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Three-Mode Factor Analysis (3MFA) and PARAFAC are methods to describe three-way
data. Both methods employ models with components for the three modes of a three-way array; the
3MFA model also uses a three-way core array for linking all components to each other. The use of
the core array makes the 3MFA model more general than the PARAFAC model (thus allowing 
better fit), but also more complicated. Moreover, in the 3MFA model the components are not
uniquely determined, and it seems hard to choose among all possible solutions. A particularly
interesting feature of the PARAFAC model is that it does give unique components. The present
paper introduces a class of 3MFA models in between 3MFA and PARAFAC that share the good
properties of the 3MFA model and the PARAFAC model: They fit (almost) as well as the 3MFA
model, they are relatively simple and they have the same uniqueness properties as the PARAFAC
model.
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In the last decades, three-way data have received considerable attention from re-
searchers in various disciplines. Three-way data may consist of measures as diverse as
scores of a set of individuals on a set of variables at different occasions (e.g., in the
behavioral sciences) or of absorbed energy at various absorption levels on various mixtures
of substances that have been exposed to various sorts of light emission (spectroscopy).

Several methods have been proposed for the exploratory analysis of three-way data.
Two of the most popular methods are PARAFAC (Carroll & Chang, 1970; Harshman,
1970; Harshman & Lundy, 1984) and Three-Mode Factor Analysis (3MFA; Kroonenberg
& de Leeuw, 1980; Tucker, 1966). In fact, PARAFAC can be seen as a constrained variant
of 3MFA (as explained below). Due to the constraints used in PARAFAC, the PARAFAC
fit is usually less than the 3MFA fit; on the other hand, the PARAFAC model is unique
(thanks to the constraints), whereas the 3MFA model is not. In the present paper, we focus
on models that are in between the 3MFA model and the PARAFAC model. These models
are constrained variants of 3MFA, in which the constraints are less stringent than in
PARAFAC. For this reason, one can also view these models as extensions of the
PARAFAC model. The main result of the present paper is that a class of such interme-
diate methods gives unique solutions, just like PARAFAC (and unlike 3MFA). It will thus
be shown that, to obtain a unique model, one need not constrain the 3MFA model as
heavily as is done in PARAFAC: More relaxed constraints are still sufficient to obtain a
unique model.
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Before deriving the uniqueness result, we will discuss PARAFAC and 3MFA in detail,
and introduce the intermediate methods. Also, we will indicate why the uniqueness of the
intermediate methods is important. This will be illustrated by means of a set of simple
exemplary analyses. Subsequently, a description is given of the models for which we prove
uniqueness in the present paper, and the uniqueness will be proven. As a byproduct of the
uniqueness proof, we propose a numerical procedure for assessing (non)uniqueness 
models outside the class of models for which uniqueness is actually proven.

PARAFAC, 3MFA and a Compromise

To facilitate conceptualization of the three modes of a three-way array, in the present
section, we will view the first mode (A) as that of the individuals, the second (B) as 
of the variables and the third (C) as that of the occasions. In both PARAFAC and 3MFA
(implemented in the TUCKALS-3 algorithm by Kroonenberg & de Leeuw, 1980), the data
are modeled by components for the three different modes, and the models are fitted to the
data in the least squares sense. The P.ARAFAC model can be written as

R

Xij k = ~ airbjrCkr q- eijk, (1)

r=l

where Xijk denotes the score of individual i, on variable j, at occasion k, i = 1 ..... I, j =
1 ..... J, and k = 1,..., K; air, bjr, and Ckr are elements of the three component matrices
A, B, and C, of orders I x R, J × R, and K x R, respectively; and eijk denotes the error
term for observation Xijk.

Compared to the PARAFAC model, the 3MFA model uses an additional set of
parameters to account for interactions between the three sets of components. The 3MFA
model is given by

P Q R

Xijk = ~ ~ ~ aipbjqCkrgpqr q- eij~, (2)

p=l q=l r=l

where the matrices A, B, and C are of orders I × P, J × Q, and K x R, and the additional
parameters !Tpqr denote elements of the P x Q × R socalled "core array." The matrices A,
B, and C can be considered component matrices for "idealized subjects" (in A), "idealized
variables" (in B), and "idealized occasions" (in C), respectively. The elements of the 
indicate how the components from the different modes interact.

As has been noted by Carroll and Chang (1970, p. 312), the PARAFAC model can 
considered as a version of the 3MFA model where the core is constrained to be "super-
diagonal" (which implies that 9ijk is unconstrained if i = j = k and 9ijk is constrained to
0 otherwise). It follows that, if P = Q = R, the 3MFA fit is always at least as good as the
PARAFAC fit, because the 3MFA model uses not only the superdiagonal elements of the
core, but also the off-superdiagonal elements, which may considerably enhance the fit. To
pinpoint the difference between the two models, we use a (simplified) tensorial description
of the two models. Considering x as a vectorized version of the modelled three-way array,
and e as a vector with error terms, the 3MFA model can be written as

X = 0’111(al (~ b~ ® el) -1- 0’112(al ~ bl (~ c2) -[- ffll3(al (~ bl (~) c3) 

+ Y211(a2 ® bl ® cl) + ¯ ¯ ¯ +/TeoR(ae ® he ® oR) + e, 

where (ai @ bj ~) ek) denotes the triple tensor product of column i of A, columnj of B, 
column k of C. This tensor product can be viewed as the vectorized version of the three-
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way array that comes about by calculating all possible products of elements from the three
different vectors. In the same notation, the PARAFAC model can be written as

x= (a~®b~®c~) +(a2®bz®cz) +’"+ (an®bn®cn) (4)

note that the superdiagonal core elements giii, i = 1,..., R have been subsumed in one
of the parameter matrices. The crucial difference between the models in (3) and (4) is that,
whereas the 3MFA model contains all possible tensor products, the PARAFAC model
contains only the products (ai ~) bj ® Ck) for which i = j = k. Clearly, the PARAFAC
model is a far more parsimonious model than the 3MFA model. In interpreting the results
of a PARAFAC analysis, we have to consider only how A-, Bo and C-mode components
with the same index contribute jointly to the representation of the data. In interpreting a
3MFA solution, we have to additionally employ all interactions of components with different
indices. This fact makes the interpretation of 3MFA solutions far more complicated than
interpreting a PARAFAC solution.

There is another complication in interpreting the 3MFA solution. Once a 3MFA
solution is obtained, we may, without affecting the fit, transform the three component
weight matrices by any nonsingular transformation, provided that this is compensated for
by applying the inverse transformations to the core array (see Kroonenberg & de Leeuw,
1980, p. 70). This implies that, before interpreting a 3MFA solution, we should decide what
transformation of the components to apply. This transformational indeterminacy is similar
to that in factor analysis, and one might therefore expect that, as in factor analysis, some
kind of simple structure rotation would be convenient to identify the solution. However,
for the present problem it is by no means clear what this simple structure rotation should
be. One approach is to transform the components such that the core becomes as close as
possible to a superdiagonal matrix (see e.g., Kroonenberg, 1983). Another is to apply a set
of orthogonal rotations that optimizes a combination of orthomax functions applied to the
core (Kiers, in press). However, there is little substantive reason to restrict oneself 
orthogonal rotations, and, as has been shown by Kiers (1992), oblique rotation to super-
diagonality tends to give ill-defined solutions; other procedures for oblique rotation are
still in the stage of development (Kiers, in press; Kruskal, 1988). It can be concluded that
the transformational indeterminacy of the 3MFA solution is a serious problem, that has no
clear-cut solution.

The PARAFAC model, on the other hand, has no such identification problems. The
PARAFAC solution is, under mild assumptions, unique up to scaling and permutations
(see Harshman, 1972; Kruskal, 1977, 1989). This implies that the tensor products that
contribute to the description of x are uniquely determined. This difference with 3MFA,
added to the above mentioned difference in parsimony of the model descriptions, makes
the PARAFAC model more attractive than the 3MFA model. If, for a particular data set,
the fit of the PARAFAC model is almost as good as that of the 3MFA model, one will
usually prefer the PARAFAC model. The choice becomes difficult if the PARAFAC fit is
considerably worse than the 3MFA fit, or if the PARAFAC solution is degenerate. Ap-
parently, in such cases, the tensor products with the same indices are not sufficient to
describe the data adequately, and we have to add tensor products with different indices (as
in the 3MFA model). However, there is no intrinsic reason to take all such tensor products.
Adding only a few such terms often appears to increase the fit considerably. In this way,
we obtain a model in between the 3MFA model and PARAFAC that has a (much) better
fit than PARAFAC, is slightly more complex than the PARAFAC model, but is not nearly
as complex as the full 3MFA model, and, as will be seen later, is unique in various cases.
In fact, such models strike a compromise between the parsimony of the PARAFAC model
and the good fit of the 3MFA model. Technically, such models can be viewed as con-
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strained 3MFA (C3MFA) models, where a majority of the core elements is constrained 
zero.

Constrained Three-Mode Factor Analysis (C3MFA)

Above, we introduced Constrained Three-Mode Factor Analysis (C3MFA) as the
technique that fits the 3MFA model subject to certain constraints on the core. To fit
C3MFA models, Kiers (1992) proposed an iterative algorithm which is a straightforward
extension of the PARAFAC algorithm. That is, in this algorithm each component matrix
is updated by a regression procedure, as in PARAFAC, and the core is updated by an
additional regression step. The algorithm differs considerably from the TUCKALS-3 al-
gorithm for 3MFA (Kroonenberg & de Leeuw, 1980), because in the latter algorithm one
can, without affecting the maximum fit, constrain A, B and C to be columnwise orthonor-
mal. In fact, in 3MFA these constraints are merely identification constraints. In C3MFA
one can also constrain A, B and C to be columnwise orthonormal, as has been done by
Rocci (1992), but in C3MFA these constraints are no longer identification constraints:
Using these constraints (usually) decreases the maximum of the fit function. For this
reason, Kiers (1992) proposed to drop the orthonormality constraints. In some situations,
additional reasons for dropping the orthonormality constraints may arise. For instance, in
chemometrical applications the matrices A, B and C should all have nonnegative elements,
which is incompatible with the orthonormality constraints. Alternatively, it is conceivable
that in certain situations the orthonormality constraints hardly affect the fit, but do make
the interpretation of a solution easier. In such cases, Rocci’s algorithm is indicated. To
keep the results as generally applicable as possible, in the present paper it will be assumed
that A, B and C are unconstrained.

Above, it has been mentioned that C3MFA often yields a considerably better fit than
PARAFAC. In fact, in numerous analyses of three-way arrays (both empirical and con-
trived ones) it turned out that the C3MFA fit was approximately or exactly equal to the
3MFA fit, even in cases where a relatively large number of core elements were constrained
to zero. Although we will not delve into this in detail, it may be useful to give some of our
preliminary results. In case of a 2 x 2 × 2 core, we can constrain at least four elements to
zero without affecting the fit. For 3 x 3 × 3 cores, it can be proven that, under mild
assumptions, at least 16 of the 27 core elements can be constrained to zero without
decrease in fit. Empirical study of several contrived data sets indicates that 18 elements can
be constrained to zero without decreasing the fit. Therefore, it seems that the most inter-
esting C3MFA models are those that emerge by adding only a few terms to the PARAFAC
model, and the present paper will focus on such models. In the next section, we will
illustrate the usefulness of C3MFA models with 3 × 3 × 3 cores with many zero constraints
by means of some simple exemplary analyses.

Exemplary Analyses

Lundy, Harshman and Kruskal (1989) report an analysis of their "TV-data" (a three-
way array of ratings of 15 television shows by 40 subjects on 16 scales). Their PFCORE
procedure produced a PARAFAC solution for A, B and C and a 3 × 3 × 3 core array
interrelating the PARAFAC dimensions. Rather than reanalyzing the full data array by
C3MFA procedures, we chose to analyze the much simpler 3 × 3 × 3 core array as if it
were the original data matrix. That is, we take the interpretation of the components by
Lundy et al. as if these interpretations refer to real (rather than idealized) scales, shows
and individuals, respectively. The "data" array (see Lundy et al., p. 127) is reported 
Table 1.
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TABLE 1

’~rv" Core Data

First Idealized Individual

Funny Sensitive Violent
Show Show Show

Humor 1.058 -.257 .301

Sensitivity -.084 .102 -.216

Violence -.095 .093 -.057

Second Idealized Individual

Funny Sensitive Violent
Show Show Show

Humor .014 -.013 .089

Sensitivity -.071 .951 .113

Violence .016 -.049 -.025

Third Idealized Individual

Funny Sensitive Violent
Show Show Show

Humor -.125 .485 -.667

Sensitivity .244 -.099 .194

Violence .135 .087 1.061

This data set has been analyzed by means of C3MFA with 3 dimensions for all three
modes. In this way, obviously, no reduction in dimensionality will be attained, but we hope
to obtain a parsimonious representation of this data by using many zero constraints in the
core. Specifically, we fitted five C3MFA models (using 3 x 3 x 3 cores with many elements
constrained to zero) and the PARAFAC model (in three dimensions). The C3MFA mod-
els were all extensions of the PARAFAC model, in that they employed the terms used in
the PARAFAC model, plus one or two additional tensor products. The choices of these
products may seem somewhat arbitrary; at the end of the present paper, we will explain
why these choices were made. In Table 2 the fit percentages (percentages of the total sum
of squares explained) of these five models and the PARAFAC model are reported. To
describe the five models, we report the core elements corresponding to the tensor products
"added" to the PARAFAC model. To interpret the results in Table 2, it should be noted
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TABLE 2

Fit Percentages of Five C3MFA Models

and PARAFAC fitted to the TV Core Data

Model Fit Percentage

PARAFAC 93.8

PF+g121 93.8

PF+g121+g211 93.8

eF+g321 94.6

PF+ga21+g231 98.9

PF+g321+g132 98.8

that the unconstrained 3MFA model has a fit percentage of 100%. It can be seen that
PARAFAC comes rather close to this 100%, and that little can be gained by adding only
one tensor product term to the PARAFAC model. However, adding two other terms, as
in the last two models, does increase the fit considerably, and raises it close to the maxi-
mum of 100%. Hence, it can be seen that the TV core data can be represented very well
by a model with five tensor product terms, and that we hardly gain by using the full 3MFA
model (with 27 terms) to represent these data.

We will interpret the results of the best fitting model only: PF + g321 + g231 (see
Table 3). The scale components can be interpreted as: "Violence corrected for Humor,"
"Humor" and "Sensitivity," respectively; the Show components are mainly covered by
"Violent Show," "Funny Show" and "Sensitive Show," respectively; the Subject compo-
nents are virtually identical to "Third Individual," "First Individual" and "Second Indi-
vidual," respectively. The related constrained core is given in Table 3 as well. It can be seen
that, in addition to the three main terms (that relate Corrected Violence, Violent Show
and the Third Individual; Humor, Funny Shows and the First Individual; and Sensitivity,
Sensitive Shows and the Second Individual), there are two interaction terms, both of which
are especially important for the Third Individual: Humor with Sensitive Shows, and Sen-
sitivity with Funny Shows. Looking back at our original data, we had 24 terms that could
count as such interaction terms, six of which were relatively large. Thus it has been
demonstrated that an important increase in parsimony has been obtained by using the
C3MFA model, at very lost costs.

Uniqueness of C3MFA Models

As has been mentioned above, the interpretation of 3MFA solutions is more com-
plicated than of PARAFAC solutions for two reasons: the 3MFA model involves more
parameters than the PARAFAC model, and 3MFA gives nonunique solutions. The former
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TABLE 3

Component Matrices and Core for C3MFA model "PF+g321+.q132"

355

Scale Components

Humor -.57 .99 .02

Sensitivity .11 -.13 1.00

Violence .82 -.10 -.04

Show Components

Funny Show .13 .93 -.06

Sensitive Show .13 -.23 .99

Violent Show .98 .28 .12

Individual Components

First Individual -.02 1.00 .04

Second Individual -.05 .02 1.00

Third Individual 1.00 .00 .01

C3MFA Core

"3rd Individual"

"Violent Show" "Funny Show" "Sensitive Show"

"Violence - Humor" 1.33 0 0

"Humor" 0 0 .60

"Sensitivity" 0 .24 0

"lst Individual"

"Violent Show" "Funny Show" "Sensitive Show"

"Violence - Humor" 0 0 0

"Humor" 0 1.14 0

"Sensitivity" 0 0 0

"2nd Individual"

"Violent Show .... Funny Show .... Sensitive Show"

"Violence - Humor" 0 0 0

"Humor" 0 0 0

"Sensitivity" 0 0 .96
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disadvantages of 3MFA can be diminished by constraining a majority of core elements to
zero, as has been illustrated in the above example. It is the purpose of the present paper
to show that constraining core elements to zero can also eliminate the latter disadvantage.
Specifically, it will be shown that a class of (sparse) C3MFA models with 3 x 3 x 3 cores
has, under mild assumptions, a unique representation. (In the sequel, we will usually
contract the phrase that "a model has a (non)unique representation" to "a model 
(non)unique.") At the end of the paper we will rediscuss the results for the example in 
light of the (non)uniqueness results of the present paper.

The present paper is limited to uniqueness for a class of C3MFA models that employ
3 x 3 × 3 cores. It should be noted that the main results carry over to C3MFA models
where A, B, and or C is constrained in some way (e.g., as in Rocci, 1992): All models that
are unique when A, B and C are unconstrained, remain unique when constraints on these
matrices are imposed. The reason to focus only on 3 x 3 x 3 core arrays is that, among
C3MFA models employing smaller core arrays, the only (nontrivial) unique one we en-
countered in extensive experimentation is the C3MFA model in which the 2 x 2 x 2 core
is constrained to be superdiagonal (which is, in fact, the PARAFAC case). On the other
hand, among the C3MFA models employing larger cores than 3 x 3 x 3, there may be
many unique models, but considering the complexity of the present uniqueness proof, we
choose to leave those cases open for further study.

The class of C3MFA models for which uniqueness is proven consists of models in
which the 3 x 3 x 3 core G is constrained such that the three "superdiagonal" core elements

(glll, g222 and g333) are unconstrained, the eighteen core elements with two equal indices,
denoted as the "plane diagonal elements" (because they are not on the superdiagonal, but
they are on the diagonal of a frontal, horizontal, or lateral plane) are constrained to zero,
and the six "offdiagonal elements" (i.e., elements with three different indices, which are
offdiagonal in all senses) are either unconstrained or constrained to zero. This class of
C3MFA models is characterized as those employing a core with frontal planes

G1 = 0 , G2 = ,

a
and G3 =

0i !)
(5)

where the elements a, b, c, d, e and f denote the offdiagonal elements, which may or may
not be constrained to zero (depending on the model at hand). In the present paper, it will
be proven that all C3MFA models in which the core is constrained to be of the form in (5),
or a permutation or rescaling thereof, are "unique" under certain mild assumptions. This
uniqueness implies that if a set of parameters (A, B, C, G) and an alternative set 
parameters (~i,, B, C, G), both satisfying the constraints of a particular C3MFA model, give
the same representation of the data, then the parame_te_rs in A, B and C must be equal up
to a permutation and/or rescaling of the columns of A, B and (2. Note that the columns of
A, B and C can always be rescaled arbitrarily, as long as this is compensated by inverse
scalings of the "rows," "columns" and "slabs" of the core. (Here "slabs" denote the frontal
planes of the core, "rows" denote the horizontal planes of the core, consisting of the rows
of the slabs, and "columns" denote the lateral planes of the core, consisting of the columns
of the slabs). This explains why uniqueness can only be obtained up to rescalings. Permu-
tations of the columns can sometimes, but not always be compensated by permutations in
the core. It will be indicated in a separate section which permutations are and which are
not permissible.

A complete description of the uniqueness result to be proven in the present paper is
stated in the following Definition and Theorem.
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Definition. A set of constraints on the core is called "Extended PARAFAC" (EP)
constraints if it specifies all plane diagonal elements to be zero, an arbitrary but fixed set
of offdiagonal elements to be zero, and it leaves all superdiagonal elements unconstrained.
(This definition implies that all cores that satisfy EP constraints are of the form in (5)).

Note that cases where a superdiagonal element is constrained to zero are excluded by
the class of EP constraints. However, by permutations we can always transform each core
that has three unconstrained terms in different rows, columns and slabs into the form of
(5), and hence subsume such sets of constraints under the class of EP constraints. For ease
of notation, we will not treat such cases explicitly in the Uniqueness Theorem.

Uniqueness Theorem. Let A (I × 3), B (J × 3) and C (K × 3) be component matrices,
and let G (3 × 3 × 3) be a core that satisfies a set of EP constraints, with the elements
denoted as in (5). Furthermore, let

(i) A, B and C have full column rank,
(ii) all unconstrained elements of G be nonzero,
(iii) (xyz + ade + bcf)3 4: 27abcdefxyz.

Then every set {A, B, C, G} that gives the same 3MFA representation as {A, B, C, G},
hence for which

3 3 3 3 3 3

~ ~ ~ ~lip~)jq~kr~pqr = ~ ~ ~ aipbjqCkrgpqr,
p=l q=l r=l p=l q=l r=l

for all i, j, k, and in which I] satisfies the same set of EP constraints, is related to {A, B,
C, G} such that the columns of ~, ~ and ~ are at most rescaled versions of those of A, B,
and C, respectively, possibly in different orders.

To avoid overcomplicating the description of the Uniqueness Theorem, we do not
state the precise form the permutations and rescalings may take. The freedom in scaling
has already been mentioned above. In a later section, we will offer some details on which
permutations are and which are not permissible for the different models. It will also be
demonstrated there that the permissible permutations do not affect the interpretation of
the components. Since rescalings do not affect the interpretation either, the Uniqueness
Theorem can indeed be interpreted as stating that all C3MFA models that use EP con-
straints give "unique" representations.

The Uniqueness Theorem specifies three conditions that are jointly sufficient for
uniqueness. As will be seen in a later section, condition (iii) is necessary for uniqueness 
well. As a practical matter, the condition that unconstrained core elements are nonzero
(Condition (ii)) can always be assumed to hold. For one thing, with real data, there is 
probability that the fitted value of any unconstrained element will be 0. For another, if such
an element should happen to be 0, then the data analyst will immediately switch to a model
in which that element is constrained to be 0. The two other uniqueness conditions can be
assumed to be satisfied in all practical situations. In fact, violation of Condition (iii) 
highly unlikely in practice, since, as can be verified, it requires that either ade = bcf = xyz
or (ade)1/3 + (bcf) 1/3 = -(xyz)1/3. It should also be noted that we only consider unique-
ness given the estimates for X. This does not exclude the existence of cases where the
estimates themselves are not unique. This restriction to "uniqueness given the estimates"
is common in uniqueness proofs, and has, for instance, also been used in uniqueness proofs
for the PARAFAC model.

Proof of the Uniqueness Theorem

The bulk of the present paper is devoted to proving the Uniqueness Theorem. We will
do so by proving several Lemmas, and linking these to each other. By means of the first
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Lemma, all possible sets of EP constraints are classified into ten classes. Constraint sets
that are in the same class are shown to define essentially the same C3MFA model. There-
fore, it is sufficient to prove_uniqueness for these ten cases. The second Lemma shows that
A, B and C are related to A, B and (~ by means of nonsingular transformations (S, T and
U, respectively), and it is implied that proving uniqueness of C3MFA models reduces to
proving that the transformation matrices are rescaled permutation matrices. Next, lemma
3 specifies a set of six equations for the elements of the matrix U (the matrix relating C to
~ according to C = ~U), that must hold for all C3MFA models that employ a set of EP
constraints. Since these six equations are nonlinear, we cannot simply solve them for the
elements of U. Instead, we supplement these six equations with 21 other equations and
henceforth relate two 3 x 3 x 3 arrays to each other, one of which is of the form of (5).
This relation is given in Lemma 4. With these Lemmas, we are in a position to prove that
U is a rescaled permutation matrix for all ten cases under study (Lemmas 5 and 6). 
finish the proof, it is shown that the matrices S and T (that relate A to ~_, and B to ~,
respectively) must be rescaled permutation matrices as well.

We will now establish the Lemmas used in this uniqueness proof. Elaborate proofs, that
do not contribute much to insight in the line of reasoning, will be deferred to an appendix.

Lemma 1. Each of the 26 conceivable sets of EP constraints can, by permuting rows,
columns or slabs of the array, be subsumed under one of the following ten cases:

Case0: a = b = c = d = e =f= 0.
Casel: a :~ 0;b = c = d = e =f= 0.

Case2a: ab ~ 0;c = d = e =f= 0;
Case2b: ad ~ 0;b = c = e =f= 0;
Case3a: abc ~ 0;d = e =f= 0;
Case3b: ade ~ 0;b = c =f= 0;
Case 4a: abcd ~: 0; e = f = 0;
Case4b: abde ~ 0;c =f= 0;
Case 5: abcde ¢ 0; f = 0.
Case 6: abcdef ~ O.

Proof. See Appendix A.

As shown in Appendix A, the respective cases cover the following situations:

Case 0: The case where all offdiagonal elements are constrained to zero. This case
coincides with the PARAFAC model, since we only have the superdiagonal
terms in the core.

Case 1: All cases with one unconstrained offdiagonal element.
Case 2: All cases with two unconstrained offdiagonal elements; Case 2a if they are in

the same row, column or slab; Case 2b otherwise.
Case 3: All cases with three unconstrained offdiagonal elements; Case 3a if two of

them are in the same row, column or slab; Case 3b if they are all in different
rows, columns and slabs.

Case 4: All cases with four unconstrained offdiagonal elements; Case 4a if one col-
umn, row or slab contains no offdiagonal element; Case 4b otherwise.

Case 5: All cases with five unconstrained offdiagonal elements.
Case 6: The case with six unconstrained offdiagonal elements.

To prove the Uniqueness Theorem, we will first simplify the basic equality

3 3 3 3 3 3

~ ~ ~ ~ip~)jq~kr~pqr : ~ ~ ~ aipbjqCkrgpqr,
p=l q=l r=l p=l q=l r=l
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i = 1 ..... I,j = 1 .... ,J,k = 1 ..... K, as

~G~ ~’= A c~tG~ B’,
/=1

k = 1, ..., K. The following Lemma is used to further simplify this equality.

Lemma 2. If P = Q = R = 3, G satisfies a set of EP constraints, and conditions (i)
and (ii) in the Uniqueness Theorem are satisfied, then

~ ~’= A c~ B’, (6)
/=1

holds for k = 1,..., K if and only if there exist nonsingular matrices S, T and V such that
~=~S,B=~T,C=~V, and

g~ = S ~ u~ T’ ~ S~T’, (7)
l~l

where we defined ~ ~ (2~ u~), k = 1, 2, 

Proo~ To prove the "only if’ part, we can rewrite (6) as ~(~ ~ G~ ~ ~)(e’ 
= ~(~ ~ ~ ~ ~3)(~’ N ~’). It follows from Condition (i) that (C’ N B’) is 
matrN of full rank 9, and from Condition (ii) that

(~ ~3)= 0 b 0 y 0 e 0
a 0 c 0 0 0 0

is of ~11 rank 3. Hence, A = ~(~ ~ ~ ~ ~)(~’ N ~’)(C’ N B’)+(~I ~ G~ ~ ~)+, +
denotes the Moore-Penrose inverse. Because ~ has rank 3, ~(~ ~ ~a ~ ~3)(~’ N ~’) 
have rank 3 as well, and hence ~ must also have rank 3. Because ~ and A span the same
column space, it follows that A = ~S for a certain nonsingular matrN S. In a completely
analogous fashion we find that B = ~T and C = ~V, for nonsingular 3 x 3 matrices T and
V. Hence it follows from (6) that

~ ~, g’= ~s ~ [e~]~ ~’g’, (a)
/=1

k = 1 ..... K. Premultiplying (8) by ~+ and postmultiplying (8) by ~’+ gives

~,~ = s ~ [ev]~,~ ~’, (9)
l=l /=1

k = 1 ..... K. Writing both sides of (9) in vectorized form and collecting these vectors (for
k = 1, 2, 3) in a matrN, we obtain

(Vec (~1~ ~ Vec (~) ~ 

=(Vec (s~’) ~ Vec (S~’) ~ Vec (S~’~(e~)’,
where Vec (.) denotes the vector containing the columns of the matrN in parentheses
below each other. Postmultiplying both sides of (10) by ~’+ yields

(Vec (~ ~ Vec (~ ~ Vec 
=(Vec (S~T’) ~ Vec (S~T’) ~ Vec (S~T’))~’, 
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from which (7) follows at once. This proves the "only if" part. To prove the "if" part, 
use that the essential steps can validly be made backwards: Rewriting (7) as (11) 
postmultiplying both sides of (11) by ~’ yields (10), and hence (9); next, pre- and 
multiplying both sides of (9) by ~_ and ~, respectively, yields (8), from which (6) follows 
once, using A = ~i.S, B = ~T, and C = ~U. []

The next Lemma specifies a set of equations for the elements of U that must be
satisfied for (7) to hold, and hence for the basic equality in the Uniqueness Theorem 
hold.

1Lemma 3. Letg ~ g (xyz + ade + bcf), l = - a bx, h 2 - = cdy, a nd h3 ~efz. T hen
a necessary condition for (7) to hold is that the elements of U satisfy

g(UklUl2Ul3 ~- //k2/2llUl3 -~ Uk3/211Ul2) -- hlU~lUl~| -- h2u~2uk2 - h3u213uk3 = O, (12)

k,l = 1,2,3, k¢l.

Proof. See Appendix B.

The equations in (12) express necessary conditions for (7) to be satisfied by 
elements of U. These equations form the basis for proving that, if (7) holds, U is a rescaled
permutation matrix. For this proof, it is convenient to define

-- hlUkl 0
g;l~2

)
Vk =- gUk3 - h2uk2 , k = 1, 2, 3. (13)

0 gUkl -- h3Uk3]

1
Corollary 3.1. Let g ~ ~ (xyz + ade + bcf), 1 ~- abx, h2 ~cdy, and h3--- efz.Then

a necessary condition for (7) to hold is that

ut.V~u~. = O. (14)

k = 1, 2, 3, l = 1, 2, 3, k ¢ l, where ut. denotes the/-th row of U.

Proof Immediate from Lemma 3 and the definition in (13). []

The six equations specified in (14) have a very special form. To see this, we define 
auxiliary three-way Y (depending on the elements of U and on a number of constants), with
elements Yijk =- ui.VkU)., and frontal planes Yk = UVkU’, k = 1, 2, 3. Then the equations
in (14) imply that the six elements Yijk of Y for which i = j ¢ k are zero; these are six of
the eighteen plane diagonal elements of Y. In the following Lemma, we will establish
expressions for the other elements of the auxiliary array Y. In particular, Lemma 4 states
that Y must be of the form displayed by G in (5). This result will allow us to prove that 
must be a rescaled permutation matrix in each of the ten cases under study.

Lemma 4. Let

o/ ~ -- hlUll//21//31 - h2/212/222u32 - h3u13/223/233,

~3 ~ /211/2231A32 ~- /212//21U33 -I- /~13/222//31,

~ ~--- //11/,/22/233 -}- UI2U23U31 q- b/13U21/232,

6-- c~ + 9/3,
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Then a necessary condition for (7) to hold is that

Y~ ~- UV~U’ = le. l
0

Y3 -= UV3U’ = 0 ,

o
where Y1, Y2 and Y3 denote the frontal planes of the array Y defined above.

(15a)

(15b)

(15c)

Proof. For the elements (i, j, k) of Y, we have

- hlUkl 0

Yijk = ui.Vkuj. = (uiiui2ui3)[ 9u~3 -- h2u~2

0 9Ukl

= g(UilUj3Uk2 "~- UiEUjlUk3 "b Ui3Uj21,lkl)

- h I Uil Ujl Ukl -- h2ui2uj2Uk2 -- h3ui3uj3Uk3"

It follows from (16) that

YkU = Uk.Vtu;.

gUk2 liUjlI

- h3. 31\us31

(16)

~- g(UklUI2UI3 -[- Uk2UllUl3 -’[- Uk3UllUl2)

-- hltlklU~l -- h2uk2u~2 -- h3Uk3U~3, (17)

and

yt~ = u~.Vtu~.

: g(UklUl2Ul3 + Uk2UllUl3 q- tlk3UllUl2)

-- hlUklU/21 -- h2u~2u~2 - h3Uk31A~3. (18)

Clearly, (17) and (18) equal the left-hand side of (12). Hence, by Lemma 3, it follows 
(7) that Yktt = 0 and Ylkt = 0, for k, 1 = 1, 2, 3, k @ l. By Corollary 3.1, it follows from
(7) that Yttk = 0 for k, l = 1, 2, 3, k @ l. Thus, it has been proven that all eighteen plane
diagonal elements of Y are zero.

Next, we consider the superdiagonal elements of Y. From (16) it follows that

y~k~ = u~.V~u~,. = 3~u~1u~2~3 -- hlU~l - h2u~2 - h3u~3, (19)

k = 1, 2, 3. From the definition of ~, we have

3 {XUkl
fUk3 dUk2I

~JI~ =-- E uktGI = ~euk3/=l yuk2 bUkl ],

\ CUk2 auk1 ZUk3 /

(20)

and it is readily verified that Yggk =
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Finally, we consider the offdiagonal elements of Y. Using expression (16) and the
definitions given in Lemma 4, we can verify that

Y123 =Y231 =Y312 = a

Y132 = Y213 = Y321 = Ot

which completes the proof of Lemma 4.

(21a)

(21b)

Corollary 4.1. Let a, /3, % 6, and e be defined as in lemma 4, then a necessary
condition for (7) to hold is that U satisfies

where Wl, l = 1, 2, 3, denotes the/-th frontal slab of the three-way array W, defined by

W1 ~ 0 ; W2 ---- -- h2 ; W3 = 0 .
0 /7 0 0 -ha

Proof It is readily verified that (13) can be written 

3

Vk = ~] uktWt,
I=1

k = 1, 2, 3. Then Corollary 4.1 follows at once from Lemma 4. []

Lemma 4 and its Corollary form the basis of our proof that U is a rescaled permu-
tation matrix. In the Lemmas 5 and 6, the proof will be completed, for two subsets of cases
separately.

Lemma 5. Under the Conditions (i), (ii) and (iii) of the Uniqueness Theorem, 
Cases 0, 1, 2b and 3b, a necessary condition for (7) to hold is that U is a rescaled
permutation matrix.

Proof
and h1 = h2 = h3 = O, hence

V~ = 9u~3
0

In cases 0, 1, 2b and 3b, we have IGal = IG21 : IG31 : 1611 : 1621 : t631 : 0,

0 /7u~2/
0 0| o (22)

9u~1 0 ]

U - IY1 --- U - 1 0 = V1U’ ~-/7 3 0 U~’

~ Ull

Ull 0 ] \U13

U21 U311
U22

u3x];
U23 U33/

(23a)

According to (7), we have k =S6kT’, k = 1,2, 3. Therefore, from I~Jll = 1621 = 163t
0 it follows that le, ll -- 1621 -- [631 -- 0. Hence, according to Lemma 4, we have



HENK A. L. KIERS ET AL. 363

U - 1Y2 = U - 1 0 = V2 U~’ = ff 3 0 Ut

0

u21 \/~13 u23 /,/33]

U - 1Y3 = U - 1 0 ~-- V3U’ : ff 3 0

0 u31

\U13 b/23 U33]

(23b)

(23c)

In Cases 0, 1, 2b and 3b, Condition (iii) reduces to/7 ¢ 0, because b = c = f = 0. From
(23), we have that the first column of the matrix in (23a), the second column of the matrix
in (23b), and the third column of the matrix in (23c) vanish. Because/7 :~ 0, it follows 

U12/g13 ~ b/13/.gll ~ Ull/gl2 : 0

/~/22U23 : /~/23U21 : /~21/,~22 : 0

/g32U33 ~ /g33U31 ~ U31b/32 ~ 0.

(24a)

(24b)

(24c)

The nonsingularity of U implies that every row of U has at least one nonzero element. Then
it follows from (24) that, in every row, the other elements are zero. Hence, the nonsin-
gularity of U implies that U is a rescaled permutation matrix. []

Lemma 6. Under the Conditions (i), (ii) and (iii) of the Uniqueness Theorem, 
Cases 2a, 3a, 4a, 4b, 5 and 6, equation (7) holds only if U is a rescaled permutation matrix.

Proof. By Lemma 4, we have that (7) implies (15). From (15a) and (15b) 
deduce, using the explicit expressions for ¥1 and V2 in (13), the following three results:

luzlYI - u,,Y21 = IU(u21Vl -- UllV2)U’l --- IuI21uz V - u.Vz[ = 0 (25a)

lu2zY, - UlaY21 -- Iu(u22Vl -- u,2Vz)P’l = IuI2iu22V, - u, vzl = 0 (25b)

lu23Yl -- u,3Y21 = [U(u23V1 - u,3V2)U’l -- IuI21u=3v, - u,3V21 = o, (25c)
where the fact that the determinants are 0 follows from the particular pattern of zeros
encountered in the matrices (u21V1 - UllV2), l = 1, 2, 3. Elaborating the first terms in (25),
using the explicit expression for Y1 and Y2 in (15), we find

0- ult6 U 211~

l = 1, 2, 3. It follows that either 6e = 0, or

Ultl~2l 1/3 = U2/l~ll1/3,

(26)

(27)
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l = 1, 2, 3. In the Cases 2a, 3a, 4a, 4b, 5 and 6, we have I1111 =/= 0, hence I(]11 :~ 0.
Therefore, it follows from (27) that either rows Ul. and u2. are proportional or row u2. 
zero, both of which would render U singular. Hence, because U is nonsingular, 6e = 0 is
the only viable option.

We have proven above that 6e = 0. It follows from the definitions of 6 and e (in
Lemma 4), that, if g = 0, then/5 = e, hence ~Se = 0 implies 6 = e = 0. If 9 ¢ 0, then ~i = 0
or e = 0; we cannot have 6 = e = 0, because then the definitions of 6 and e would imply
that/3 = 3", hence 3’ -/3 = 0. Because 3’ -/3 = IUt, as follows directly from the definitions
of 6 and e, this would imply that U is singular. Hence, we can distinguish three situations:

1. g=3=e=O
2. g¢0,6=0,~4=0
3. g ¢ O,s = 0,~ 4: O.

For the three situations distinguished above, we will prove that U is a rescaled permutation
matrix, by using Corollary 4.1, as follows.

Situation 1. g = ~ = e = O. This situation cannot be encountered in Cases 2a, 3a
and 4a, because then e = f = 0, hence g = xyz/3 ~0 (by Condition (ii)), nor in Cases 
and 5 (with ade ¢ 0 and f = 0), because then 9 = 0 (together with f = 0) would violate
Condition (iii). If g = 8 = e = 0 for Case 6, we use that

0 0 0
0 0 0
0 0 1113

and

y1-- | 0 0 ;y2=
1112] ;Y3=

0 0

-- hlUkl -0 0

)

Vk ~ 0 h2ug2 0 ,

0 0 - h3Uk3

(28)

(29)

with 11] 1 ¢ 0 and hk :/: 0, k = 1, 2, 3. It follows that Y~ has rank 1, hence Yk =
U-1Yk(U’)-1 has rank 1, for every k. Using that hi, h2 and h3 are nonzero, we have from
(29) that every row of U has two zero elements, k = 1, 2, 3. Because U is nonsingular, 
must be a (rescaled) permutation matrix.

Situation 2. g 4= 0,8 = 0ande ¢ 0. Then

Y1 : / 0 0 ;y2= 11121 ;Y3: 0 0 . (30)
~ o o 11131

Corollary 4.1 specifies that ¥ is related to W by

(3)Yk = U ~ UklWl
/=1

(31)

In Case 6, both ¥ and W have six nonzero elements, at the very same positions. In fact, both
satisfy the Case 3b constraints. Because (31) is a special case of (7), it follows from Lemma
5 (for Case 3b) that U must be a rescaled permutation matrix, unless the uniqueness
conditions for the Case 3b model used here are violated. It remains to verify if the
uniqueness conditions hold for the present Case 3b model. Condition (i) is satisfied by the
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mere fact that U is nonsingular; it follows from hk 4: 0, k = 1, 2, 3, and g v~ 0, that
Condition (ii) is satisfied by W; finally, Condition (iii) is satisfied by W (-hahzh3 + 93)
4: 0, hence if 93 4: hah2h3. This condition is equivalent to the Condition (iii) for G for the
Case 6 model that is presently under study, and is hence assumed to hold too. Hence,
under the uniqueness conditions for Case 6, it follows from Lemma 5 that U is a rescaled
permutation matrix in this situation.

In Cases 4a and 5, hi, h2, 1611 and [62[ are nonzero, but h3 = efz = 0 and 1631 = 0
(because [G31 = 0), as follows from (7). Hence Y and W have five nonzero elements, at 
same positions, and both arrays satisfy the Case 2b constraints, after permutation. This can
be verified most easily by realizing that the e’s will be permuted to the superdiagonal
positions and the remaining two elements will be found in different frontal slabs. Hence,
the uniqueness properties of Case 2b (Lemma 5) imply that U must be a (rescaled)
permutation matrix. (It is readily verified that the three uniqueness conditions for Case 2b
are indeed satisfied).

In Cases 2a, 3a and 4b, h1 and 1611 are nonzero, but h2 = 1621 = h3 = 1631 -- 0, as
follows from (7). Hence Y and W have four nonzero elements at the same positions, and,
after permutation they satisfy the Case 1 constraints. Hence, again U must be a (rescaled)
permutation matrix according to Lemma 5. (It is readily verified that the three uniqueness
conditions for Case 2b are indeed satisfied.)

Situation 3. g 4: 0, e = 0 and 8 4: 0; in this case Y can be made similar to the array
Y in (30) by interchanging the last two rows, the last two columns and the last two slabs.
Denoting this linear operation by II, and denoting the resulting array (of the form of (30))
by ~’, we have

and

Now we can, in a completely analogous way, derive the same results for ~ and II’U as we
did for Y and U in Situation 2. It follows that, under the uniqueness conditions, U must be
a (rescaled) permutation matrix. 

Proof of the Uniqueness Theorem. In the Uniqueness Theorem it is assumed that the
uniqueness Conditions (i), (ii) and (iii) hold. Given these conditions, Lemmas 3 through
6 show that in all cases under study it follows from (7) that U is a rescaled permutation
matrix. It remains to prove that (7) also implies that S and T are rescaled permutation
matrices. This can be done by using Lemmas 5 and 6, as follows.

By interchanging the roles of S and U (that is, by writing the rows in slabs, and the
slabs in rows), we can rewrite (7) 

3

~I~ = U ~ s~tH~T’ (33)
/=1

with H defined as
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I-I l = 0 , I-~2 = y , and H3 = 0 , (34)
f 0 0

and I~ defined analogously, satisfying the same constraints as 14. Considering H as the
three-way core under study, the uniqueness conditions (i) and (ii) are the same as for 
the Condition (iii) now reads (xyz + fbc + dea)3 ~ 27fdebca, which is also the same as
that for G. The Cases 0 through 6 will yield arrays H that may have zeros at different
positions than in G, but all belong to the Cases described in Lemma 1. (In fact, it can be
verified, by using permutations, that for each Case the array 14 belongs to the same Case
as G). Hence we can apply Lemmas 3 through 6 to (33), if necessary after permutations 
14 and I~ so as to obtain the Cases as specified in Lemma 1. Then it follows that, under the
uniqueness conditions, S (which now plays the role that U played in (7)) is a rescaled
permutation matrix, in all ten cases under study.

In a completely analogous fashion, Lemmas 3 through 6 can be used to prove that (7)
implies that T is a rescaled permutation matrix in all ten cases under study. Together, these
results prove that (7) implies that S, T and U are rescaled permutation matrices in all ten
cases under study.

We are now in a position to finalize the proof of the Uniqueness Theorem: From
Lemma 2 it follows that equality (6), stating that two solutions give equal representations,
implies equation (7), where S, T and U specify transformations from the alternative
solutions’ components matrices to the original component matrices. From Lemmas 3
through 6 it follows that, if (6), and hence (7) holds, S, T and U must be rescal_ed_permu-
tation matrices, in all ten cases specified in Lemma 1. Hence, the columns of A, B and (2
are at most rescaled and differently ordered versions of those of A, B, and C, respectively.
From Lemma 1 it follows that the ten cases under study in the Lemmas 3 through 6 capture
all possible sets of EP constraints. Thus it has been proven that, under all possible sets of
EP constraints, the C3MFA component matrices are unique up to permutation and rescal-
ing.

Permissible Permutations

The above proven Uniqueness Theorem states that all solutions that give the same
C3MFA model representations employ matrices A, B, and C that have the same vectors
(up to scaling), albeit in possibly different orders. As mentioned earlier, scaling differences
do not affect the residuals (and hence the fit) because they can always be compensated 
the core. Differences in ordering of the column, however, could lead to different residuals,
and hence affect the fit. We will call combinations of permutations permissible if they do
not affect the residuals. We will not specify all permissible combinations of permutations,
for all possible cases, here. We merely note that for different cases, different sets of
permutations are permissible. For instance, in Case 1, no permissible combination of
permutations exists; in Case 6, all combinations of permutations are permissible.

Rather than spelling out all permissible permutations, we will study whether or not
permissible permutations can lead to solutions that are essentially different (in the sense
that they are based on different sets of triple tensor products), and hence lead to different
interpretations. For example, suppose we fit the model corresponding to Case 1, that is, the
model with four nonzero core elements: 91~, 9222,/7333 and 932~. If one solution is given
by A = (al i a2 ~: a3), B = (b1 ! b2 i b3), and C = (c~ ! c2 i c3), we can write the full array 

X ---- ~/lll(al @ 1 @el ) +/ 7222(82 (~2 ~)e2)+/7333(83 ~) b3 @

"[- ~]321(a3 (~ b2 ® cl) + e. (35)
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Suppose that an alternative solution would be given by ,~ = (a2 ! a1 :: a3), ~ = (b2 i b3 i hi),

and ~ = (el ! c2 i e3) (which differs only by permutations), then we would 

X = ~lll(a2 ~ a @el ) + ~222(al @ 3 (~ c2)

q- ~333(a3 ®bl ®c3) + ,~321(a3 (~b3 ®el) q- (36

The solutions in (35) and (36) involve entirely different tensor products, and hence would
lead to entirely different interpretations.

Fortunately, such entirely different solutions can never be obtained by using permis-
sible combinations of permutations, as can be proven as follows. Suppose the solutions {A,
B, C, G} and {A, B, C, G} give the same estimates, and A, B, C have the same columns as
A, B, C, respectively, but in different orders. Noting that (A ® B ® C) contains all possible
triple tensor products between columns of A, B and C, and that (~i, ® ~ ® f2) contains these
in a different order, we can write (3) 

x = (A®B ® C)g + e = (~®~ ®l~)fg + e = (A®B ® C)h (37)

where g and fg are vectorized versions of G and I] (that have zero elements at the same
positions), and h is the permuted version of ~ that corresponds to the permutations that
transforms (~i, ® ~ ® f2) into (A ® B ® C). In fact, the vectors g and h in (37) indicate 
tensor product terms are used to build up the estimates of x. If g and h would have
(non)zero elements at different positions, the two models would use different tensor
product terms and would lead to different interpretations. However, from the fact that A,
B and C have full column rank, it follows at once that h = g, hence that the alternative
solution (,g, ® ~ ® f2)~ must use exactly the same tensor products as (A ® B ® C)g does,
albeit that these tensor products may be ordered differently.

It can be concluded that only those combinations of permutations of A, B and C are
permissible that lead to the same set of triple tensor product terms as used in the original
C3MFA model. Hence, permissible combinations of permutations will never affect the
interpretation of a solution. It follows that all C3MFA models with EP constraints lead to
unique solutions with unique interpretations.

Necessity of Condition (iii) for Uniqueness in cases 3b, 4b, 5 and 

The above uniqueness proof has relied on three uniqueness conditions. As far as the
first two are concerned, we do not know if they are necessary conditions for uniqueness.
For Condition (iii), we will prove in the present section that it is a necessary condition for
uniqueness. Specifically, it will be proven that, if Condition (iii) is violated, the model is not
unique. We discuss only the Cases 3b, 4b, 5 and 6, because these are the only cases in which
Condition (iii) can be violated.

It is readily verified that for the Cases 3b, 4b and 5 condition (iii) is violated if ade =
-xyz. It will now be proven that, if ade = -xyz, these models are not unique, as follows.
First, we scale the array such that x = y = z = a = d = 1, hence e = -1. Then, choosing

S= - 1 ,T= o~ ,andU= 1 , (38)
0 /? 0

we obtain

and I]3= -a 0 ,
0 0

(39)
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for arbitrary a 4:0 and/3. Thus, we have a class of nonsingular matrices S, T and U that yield
an array ~J that satisfies the constraints of Cases 3b, 4b and 5, respectively. Clearly the matrices
S, T and U are not rescaled permutation matrices. This particular class of solutions was given
to show that the models are not unique. Incidentally, it is worth noting that this class is by no
means the complete class of matrices S, T and U for which ~ satisfies the constraints at hand.

For Case 6, the third uniqueness condition is somewhat more complicated. Assuming
x = y = z = a = b = c = d = 1 (as can always be arranged by scaling of rows, columns
and slabs), situations where the condition is violated can be described as those where

(1 + e + f)3 27el.   (40)

This condition implies that e = f = 1, orf = - (e1/3 ÷ 1)3 for arbitrary e, as can be verified
by factoring the third order polynomial in f.

If the data satisfy (40), Case 6 cannot be guaranteed to give unique solutions. It will
be proven now that, under this condition, the model is nonunique, because, here also,
classes of solutions where S and T are not rescaled permutation matrices can be given, as
follows. If e = f = 1, then taking

-o~ 1 0 o~
$= -a 1 ,T= 1 ,U=I, (41)

o~2 -- o~ ot

for arbitrary c~ :~ - 1 gives ~, = (a3 + 1)G, hence ~ satisfies the constraints of Case 6 for
every choice of c~. Also note that S, T and U are nonsingular unless c~ = -1. Again, this
is by no means the only class of solutions that yield a I~, that satisfies the Case 6 constraints.
If, on the other hand, f = -(e1/3 + 1)3, with e :~ 0 andf # 0 (because ef = 0 would lead
to Case 5), we define e = 1/3 and ~b =(e1/3 + 1), hence e = 3 andf = - ~b3, andwe take

S= 1 0 -4~2 ,T= 0 -~ ,

U= 4~c~ 1 , (42)
~ 0 --

where c~ is an arbitrary scalar such that c~ ¢ -4~-1. Then, as can be verified, the resulting
I~ satisfies the constraints of Case 6, and Isl -- ITI = IuI = ~ + ~4,3~3 ~= 0, hence S, T and
U are nonsingular, but no rescaled permutation matrices. Again, this is not the only class
of matrices $, T and U for which t~ satisfies the constraints of Case 6.

A Numerical Procedure for Assessing Nonuniqueness for Arbitrary C3MFA Models

The above derived uniqueness result only holds for a special class of C3MFA models.
Further study is needed to obtain results on other (classes) of models. Lacking those,
however, the practitioner might use an informal procedure which will usually reveal non-
uniqueness of a nonunique model, and can therefore be used to examine uniqueness.

As has been shown above, a C3MFA model has (under mild assumptions) a unique
representation if and only if (7) is satisfied. Provided that A, B and C have full rank and
that the constrained core, after collecting frontal slabs, horizontal slabs or lateral slabs in
a supermatrix, yields a full rank matrix, we have the more general result that
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k = 1 ..... K, and hence that uniqueness holds iff (43) implies that S, T and U are rescaled
permutation matrices. A simple and relatively efficient way to study if a particular model gives
(non)unique representations, is to construct (e.g., using random numbers) a P × Q × R 
array Z that satisfies the constraints of the C3MFA model at hand, and to fit the associated
C3MFA model to this core (considering it as a data array). The latter amounts to minimizing

IlZk - A CklG l B’[I 2. (44)
k=l

Because Z and G satisfy the same constraints, and A, B and C are square matrices, an
obvious solution is G = Z and A = I, B = I and C -: I. However, if the model is nonunique,
other solutions must exist, in which A, B and/or C are not (rescaled) permutation matrices.
By using several random starts, one will usually find such deviant solutions if the model is
nonunique. If the model is unique, every start will lead to a solution in which A, B and C
are rescaled permutation matrices, provided that the global minimum (of 0) is found.

This procedure tends to work fine in practice, but is not absolutely foolproof. On the
one hand, it is conceivable that a nonunique model repeatedly gives solutions consisting of
rescaled permutation matrices only. It follows that finding only solutions with rescaled
permutation matrices does not necessarily imply that a model is unique. On the other hand,
if we find a solution with at least one matrix unequal to a rescaled permutation matrix (and
a perfect fit), then we have proven that the model is nonunique, at least for the particular
core constraints at hand. In theory, this does not yet imply that the C3MFA model at hand
is unique for all data sets, because, as we saw above, it is possible that certain particular
values in the core make the model nonunique. However, such exceptions are unlikely to be
encountered in practice. In conclusion, the above sketched procedure for assessing unique-
ness gives an indication as to whether or not the model is unique, but guarantees can only
be given by proving (non)uniqueness for the model at hand.

We have implemented the above sketched procedure in a PCMATLAB program
(available from the first author, upon request), and used it for numerous C3MFA models
with 3 × 3 × 3 cores. In fact, it has helped us finding the class of unique models discussed
in the present paper. It has also indicated that these are the only 3 × 3 × 3 C3MFA models
that are unique. Specifically, we have run several hundreds of analyses with randomly
created 3 × 3 × 3 core arrays in which 15 or more elements were constrained to zero. In
only a few of these runs we found rescaled permutation matrices for S, T and U; in some
of those runs, the array corresponded to one of the models for which we have proven
uniqueness above; the other arrays turned out to be nonunique after all (as could be
proven for those cases).

We also used the numerical procedure for assessing (non)uniqueness for C3MFA
models employing other than 3 × 3 × 3 cores. We studied hundreds of 3 × 3 × 2 and 3 ×
2 × 2 cores, and never encountered a unique model.

Rediscussion of the Exemplary Analyses

In the exemplary analyses at the beginning of the paper, we used PARAFAC and five
C3MFA models. Three of the C3MFA models were chosen because they give unique
solutions (as follows from the Uniqueness Theorem); the other two were chosen to dem-
onstrate the implications of using nonunique models. The best of these analyses was the
one denoted as PF + g321 + g231, which we can now recognize as the Case 2a model.
Hence, besides that this model gives a good fit (which is hardly less than that of uncon-
strained 3MFA), it turns out to be a unique model as well. Therefore, we need not consider
rotating or otherwise transforming this solution: The reported solution is the only Case 2a
solution available (except for arbitrary rescalings and permutations, that is).
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At first sight, it may have come as a surprise that the equally parsimonious model
F + 9121 + t7211 performs far more poorly. This can, however, be explained by studying its
(non)uniqueness. By means of the numerical procedure sketched above, we found that this
model is nonunique. In fact, in this case we can easily prove that this model is nonunique, and
that nonsingular transformations exist such that we find a core with 9121 ---- 0 and 9211 --’= 0. This
implies that the model can be transformed into a PARAFAC model, which explains why its fit
is no better than that of PARAFAC. It can be concluded that, using the model PF + 9121 +

g211, we have inadvertently fitted a redundant description of the PARAFAC model. This
demonstrates an obvious advantage of unique models: The very uniqueness of the model
excludes the existence of more parsimonious versions of the same model.

Discussion

The present paper describes a range of models that, like the PARAFAC model, give
unique representations of the data. This "unique axes property" has a long time been
considered a unique feature of the PARAFAC model. The present paper has demon-
strated that a series of extensions of this model has the same attractive property.

The class of C3MFA models for which we have proven uniqueness comprises the
PARAFAC model as Case 0. Hence, the present paper offers an alternative proof for
uniqueness of the PARAFAC components. However, the present uniqueness proof is
unduly complicated for proving uniqueness for PARAFAC, and a far more simple proof
has been given by Harshman (1972), employing weaker conditions. Uniqueness of the
PARAFAC model has been proven under even weaker conditions by Kruskal (1977, 1989).
These results indicate that uniqueness in some of the unique C3MFA models may still hold
when the condition that A, B and C have full column rank is relaxed.

The Uniqueness Theorem can be used in an exploratory context, because it tells us
which models we may choose in order to get unique solutions. By choosing only unique
models, we avoid the interpretational problems we would get when using nonunique
models. When the solution is not unique, we have to choose which of the different solu-
tions we will interpret. Except in unconstrained 3MFA, it will be difficult to assess the full
class of C3MFA solutions for nonunique models, and hence it will be even more difficult
to decide which solution we should interpret. In addition, as we saw in the exemplary
analyses, nonunique models may not be as parsimonious as one would like. Of course, the
Uniqueness Theorem is of limited value only: It establishes uniqueness for C3MFA models
using 3 × 3 × 3 cores and EP constraints. In many practical situations, a core size of 3 ×
3 × 3 may be too large, and a reduction in one or more directions is often indicated. Our
experience indicates that, except for the 1- and 2-dimensional PARAFAC model, such
models are nonunique. Another limitation of our Uniqueness Theorem is that it only estab-
lishes sufficient conditions for uniqueness of C3MFA models with 3 × 3 × 3 cores: It has not
been proven that EP constraints are the only core constraints that make C3MFA models with
3 × 3 × 3 cores unique, although extensive testing suggests that this is indeed the case. For
C3MFA models employing larger cores we have neither theoretical nor empirical results.

Another type of applications of C3MFA is in a parameter estimation approach:
Especially in chemometrics, applications are found where theory specifies the form of the
C3MFA model, and the C3MFA model is used to find the parameters of the model.
Unfortunately, it seems rather unlikely to encounter a process where theory exactly pre-
scribes a C3MFA model with EP constraints. Applications do exist where a process can be
described by the PARAFAC model (e.g., Leurgans & Ross, 1992) or other C3MFA
models (e.g., Smilde, Wang, & Kowalski, 1994). In the latter cases the C3MFA models 
not employ EP constraints, but are unique thanks to additional constraints on the param-
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eter matrices. In both cases, the uniqueness of the model is exploited for identifying
chemical substances and finding their relative concentrations.

We may conclude that the present Uniqueness Theorem is of limited practical use. Its
main value is in demonstrating that PARAFAC is not the only unique three-way model,
and that there is a host of parsimonious models in between PARAFAC and 3MFA that are
potentially unique. The present results may inspire researchers to find other unique
C3MFA models (e.g., employing larger cores, or by imposing constraints on the parameter
matrices in addition to constraints on the core). For this purpose one can use some of the
Lemmas and derivations established in the present paper (notably Lemma 2). One may use
the above sketched numerical approach for studying (non)uniqueness of particular mod-
els, before actually proving it.

Appendix A
Proof of Lemma 1

In all sets of EP constraints, the plane diagonal elements are constrained to zero and
the superdiagonal elements are unconstrained. Hence, the different sets of EP constraints
differ only in terms of the offdiagonal elements a through f. We consider the possibilities
systematically:

If all offdiagonal elements are zero, we have Case 0. Then the core is constrained to
be superdiagonal, and the resulting C3MFA model is equivalent to the PARAFAC model.

If there is one unconstrained offdiagonal element, we can always permute the rows,
columns and slabs such that this offdiagonal element is moved to the position of a. Hence,
Case 1 describes all cores in which only one offdiagonal element is unconstrained.

If there are two unconstrained offdiagonal elements, we distinguish two cases that
correspond to the above Cases 2a and 2b. When the two offdiagonal elements are in the
same row, column or slab, we can always permute the array such that we find Case 2a.
Specifically, if the two offdiagonal elements are in the same row or column, we interchange
the first or second mode with the third mode, and obtain a core in which the two offdi-
agonal elements are in the same slab. If they are located in the second or third slab, we can
permute rows and columns such that they will be found on the positions (2, 3) and (3, 
and next permute slabs such that they are found in the first slab. Thus we have permuted
the array to the form of Case 2a.

On the other hand, when the two diagonal elements are in different rows, columns and
slabs, we can always obtain Case 2b after permutation of modes and individual rows,
columns and/or slabs. To prove this, we note that the unconstrained terms are 9111, 9222,

9333, and two terms from either {9321, 9132, 9213} or {9123, 9312, 9231}. If the two
additional terms are from the first set, we can always permute rows, columns and slabs by
the same permutation (which implies replacing all three indices according to the same
prescription) to obtain 9321 and 9132, which corresponds to Case 2b; if the two additional
terms are from the second set, we first interchange the first and third mode, thus finding
the same set of additional interaction terms as before.

If we have three unconstrained offdiagonal elements they can either be all in the
different rows, columns and slabs (which will be shown to correspond to Case 3b), or not
(Case 3a). If the three offdiagonal elements are in different rows, columns and slabs, they
must either be 9321, 9132 and 9213 (which corresponds to Case 3b), or 9123, 9312 and 9231,
(which we can permute into Case 3b, by interchanging the first and third mode). If there
are two offdiagonal elements in the same row, column, or slab, we can first interchange
indices such that they are found in the same slab, and next permute rows, columns and
slabs such that they are found in the first slab. Then the third unconstrained offdiagonal
element can be in any of the positions of c, d, e, or f. If it is in the position of c, we have
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Case 3a directly. If it is in the position of d, we can interchange the first and second mode
(which comes down to transposing the slabs) to obtain Case 3a. If it is in the third slab, 
first permute rows 2 and 3, columns 2 and 3, and slabs 2 and 3, which moves the offdiagonal
element to the second slab, and hence to the position of c or d, which leads to Case 3a.

If there are four unconstrained offdiagonal elements, there must be two zero offdi-
agonal elements. As we saw for Case 2, there are two different situations: The two zeros
are in the same row, column or slab, or in different rows, columns and slabs. In the former
case, we can always position the zeros in the third slab, and we find Case 4a. In the latter
case, we can position the two zeros at the positions of c and f, and we end up with Case 4b.

If there are five unconstrained offdiagonal elements, there is one zero offdiagonal
element, which can always be positioned at f. Hence this situation is fully covered by Case 5.

We can have s/x unconstrained offdiagonal elements in only one case, Case 6.
Thus it has been proven that all conceivable situations can be reduced to cases

described as Case 0 through Case 6 above. []

Appendix B
Proof of Lemma 3

From (7), it follows that

3

S - ’~(T’) -1 = ~ tdklGi" (B1)
/=l

Hence, for an arbitrary vector m = (m1 m2 m3)’, we have

(m~S- 11~I(T,)- 1 + mzS-11~,2(T,)-1 + m3S-II~3(T,)-1)

= ml(u~lG1 + uI2G2 + u13G3) + m2(u21G1 + u22G2 + u23G3)

+ m3(/,/31G 1 + u32G2 + u33G3) ~ m’u.~Gl + m’ll.2G 2 + m’u.3G3, (B2)

and u 1, u 2 and n 3 denote the columns 1, 2 and 3 of U, respectively. For convenience, we
defin~ ,~ ’-" ISTI-~. Taking the determinant of the left-hand side of (B2), using the analog

of (5) for ~, we find

imlS-I(~,(T,)-1 + m2S- I~j2(T,) -1 ..~ m3S- 1~3(T,)-11 = A[m,~J, mz~Jz + m3~,31

= I~m3 ~m2 bm,]
\~m2 ~ml ~m3 

= A(m,m2m3(~fi~ + gtSt~ + DSf) - 8DY, m~ - ~[t~m~ - ~]2m]). (B3)

The determinant of the right-hand side of (B2) gives

Im’u.lG1 + m’u.2G 2 + m’u.3G31

= (m’u.l)(m’u.2)m’u.3)(xyz + ade + bcf) -- abx(m’u.~)3 - cdy(m’u.2)3 - efz(m’u.3)3

= 3/7(m’u.l)(m’u.2)(m’ll.3 ) - hl(m’u.1)3 - h2(m’ll.2) 3 - h3(m’n.3)3. (B4)

Subtracting (B4) from (B3), and using that m’u.l mlUll ÷ m2u21 + m3u3h l = 1,2, 3,
we have
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A.(mlmzrn3(Y~y~. + ?t~t~ + ~?~f) - ~t~$m~ - ~ym~ - ~m~)

-39(mlu~ + m2u21 + m3us~)(mlUl2 mzu22 + m3u32)(mlu13 + m2u23 + m3u33)

+ h~(m~u~ + m2uz~ + m3u3t) 3 + h2(mlu~2 + mzu~2 + m3u32)3

+ h3(mlUl3 + m2u23 + m3u33) 3 = 0. (B5)

By soaing te~s, we can rewrite (B5) as the following polynomial equation in m~, 2 and m3:

clm~ + c2m~ + c3m] + c4mlm2m3

--(39(U21UI2U13 q- U22UllUI3 q- U23UlIU12)

--(39(U31U12U13 q- U32UllU13 -~- U33UllUI2)

-(39(u~uzzu23 U12UzlU23 q- U13 UzlUz2)

--(39(U31UzzU23 + U32U21U23 "~- U33U21U22)

--(3ff(Ullb132U33 -{- b/12U31U33 -]- UI3U31/g32)

--(3g(U21b/32U33 -}- U22b/31U33 q- U23U31U32)

3h~u~u2~ 3hzu~2uz2 2 2
- - - 3h3u33u23)m3m~ = 0, (B6)

where ca, c2, c3 and Ca are unspecified expressions depending on U, ~, ~, fi, ?, 2, ~, f, $,

y, ~, g, hi, h2, and h3. Now we use that (B2), and hence also (B6), holds for every m ~ 
To each m corresponds a vector n with elements m31, m32, m~, m2~m2, m~m3,..., m’~m2,
mlm2m3. We have collected ten choices for m and the associated vectors n in the rows of
the following matrices M and N

t1
0
0
1 1
1 0

M= 0 1
1 -1
1 0
0 1
1 1

0 0
1 0
0 1

0
1
1 ,N=
0

-1
-1

tl 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 1 0 1 0 1 0 0
1 0 1 0 1 0 0 1
0 1 1 0 0 0 1 0
1 -1 0 -1 0 1 0 0
1 0 -1 0 -1 0 0 1
0 1 -1 0 0 0 -1 0
1 1 1 1 1 1 1 1

For these ten choices of m, the ten equations resulting

Nw -- t},

from (B6)

0 01
0 0
0 0
0 0
0 0
1 0
0 0
0 0
1 0
1 1~

(B7)

can be written as

(B8)

where w is the vector with coefficients for the terms m~, m~, m~, m~m2, m21m3 ..... m’~m2,
mlm2m3; note that the first three elements ofw are c~, c2, c3, and the last is c4. The matrix
N is nonsingular, as can be verified by first subtracting column 4 from column 6, column
5 from column 8 and column 7 from column 9, and next switching columns 6 and 7. The
resulting matrix is a lower triangle with nonzero diagonal elements, which is nonsingular,
hence, N is nonsingular. Because N is nonsingular, it follows from (B8) that w = 0, hence
all coefficients of the polynomial in (B2) are zero. We only use the coefficients for m~m2,

m21m3 .... , m~m2, to obtain

3g(/A21b/12L/13 q- b/22b/llU13 q- ~/23b/tl/./12) -- 3h~u211u21 -- 3h2u~2u22 -- 3h3u213/,/23 = 0

(B9a)
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3ff(U31U12U13 q" U32UllUI3 + U33UllUI2 ) -- 3hlU~lU31 - 3h2u~2u32 - 3h3t2123u33 = 0

3!7(UlIU22U23 + U~2U2~U23 + U~3U2~U22) -- 3h~u29~Ull - 3h2uZ22u~2 - 3h3u~3u~3 = 0

3ff(U3tU22U23 q- U32U21U23 + U33U21U22) -- 3hlU~lU31 3h2u292u32 - 3h3u~3u33 = 0

3g(UllU32U33 + u12u31u33 +/213u31u32) -- 3hluZ31u~ - 3hzulzulz - 3h3u~3u13 = 0

3~(U21U32U33 ~- U22U31U33 q- U23U31U32) -- 3h~u~uz~ - 3hzu~2uz2 - 3h3u~3u23 = 0

Dividing all equations in (B9) by 3, we obtain (12).

(B9b)

(B9c)

(B9d)

(B9e)

(B9f)

[]
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