To get an impression of the performance of the new algorithm, we pro-
grammed it in pcMATLAB and compared it to the algorithm by Kiers (1989),
which, for this occasion was also programmed in pcMaTLAB. We first generated
ten data sets consisting of three p.s.d. matrices, and analyzed these in three
dimensions. For comparative purposes, we also analyzed ten 3 X 20 X 20 data
sets and ten 6 X 10 X 10 data sets, all in three dimensions, and we analyzed ten
3 X 10 X 10 data sets in six dimensions. All analyses were started by taking Z
equal to the first r eigenvectors of ¥¥_,S,. The algorithm was considered to
have converged when the value of o, decreased by less than 0.0001%. In all
analyses the two algorithms obtained the same function value (up to at most
0.0001%). Average computation times (using a 80386 /80387 processor), num-
bers of iterations, and computation times per iteration are reported in Table 1.
It can be seen that the new algorithm was considerably faster in all conditions
than Kiers’ (1989) algorithm, even though the latter algorithm consistently used
fewer iterations. As can be seen in the last columns of Table 1, this is caused by
the fact that the iterations in Kiers’ (1989) algorithm are considerably more
expensive (i.c., at least 8 times as expensive) as those in the new algorithm.

5. Discussion

In the present paper it has been demonstrated that Carroll’s GCA is just one
possibility of analyzing a set of matrices by optimizing a well-known matrix
correlation coefficient, and that alternatives, employing different matrix correla-
tion coefficients, are of potential interest as well. Obviously, still other coeffi-
cients than RV or RLS might be used for that purpose.

It has been found in the present paper that the new algorithm for 1DIOSCAL is
considerably faster than the old one. One might contend that this difference is
due to the use of an interpreter based language like pcMaTLAB, which favors
procedures with a minimum number of internal loops (as in our new algorithm).
However, it can be verified that, for one single iteration, Kiers’ (1989) algorithm
not only computes a similar matrix product as (29) but, in addition, requires a
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full eigendecomposition of an (n —r + 1) X (n — r + 1) matrix, which, for moder-
ate or large n and relatively small r can be expected to dominate the computa-
tional process. The fact that the old algorithm uses fewer iterations (2 to 3 times
less) than the new algorithm will not counterbalance this computational draw-
back if n is at least of moderate size. Apart from this difference between the
algorithms, the new algorithm has a considerable advantage in terms of ease of
programming.
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