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Abstract 

Multilinear analysis methods such as component (and three-way component) analysis of very large data sets can become 
very computationally demanding and even infeasible unless some method is used to compress the data and/or speed up the 
algorithms. We discuss two previously proposed speedup methods. (a) Al&erg and Kvalheim have proposed use of data 
simplification along with some new analysis algorithms. We show that their procedures solve the same problem as (b) the 
more general approach proposed (in a different context) by Carroll, Pruzansky, and Kruskal. In the latter approach, a speed 
improvement is attained by applying any (three-mode) PCA algorithm to a small (three-way) array derived from the original 
data. Hence, it can employ the new algorithms by Al&erg and Kvalheim, but, as is shown in the present paper, it is easier 
and often more efficient to apply standard (three-mode) PCA algorithms to the small array. Finally, it is shown how the 
latter approach for speed improvement can also be used for other three-way models and analysis methods (e.g., 
PARAFAC/CANDECOMP and constrained three-mode PCA). 

Keywords: Principal component analysis; Multilinear models; Two- and three-way principal component model 

1. Introduction 

In many chemical applications of three-way metb- 
ods, the size of the three-way array is very large, and 
hence the procedures require a great deal of compu- 
tation. Often, however, the data can be compressed 
considerably without losing significant information. 
In such cases, one can greatly reduce the amount of 
intermediate computation required by performing 
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most of the analysis steps on a simplified or com- 
pressed version of the data array. For this purpose, 
Alsberg and Kvalheim [ 1,2] proposed the ‘postponed 
basis matrix multiplication’ (PBM) method. In their 
papers, they use the PBM method for speeding up the 
algorithms of principal components analysis (PCA) 
and (least squares) three-mode PCA when applied to 
very large data sets. The essential idea of the PBM 
method is to project the data on certain bases in such 
a way that the projected version of the data retains the 
essential information in the original data but has a 
simpler internal structure, with lower dimensionali- 
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ties of the spaces spanned by columns and or rows 
(and or fibers in the third way, if any) of the data ar- 
ray. They then show how this simplified data struc- 
ture allows most computations to be performed on an 
array of values that is much smaller than the original 
data. 

Suppose, for example, X denotes an I X J matrix 
which is too large to analyze conveniently by con- 
ventional PCA. The PBM approach is to project X on 
(a priori chosen) basis matrices B, (I X I,> and B, (.I 
X J,), where, typically, Z, < Z and J, -sic J. This 
projection yields a compressed (I, X J,) data matrix 
C = B:X,BiT, where BT = (BTBj)-’ BT, denoting 
the Moore-Penrose inverse of Bj, j = 1, 2. The ma- 
trix C is used to construct a simplified approxima- 
tion of X, here called X, as follows: 

ii = B&B;. (1) 
To reduce computation, the PBM method uses the 
simplified X rather than the original X. Of course, the 
choice of basis matrices B, and B, must be done in 
such a way that X approximates the original data well, 
or even perfectly; for some useful choices of the ba- 
sis matrices we refer the reader to Alsberg and Kval- 
heim [ 1,2]. Once the basis matrices and the matrix C 
are obtained, the PBM method uses the especially 
derived algorithms proposed by Alsberg and Kval- 
heim (from now on abbreviated as A&K) to perform 
a PCA in which the computations only involve the 
relatively small array C. 

When introducing their PBM approach for the 
two-way case, A&K ([ 11, p. 32) mention that a sim- 
ple and tempting procedure would be to perform a 
PCA on C and obtain the actual solution by premul- 
tiplying the resulting matrices by the original basis 
matrices. They emphasize (p. 32) that this procedure 
produces the true scores and loadings only when the 
basis matrices are columnwise ortbonormal, which 
they mention to almost never be the case (p. 33). This 
motivated them to develop a method “which can be 
applied to rewrite algorithms to compensate for the 
distortion effects observed when using a coefficient 
matrix C instead of the original matrix X” (p. 33). 
However, they apparently overlooked a very simple 
way out of their problem: Rather than using their ac- 
tual nonortbogonal basis matrices, one can just as 
well use columnwise orthonormal basis matrices that 
span the same spaces and perform a PCA on the en- 

suing C (as will be demonstrated in the present pa- 
per). In doing so, one ensures that the method does 
produce the true scores and loadings. Thus, rather 
than developing a new, and relatively complicated, 
approach, it suffices to simply replace the original 
basis matrices by orthonormal basis matrices for their 
column spaces. 

In a subsequent article (Alsberg and Kvalheim [2]), 
the PBM method is generalized to PCA of three-way 
arrays (three-mode PCA). Specifically, suppose that 
X denotes an Z X J X K three-way array with frontal 
planes X,, . . . . X,. The frontal planes are collected 
in the supermatrix X, = (X,1. . . ix,). Then, the 
PBM method projects the array X on (a priori cho- 
sen) basis matrices B, (IX I,), B, (J X J,) and B, 
(K X K,) where, typically, Z, < I, J, -SC J and K, 
-ec K. This projection yields a three-way array X and 
a Z, X J, X K, regression weights array C (with 
frontal planes collected in XF and C,, respectively) 
for which 

X, = B,C,(B; Q B;). (2) 

Here, C, is obtained as C, = BTX,(BTT 8 BIT). 
The choice of the basis matrices B,, B, and B, must 
again be done such that f, in Eq. (21, with C, con- 
siderably smaller than X,, describes the original data 
(in X,) well, or even perfectly. As in the two-way 
case, A&K propose to use the projected array f 
rather than X for their analyses. Just as in the two-way 
case, however, it suffices to replace the basis matri- 
ces by columnwise orthonormal basis matrices, and 
apply three-mode PCA to the ensuing C (as will be 
shown in the present paper). 

As will be shown in the present paper, the PBM 
approach as well as the above sketched alternative to 
the PBM approach are variants of a general proce- 
dure proposed by Carroll, Pruzansky and Kruskal 
(abbreviated as CPK henceforth) [3]. CPK describe a 
procedure for fitting a constrained version of the 
PARAFAC/CANDECOMP [4,5] model, which they 
call CANDELINC. They mention ([3], p. 10) how 
their method can also be used to fit three-mode PCA 
models where the component matrices are con- 
strained, and they describe (p. 17) how the method 
can be used as an efficient way of obtaining the un- 
constrained (symmetric) PARAFAC solution (see 
also [6]). 



H.A.L. Kiers, R.A. Harshman/ Chenwmetrics and Intelligent Laboratory Systems 36 (1997) 31-40 33 

In the present paper, we will describe the CPK 
approach, both for the two-way case and for the 
three-way case, and we will show that the above 
sketched alternative to the PBM approach is in fact a 
straightforward implementation of the CPK ap- 
proach. Furthermore, it will be made clear that the 
PBM approach solves the same optimization prob- 
lem as the CPK approach, however, employing a dif- 
ferent, more complicated algorithm. In fact, it will be 
shown that we can use any (three-mode) PCA algo- 
rithm with the CPK approach, which obviates the 
need for new algorithms (like those proposed by A& 
K>. Moreover, as will be shown, the three-mode PCA 
algorithm that A&K [2] took as their basis is not the 
most efficient one available for three-mode PCA. The 
present results allow us to replace their algorithm by 
a more efficient (three-mode) PCA algorithm for an- 
alyzing C. Finally, it will be shown that the CPK ap- 
proach has more general applicability, in that it al- 
lows for similar speed improvements for other meth- 
ods, like PARAFAC/CANDECOMP [3-51 and con- 
strained three-mode PCA [7]. 

In Section 2, we will discuss the two-way case and 
relate the A&K method in [ 11 to the CPK approach. 
In Section 3 we discuss the three-way case and relate 
the A&K method in [2] to the CPK approach, as well 
as discuss some further possibilities of the CPK ap- 
proach for three-way methods. 

2. The CPK approach for PCA and its relation to 
the PBM approach 

In the present section the CPK approach will be 
described for the two-way case. It will be shown that 
the algorithm proposed by A&K [ll is a variant of 
the CPK approach, giving exactly the same solution 
by a different algorithm. 

The aim of PCA is to approximate an I X J ma- 
trix X by a matrix of low rank written as TPT. Here 
T is an Z X s matrix and P is a .Z X s loading matrix; 
following A&K [l], we constrain P such that PTP = 
I,. Thus, PCA can be considered as the minimization 
of 

f(T, P) =11X - TPT112 (3) 
over T and P subject to PTP = I,. To identify the 
solution, PCA takes the matrices T and P orthogonal 

and orders the components with respect to the vari- 
ance they explain. In the CPK approach, the matrices 
T and P are further constrained: They are con- 
strained to be in the column spaces of certain ‘exter- 
nal’ matrices B, and B, that are, for instance, ob- 
tained from previous research, or derived from the- 
ory; in the present context, the matrices B 1 and B, are 
to be chosen such that B,CBT describes X well (as 
in A&K [ 11). Because of these constraints, we have 
T = B,U and P = B,V for certain (as yet unknown) 
matrices U and V. Let Q1 and Q2 denote orthonor- 
ma1 bases for the column spaces of B, and B,, re- 
spectively, and let 6 and 6 denote the matrices such 
that T = Q1o and P = Q2v. Then, as shown by CPK 
[3], the problem of minimizing Eq. (3) over T and P, 
subject to the above linear subspace constraints, is 
equivalent to the problem of minimizing 

g(a, v) = ]]@XQ2 - WT]12 (4) 

over 6 and 6, and obtaining T as Qru and P as Q26. 
The optimal 0 and v’, denoted by a, and vs in the 
s-dimensional case, can be obtained by any PCA al- 
gorithm applied to C = QTXQ2, for instance by ob- 
taining the SVD of C. The resulting components ma- 
trix is T, = Q1o, and the loading matrix is P, = 
Q2vs. Because the matrix C is (much) smaller than 
the original matrix, a considerable speed improve- 
ment is attained by using the procedure for con- 
strained rather than unconstrained fitting of X. Ad- 
mittedly, this speed improvement is attained at the 
cost of imposing a restriction on the solution. How- 
ever, as noted by CPK, for well chosen bases B, and 
B,, the constrained solution will give a good approx- 
imation to the unconstrained solution. 

The PBM method is related to the CPK approach 
as follows: The PBM method also relies on the choice 
of useful subspaces B, and B,, and on the assump- 
tion that T = B,U and P = B,V for certain (as yet 
unknown) matrices U and V. Obviously, in practice, 
this assumption will often be satisfied only approxi- 
mately, hence, in practice this assumption represents 
a (mild) constraint on the solution. In contrast to the 
CPK method, the PBM method was not described as 
a PCA on a small sized matrix, but as PCA on a ma- 
trix X (of the same size as X) which results after pro- 
jecting X on the bases B, and B,, according to X = 
B,C!BT (Eq. (111, with C = B:XBIT. The PBM 
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method is based on replacing X by its approximation 
X = B,CBT, and thus minimizing 

f(p, T) = IIB,CB; - ~~~11~. (9 
The algorithm A&K use for minimizing Eq. (5) is an 
ordinary (iterative) PCA algorithm applied to B,CBT, 
in which, however, the order of the computations is 
modified. This modification is based on the assump- 
tion that T and P are in the column spaces of B, and 
B, (see [l], p. 33), respectively. Using this assump- 
tion, A&K showed that in their PCA algorithm pre- 
multiplications with the large matrices B, and B, 
could be postponed until the very end of the iterative 
algorithm, and that thus a considerable speed im- 
provement can be obtained. The PBM method uses 
this postponed basis multiplication. It will now be 
shown that, implicitly, the PBM method also per- 
forms a PCA of a small matrix, and that it, in fact, 
solves the same optimization problem as the CPK 
approach does, however, using a different algorithm. 

Let B, and B, be replaced by any matrix products 
B, = Q,R, and B, = Q2R2, with Qi and QZ 
columnwise orthonormal. For this purpose, one could 
use, for example, the singular value decompositions 
of B, and B, (and hence R, and R, are columnwise 
orthogonal matrices), or the QR decompositions (see 
[8], p. 211 ff) of B, and B,, in which case R, and 
R, are upper triangular. Upon substituting C = 
B:XBIT = (B:B,)- ‘B;XB,(B;B,)- ‘, T = B,U 
and P = B,V in Eq. (51, and replacing B, and B, by 
their (QR) decompositions, we obtain 

f(U, V) = IIB,(BTB,)-lBfXB,(B:B,)-lB~ 

- B,UVTB;l12= IIQ1Q;xQ2Q; 

- Q,R,UVTR;Q:l12= lIQ$Q2 
- R,UVTR;112 (6) 

(compare [9]>, where it is used that IIQIEQTI12 = 
t.dQIEQ;Q2ETQ;> = tdQ:QIEQ;Q2ET) = 
tr(ETE) = IElI for any Z, x .I, matrix E. Because R, 
and R, are nonsingular, the problem of minimizing 
Eq. (6) is equivalent to minimizing 

f(T, @) = ]]Q;XQ2 - %‘T]]2, (7) 
where T = R,U and i = R,V, over arbitrary T and 
P, which is equivalent to minimizing Eq. (4) in the 
CPK approach. The problem of minimizing Eq. (7) 

comes down to finding the first s principal compo- 
nents of C = QIXQ2. When the s-dimensional solu- 
tion for T and P is given by %, and ps),, the s-dimen- 
sional solutions for the matrices T and P are given by 
T, = BLUS = BIR;‘T, = Q,f’, and P, = B2VS = 
B, R; ’ P, = Q2Ps, which is equivalent to the solu- 
tion obtained by the CPK approach. Hence, the PBM 
method solves the same minimization problem as 
does the CPK approach, using a somewhat indirect 
algorithm (instead of applying a standard PCA pro- 
cedure to QTXQ,). 

Having seen that the PBM method and the CPK 
approach solve the same PCA problem, one may still 
wonder if the CPK solution fulfills the same condi- 
tions for identification of the parameters as the PBM 
method (i.e., having T, columnwise orthogonal, and 
P,‘P, = I,, see A&K [l], p. 35). In the CPK ap- 
preach, the components matrix is given by T, = Q,U, 
and the loading matrix by P, = Q2v3, where 0, and 
vs minimize Eq. (4). When these matrices are ob- 
tained by an SVD, or a similar method which finds 
cs as the first s principal components of C, we have 
UT 0, is diagonal and-v: vs = I,. As a result, T,‘T, 
= aTQTQlo, = cTUS is diagonal, and P,‘P, = 
vSTQTQ2vf = vSTV, = I,. Hence the CPK compo- 
nent matrix is columnwise orthogonal and the associ- 
ated loading matrix is columnwise orthonormal, just 
as in the PBM method. In fact, it can be verified that 
T, contains the first s principal components of X, as 
follows. Because 0, contains the first s principal 
components of C:, we have CCTa, = 0, A for a di- 
agonal matrix A with the first s eigenvalues of CC’. 
It follow s that ffTT 
QlQTxQ2Q~Q2Q~xTQ1QTQ16, = Q,k@% = 
QIU, A = T, A, which s_hows that T, contains the 
principal components of X. Thus it has been shown 
that the CPK approach, when based on principal 
components of C has the same properties as the PBM 
method. 

The CPK approach can be summarized as fol- 
lows: 

Step 1. Compute the decompositions B, = QIR 1 
and B, = Q2R2. 
Step 2. Compute C = QTXQ,. 
Step 3. Obtain 6, and V, by applying a PCA algo- 
rithm to C. 
Step 4. Compute the PCA solution of X as T, = 
Q16, and P, = Q2vS. 
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It should be noted that the decompositions in Step 
1 can be obtained by any procedure that gives an or- 
thonormal basis for B, and B,. If Qs decomposi- 
tions are used, one can compute these indirectly by 
computing RI and R 2 from the Cholesky decompo- 
sitions BTB, = RTR, and BTB, = R:R2, and com- 
puting Q1 = B,R;’ and QZ = B,R;‘. Step 3 can be 
performed by using the power algorithm succes- 
sively, or by using any other algorithm for comput- 
ing the first s eigenvectors of a matrix (as done by, 
e.g., the Bauer-Rutishauser algorithm, see [lo]), or 
even by computing a complete eigendecomposition of 
eTC or CC’, depending on which is smaller. 

An interesting special case of the above algorithm 
is where B, and B, are columnwise orthonormal. 
Then B, = Qi and B, = QZ, and the CPK approach 
reduces to the first approach described by A&K [ 11 
in their formulas Eqs. (2)-(6). Above, it has been 
mentioned that the PBM algorithm by A&K [ 11 uses 
a somewhat indirect algorithm for minimizing Eq. 
(7). Specifically, their algorithm is based on succes- 
sively computing the different columns of the matri- 
ces U, and V, (which are used to define T, = B,U, 
and P, = B2VJ as follows: 

Step 1’. Compute C = B:XBiT. 
Step 2’. Compute rl = BTB, and r, = BTB,. 
For I= 1 9 .**, s 
Step 3a’. Initialize try 
Step 3b’. v, . - O. - CTgl~ 
Step 3~‘. v,‘: = v,“/(v,“r,v~>‘/’ 
Step 3d’. ~2: = Cr,v,! 
If I@ - uill> E, for a small value E, go back to 
Step 3b’. 
Step 3e’. C: = C - ubv,“. 
Step 4’. Compute the PCA solution of X as T, = 
B,U, and P, = B2Vs. 
To facilitate comparison with the CPK approach, 

we describe the CPK approach employing a variant 
of the power algorithm for obtaining the principal 
components (in 6,) and loadings (in VJ of C. 

Step 1. Compute the (QR) decompositions B, = 
Q,R, and B, = Q2R2. 
Step 2. Compute C = QTXQ2. 
For r= 1 3 ..-, s 
Step 3a. Initialize tiy 
Step 3b. v::“: = CT$! 
Step 3c. 7;:‘: = ~~/(~~T~~:o)1/2 
Step 3d. tit: = Cv,! 

If Il~i”, - ii:]1 > E, for a small value E, go back to 
Step 2. 
Step 3e. e: = e - ti’,v:,“. 
Step 4. Compute the PCA solution of X as T, = 
QiU, and P, = Q2Vs. 
The above CPK algorithm may seem more time 

consuming then A& K’s procedure, because it re- 
quires two (QR) decompositions (in Step 1). How- 
ever, in the A&K procedure, Step 1’ requires the 
computation of C = B:XBIT, which is efficiently 
and reliably done by first computing the (QR) de- 
compositions of B, and B, and then computing C as 
C = R;1QTXQ2(R;1)T, so, in that case, Step 1’ of 
the A&K algorithm actually requires more time than 
our Steps 1 and 2 together. As far as the iterative part 
is concerned, it can be seen that each iteration of the 
CPK algorithm (Step 3) is more efficient than that of 
A&K, since it requires fewer matrix multiplications. 
Finally, Step 4 in the CPK algorithm and Step 4’ in 
the A&K algorithm require the same amount of flops. 
Hence, it can be concluded that the CPK approach 
using a power algorithm is faster than the A&K al- 
gorithm, assuming that the algorithms need the same 
numbers of iterations in Step 3. In fact, it can be 
shown that the iterations in Steps 3a’, 3b’, 3c’ and 3d’ 
are related to Steps 3a, 3b, 3c and 3d in a simple way 
as follows. If the initializations in the two algorithms 
are chosen such that G”, = R,uf , then, using C = 
QTXQ2 = R1R;1Q~XQ2(R,1)TR~ = R,CR:, we 
have 

fi; = ~~T~~~(~~~~T~~)~‘~ 

= R CRTR CTRTR u” 1 2 2 1 1 r 

,‘(uFR;R,CR;R~C~R;R~~;)~‘~ 

= R,Cr2CTr,u; 

/(u~r~ic~2cr~Ill;)1’2 

= R,Cr,v;/(~;~r,v,!‘)~‘~ 

= R,u;. (8) 

Hence, after any set of complete iterations, we have 
Gi, = R iurr so the two algorithms have exactly the 
same convergence properties. In practice, the one or 
the other may stop earlier, depending on the initial- 
ization and on whether ]Iu”, - u’,II is larger than or 
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smaller than lIti9 - tit]] = IIR,uO, - R,u~Il, which de- 
pends on the data. 

Similarly, the advantage of using other algorithms 
than the power algorithm will depend on the data, as 
well as on the implementation at hand. For instance, 
in case one uses MATLAB (as do A&K), the built-in 
procedure for computing an SVD will usually be 
much faster than any iterative power like procedure. 
Therefore, in such cases the CPK procedure will be 
most valuable, because it can use this built-in rou- 
tine, whereas the A&K procedure cannot. 

Another remark on the efficiency of the algo- 
rithms is in order here. A&K mention that, in case 
the basis matrices are to some extent sparse, their al- 
gorithm can fruitfully use this sparseness. In the CPK 
approach, using the QR decomposition will at least 
partly eliminate this advantage. However, in that case 
one should use the Cholesky decompositions of the 
small matrices r, and r, to obtain R 1 and R,, and 
replace the matrices Q1 and QZ by the (unevaluated) 
products B,R;’ and B,R; ‘, which do involve the 
sparse matrices B, and B,. Thus, sparse technology 
is still usable. 

In the present section, we have described the CPK 
approach for two-way PCA and compared it to the 
A&K approach. In the next section, we will describe 
the CPK approach for the analysis of three-way data. 

3. The CPK approach for the analysis of three-way 
data 

As observed by A&K [ 11, the PBM approach can 
easily be generalized to the N-way case. A&K [2] 
considered the three-way case in detail, and applied 
their PBM method to obtain an adjusted algorithm for 
three-mode PCA. In the present section, the CPK ap- 
proach to three-way data is described, and it is 
demonstrated that the A&K procedure for three- 
mode PCA solves the same optimization problem as 
does the CPK approach. It is emphasized again that 
the advantage of the CPK approach is that it can use 
any algorithm for three-mode PCA, whereas the A& 
K procedure requires adjusting existing algorithms. 
Moreover, the CPK approach can be used for other 
three-way methods as well, among which 
PARAFAC/CANDECOMP for which it was devel- 
oped originally. Finally, it is shown that some exist- 

ing short-cut algorithms for data with one large mode, 
can be replaced fruitfully by the CPK approach as 
well. 

Let the basis matrices B,, B, and B,, for the three 
respective modes, and their (QR) decompositions Bj 
= QjRj (j = 1, 2, 3) be given. Then, the CPK ap- 
proach comes down to applying the three-way method 
at hand to the array with frontal planes collected in 
C, = QTX,(Qs Q QJ, and computing the compo- 
nent matrices E, F, and G from those obtained for eF 
(denoted as 8, F, and ?;> as E = QiE, F = Q2F, and 
G = Q3G. In case of three-mode PCA, the CPK ap- 
proach thus minimizes 

g(“, F, G, H”) = IlQ:x,(Q, Q Q,) 

- EH,(G’ 8 F’)]]* (9) 
where the component matrices E ( Z, X P), @ ( .I, X Q> 
and G (K, X R) are usually taken columnwise or- 
thonormal. As shown by CPK 131, this procedure is 
equivalent to minimizing the original three-mode 
PCA loss function 

g(E,F,G,H,)=I!X,-EH,(GT@FT)l12, (10) 
subject to the constraints that E = QIE, F = Q2F, 
and G = QsG. This procedure will give a good ap- 
proximation of the unconstrained three-mode PCA 
solution if the bases Qi, Q2, and Q3 are well cho- 
sen. CPK give a suggestion for this choice (also see 
[6]). Moreover, because Qj (j = 1, 2, 3) is column- 
wise orthonormal, E, F, and G are columnwise or- 
thonormal as soon as 8, F and G are. Thus, the CPK 
results have the same property as the ordinary three- 
mode PCA solution. The CPK approach can be sum- 
marized as follows: 

Step 1. Compute (QR) decompositions B, = 
Q,R,, B, = Q2R2 and B, = QA. 
Step 2. Compute C, = QTX,(Q3 Q Q2). 
Step 3. Obtain the three-mode PCA solution for c, 
denoted as E,, FQ, G, and HpOR (where the in- 
dices P, Q, and R denote the respective dimen- 
sionalities of the solution). 
Step 4. Obtain the three-mode PCA solution of X 
as E, = QIEr., F, = Q,Fo, G, = Q&s and 
H PQR' 
The PBM method for three-way methods also re- 

lies on the idea of choosing good basis matrices, and, 
in fact, some suggestions for these have been made 
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[2]. The main difference between the PBM method 
and the CPK approach is in the way of obtaining es- 
timates for E, F and G. The PBM method is based 
on a three-mode PCA algorithm for analyzing the ar- 
ray X of which the frontal planes are collected in f , 
= B,C,(BT Q Bl). The matrices E, F and G are as- 
sumed to be in the column spaces of B, , B, and B, , 
respectively. The algorithm by A&K differs from the 
standard algorithm only in that all multiplications 
with the basis matrices are postponed until after the 
iterative part of the algorithm. Hence, their method 
minimizes 

g(E, F, G, HF) = IIB,C,(B: @ B;) 

- EH,(GT Q FT)]12, (11) 
subject to E = B,U, F = BY and G = B,W for cer- 
tain matrices U, V and W. We can rewrite Eq. (11) 
as 

g(U, V, W, HF) = I]B,C,(B: @B;) 

- BIUH,(WTB; Q VTB;)]I’, 

(12) 

which is minimized over U, V, W and H,. Replac- 
ing C, by B:X,(BTT 8 BIT), and Bj (j = 1, 2, 3) 
by its decomposition, we find 

g(U V, W, HF) 

- QIRJJH,(WTR;Q; @ VTR;Q;)112 

= IlQ%(Q, 8 Q,> 

- R,UH,(WTR; 8 VTR;)](*, (13) 
where the second step is analogous to the third step 
in Eq. (6). Clearly, Eq. (13) is equivalent to Eq. (9) 
with R = R,U, F = R2V, and G = R,W. Because Rj 
( j = 1,2,3) is nonsingular, minimization of Eq. (13) 
is equivalent to minimization of Eq. (9). It follows 
that the PBM method, indirectly, minimizes the same 
loss function as the CPK approach does. Hence, the 
PBM method can be considered as a variant of the 
CPK approach, with a special choice for the algo- 
rithm to minimize Eq. (9). 

The main advantage of the CPK approach over 
A& K’s [2] procedure is, again, that it does not rely 
on a new algorithm. In Step 3 we can use any algo- 
rithm, for instance, the efficient algorithm proposed 

by Kroonenberg et al. [l 11. Since this does not rely 
on repeated eigendecompositions, it can be expected 
to be considerably faster than the one modified by 
A & K. A more important advantage is that a user who 
has a program for three-mode PCA is now able to 
analyze very large arrays (after projecting them on 
useful bases) without having to resort to an altema- 
tive program. To show how one may proceed, an ex- 
ample of this simple procedure (in MATLAB) is de- 
scribed in Appendix A. 

Recently, a different efficient algorithm for 
three-mode PCA has been proposed by Kiers et al. 
[12]. In fact, this method is very similar in spirit to 
the A&K procedure. It also uses a projection step and 
a modification of an existing algorithm. The main 
difference with the A&K procedure is that the latter 
is used in situations where the data array is upproxi- 
muted by a projected version, whereas in Kiers et 
al.‘s approach, the projection is performed only if it 
describes the original data perfiectly. Such a projec- 
tion results in an array C of smaller size than X as 
soon as the product of two of the three orders is 
smaller than the order of the third mode, for in- 
stance, when JK < I. In such cases, the array X can 
be projected on the matrix B, = X, of order Z X JK 
to obtain an array C of order JK X J X K. Like A& 
K, Kiers et al. developed a new algorithm for analyz- 
ing the projected data. As seen in the present paper, 
however, existing algorithms can be used as well. In 
fact, in the CPK framework, the present projection 
procedure is very simple indeed: The projection of X 
on B, = X, comes down to premultiplying the 
frontal planes of X by QT, from the (QR) decompo- 
sition X, = (Xi]. . . IX,> = QR. Then c, = QTX, 
= QTQR = R. Hence, in this case we merely have to 
compute the Cholesky decomposition of $XF to 
obtain R and to consider this as our matrix C,; upon 
restoring this as a three-way array C, we can apply 
any three-mode PCA algorithm to this to obtain the 
solution for F, G and H directly, and that of E indi- 
rectly as E = Qk. Clearly, to obtain F, G and H, it 
suffices to have the matrix with inner products of the 
columns of x,, from which R can be computed. 
When Z is large indeed, it is conceivable that there is 
no substantive interest in E. However, in case there 
is, computation of the component matrix E merely 
requires one final multiplication involving the large 
matrix Q. 
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Three-mode PCA is not the only method that 
yields components for which it is reasonable to as- 
sume that they approximately lie in the column spaces 
of the matrices B,, B, and B, suggested by CPK or 
A&K. For instance, the same assumption may be 
reasonable for PARAFAC/CANDECOMP [3-51 and 
Kiers’ [7] core constrained three-mode PCA. In fact, 
the former (PARAFAC/CANDEC~MP) was the 
method for which the CPK approach was originally 
developed [3]. In both cases, the procedure can be 
applied completely analogously. This even holds in 
case where missing data are handled by missing data 
imputation, provided that the missing data occur in 
complete columns of the matrix (X , I. . . IX K >. 

For PARAFAC/CANDECOMP, a short-cut pro- 
cedure similar to the one by Kiers et al. [12], was 
proposed by Kiers and Krijnen [ 131 for efficiently 
analyzing data with Z > JK. Their procedure is, as the 
procedure in [12], based on the derivation of a new 
algorithm. However, just as for three-mode PCA, a 
simpler algorithm can be obtained by following the 
CPK approach and using the existing 
PARAFAC/CANDECOMP algorithm. The ensuing 
method consists of applying PARAFAC/CANDE- 
COMP to the JK X J X K array C of which the 
frontal planes are taken from R from the (QR) de- 
composition of X, (see above). Similar short-cuts can 
be devised for other methods for which it can be 
specified exactly in which column spaces the optimal 
components lie. When the components are uncon- 
strained, or constrained to be columnwise orthonor- 
mal, the existing algorithms can be applied directly to 
the array C. 

4. Discussion 

In the present paper, the PBM methods by A&K 
have been shown to be variants of the CPK ap- 
proach. It has been seen that the latter approach is 
more flexible in that it obviates the need to adjust ex- 
isting algorithms. This is an advantage in itself, be- 
cause it allows a user to analyze large data arrays by 
means of existing programs without additional pro- 
gramming effort (except for the projection steps). The 
projection steps become particularly simple when one 
uses columnwise orthonormal basis matrices. In fact, 
in that case, the simple procedure sketched by A&K 
([l], p. 32) as a procedure that almost never gives true 
scores and loadings, is equivalent to the CPK ap- 
proach (and does give true scores and loadings). 

The fact that the A&K algorithm can be replaced 
by any algorithm for the (three-way) method at hand 
is useful not only because it allows the user to use 
existing programs. It also allows the user to choose 
the most efficient algorithms available for the (three- 
way> method under consideration. 
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Appendix A. Example MATLAB program for using a standard three-way method for the analysis of very 
large data 

% Procedure for analyzing a very large three-way array X by the method "threeway". 

% Here threeway stands for a matlab function threeway.m performing a three-way analysis, 

k e.g., three-mode PCA, PARAFAC. 

% 

% "qqrr" refers to a function that modifies the results of the matlab qr.m 

% routine by deleting all zero rows in R and the corresponding columns in Q. 

% 

% input: X: IXJK matrix with frontal planes of data array next to each other 

% I,J,K: order of the array 

% Bl, B2, B3: externally obtained basis matrices 

% output: A,B,C: component matrices for the three modes. 

Iorig=I;Jorig=J;Korig=K; 

[Iorig,Il=size(Bl); 

[Jorig,Jl=size(BZ); 

[Korig,Kl=size(B3); 

Xorig=X; 

IQl,Rll=qqrr(BI); 

[QZ,R21=qqrr(B2); 

[Q3,R31=qqrr(B3); 

X=Ql'*X*kron(Q3 42). , I 

[A,B,C,. ..l=threeway(X,I,J,K) 

A=Ql*A; 

B=Q2*B; 

C=Q3*C; 

x=Xorig;I=Iorig;J=Jorig;K=Korig; 

% (original sizes) 

% save original data 

% qqrr computes a QR decompostion 

% restore original values 
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