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SUMMARY

Three-mode factor analysis models are often used in exploratory analysis of three-way data. However, in some
situations it is a priori known that a particular constrained three-mode factor analysis (C3MFA) model describes
an underlying process exactly. In such situations, fitting a C3MFA model to a data set can be used for both
quantitative analysis (e.g. estimating concentrations of a chemical substance in a mixture) and qualitative
analysis (e.g. on the basis of certain subsets of parameters one can identify the substances present in a mixture). In
this paper a general algorithm for fitting a range of such C3MFA models is proposed. Whether C3MFA is used
for qualitative or quantitative analysis, in both cases it is crucial that the relevant parameter estimates are
uniquely determinable. In the present paper it is discussed how and to what extent uniqueness of certain model
parameters can be assessed. 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1 Multiway methods

Multiway methods are statistical methods that deal with multiway data. Multiway data is the generic
term for two-way data (matrices), three-way data (a cube or a block of data), four-way data and so on.
In general, multiway data of orderN are data that can be meaningfully arranged in anN-way matrix.
The majority of multivariate analysis methods work with two-way data. In the following the
discussion will be focused on three-way or three-mode data, but it should be kept in mind that
extensions to higher order are possible.

In chemistry and chemical engineering it was recognized by several researchers that some
problems and questions generate data that can be arranged in a three-way set-up.1,2 This has led to an
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introduction of three-way methodsin chemistryandchemical engineering, andthe researchin this
areais growing. Different potentialapplicationareascanberecognized,amongstthemsecond-order
calibration,3 identification of compoundsin complex biochemical systems,4 image analysis5 and
multivariate statistical processcontrol.6,7 In mostof these applicationareasthepower of three-way
methodswasclearly demonstrated.

1.2 Three-mode factor analysisand (non-)uniqueness

One of the oldest three-way methodsis three-modefactor analysis8,9 (3MFA). This methodhas
mostlybeenusedasanexploratorytechniquefor theanalysisof three-modedata.Themethodis thus
usedfor describing themostimportantaspectsof thedatain termsof componentsfor all threemodes.
An importantproblemof themethodis that,asin two-wayfactoranalysis, thecomponentsareby no
meansunique.

In thetwo-waycasetheuniquenessproblemis typically solvedby oneof thefollowing approaches.
Oneapproachis to rotatethe loadingsto a simplestructure; anotherapproachis to constrain some
loadingsto be zero in sucha way that the model becomesidentified. In chemicalapplications the
problem of rotational freedom is tackled by imposing constraints such as non-negativity and
unimodality on thesolution.Althoughthis helpsin constraining thesolution,it doesnot necessarily
makethe solution unique.10 If selectivity is present, then the rotational problem can be solved in
certaincases.11 For 3MFA theuniquenessproblemhasbeenapproachedin analogyto the two-way
case,andproposals for simple structurerotation havebeenmade aswell.

The aboveapproaches are meant for exploratory analysisof three-mode data. An alternative
approach,which is not fully exploratory, is basedon constraining certainparameters in the 3MFA
modelto zero.12,13In certainsituationsin chemistry, particular constrained3MFA (C3MFA) models
areknownto conform exactlyto theprocessunderlying themeasureddatavalues.14 In suchinstances,
fitting the C3MFA model to a dataset is not meantfor assessingwhich model shouldbe usedto
describe thedata(asin exploratoryanalysis),but for determining whichparametervaluesgovern the
knownunderlying model. Thisparameterestimationin turncanbeusedfor quantitativeanalysis(e.g.
estimating concentrationsof a chemical substance in a mixture) aswell as for qualitative analysis
(e.g. on the basisof certain subsets of the estimatedparametersone can identify the substances
presentin a mixture).Whenparameter estimationis themainpurpose of theanalysis,uniqueness of
theparametersat stakebecomescrucial.This is becausethedataanalystwill not acceptnon-unique
parameter valuesevenif they describe the datawell. In the present context the parametersactually
governobservedprocesseswhich refer to (a unique) reality. Hencetheparametersthemselvesmust
beunique.

For someC3MFA models, uniquenessof the parametershasbeenproven,15 but most C3MFA
models encountered in practice do not belong to this limit ed class of unique C3MFA models.
Thereforein mostpracticalcasestheanalystcannotrely onuniquenessresultsfrom theliterature,and
uniqueness hasto be assessedfor eachmodel separately. Moreover, so far only C3MFA methods
have been described where certain elements of the core are constrained to be zero. In certain
applications, however, a more flexible approach is desired. For instance, in addition to the core
elements,also elementsof thecomponentmatrices mayhaveto beconstrained. The first purposeof
thepresentpaperis to proposea general C3MFA algorithm which, in additionto zeroconstraintson
the core, allows for a variety of constraints, both on the core and on the component matrices.
Furthermore, suchconstraints will aid the identification of the model and in certaincases lead to
modelswhereat leastcertainsubsetsof parameterscanbeidentifieduniquely. Thesecond purposeof
this paperis to demonstrate that in certainchemicalapplicationssuchpartial uniquenessescanbe
proven to hold, thus extending earlier results,15 and can be exploited in the actualestimation of
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concentrations.Beforeconsidering thesetopics,webriefly describeachemical applicationwhichwill
serveasleadingexample, on which the main developmentsin the presentpaperwill be illustrated
right after their introduction.

1.3. Calibr ation of a second-order sensor

As a leading example we considerthe calibration of a reaction-basedsecond-order sensor for
chlorinatedhydrocarbons.Sucha sensor canbeusedfor quick assessmentof hazardouscompounds
in theenvironment. An extensivedescriptionof thesensor is givenelsewhere.16,17 In this paperwe
shall only give a shortintroduction to the sensor andfocuson calibration issues.

The sensor is a small reactionchambersealedwith a membrane.If the sensoris placedin the
sample,analytescan diffuse throughthe membrane.A reaction (the so-called Fujiwara reaction)
startsin which the analytes react with the reagentto form UV/VI S absorbing speciesin time. At
equidistantpointsin time aUV/VI Sspectrum is obtained. Thisgeneratesamatrix of responses(time
versus wavelength), hence the name second-order sensor. Assuming first-order kinetics, the
concentrationsof theanalytesarelinearly related to theabsorbancesof thespecies. The membrane
createsa certain amount of selectivity, ensuring that only analytes and interferents of a similar
structurediffuse throughthe membrane.

Here we considerthe problemof measuringtrichloroethylene in a mixture of trichloroethylene
(TCE) andanunknowninterferent.Owing to theconstructionof thesensor, theinterferentis known
to be a member of the classof small trichlorinated compounds(such as TCE and chloroform
(CHCl3)), because only thesecompoundspassthroughthe membraneand give spectroscopically
activeproducts in the reaction.The standard with which the calibration is performedcontains only
TCE.This is adifficult calibrationproblembecausetheanalyteandtheunknown interferentarevery
similar. Sincethereis no possibility to avoid interferencesby, for instance,a different sensor design
or a different type of reaction,a goodcalibration procedurewhich is capableof quantitating in the
presenceof highly similar interferencesis of muchpracticalvalue.

Therearetwo aspectsrelatedto thecalibrationof thesensor: aquantitativeandaqualitativeaspect.
Quantitation means thatthesensor shouldbeableto quantitate in anunknownsampletheamountof
the analyte with a certain precision. Qualitative analysis pertains to the possibility to identify
unknowninterferents(if present) in thesample. This aspect is alsorelevantsince identificationof an
unknowninterferent using its spectraandgetting insight into the kinetics of the reaction using the
temporalprofilesareimportant.

2. CONSTRAINED THREE-MODE FACTOR ANALYSI S

2.1. Theory

Thethree-modefactoranalysis(3MFA) modelcanbedescribedasfollows.Let X denoteathree-way
arraywith elementsxijk , i = 1,…, I, j = 1,…,J,k = 1,…,K. Thenthe 3MFA model is given by

xijk �
XP

p�1

XQ

q�1

XR

r�1

aipbjqckrgpqr � eijk �1�

whereaip, bjq andckr areelementsof thethreecomponentmatricesA, B andC of ordersI � P, J�Q
andK� R respectively, G is aP�Q�R three-wayarraydenotedasthecore,andeijk denotestheerror
termfor observation xijk. ThematricesA, B andC canbeconsideredcomponentweightsfor ‘A-mode
components’ (in A), ‘B-modecomponents’ (in B) and‘C-modecomponents’ (in C) respectively. The
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elements of the core indicatehow the componentsfrom the different modesinteract. The 3MFA
modelis fittedto adataarrayby minimizing thesumof squarederror terms,using analternating least
squares(ALS) algorithm.9

To providesomeinsightinto theroleof thecorearray,wegive thefollowing(simplified) tensorial
description of the3MFA model.Consideringx asa vectorcontainingall elementsof the three-way
arrayX (ordered suchthat the first index runsslowest and the last fastest), ande as the vectorof
correspondingerror terms,the 3MFA modelcanbe written as

x � g111�a1
 b1 
 c1� � g112�a1
 b1 
 c2� � g113�a1 
 b1
 c3� � . . .

� g211�a2
 b1 
 c1� � . . .� gPQR�aP 
 bQ
 cR� � e �2�
where6 denotesthe (right) Kroneckerproduct andai 6 bj 6 ck denotesthevectorwith all triple
productsbetween elementsof columni of A, columnj of B andcolumnk of C. It is clearfrom (2) that
the elementsof the coreserveasindicesfor thesevectorsof triple products.

A third way of describingthe model is in termsof the frontal planesof the dataarray.Let Xk,
k = 1,…,K, denote the kth frontal planeof X. Then the 3MFA modelcanbe describedas

Xk � A
XR

r�1

ckrGrBT � Ek �3�

whereEk contains theerror termsfor thekth frontal plane.Formulation(3) relatesthe3MFA model
to well-known two-way models.In fact, (3) showsthat the structural part of the frontal planeXk is
decomposed into the productof threelow-rank matrices, namely A, B and�rckrGr.

2.2. C3MFA model for second-order sensorcalibrat ion

Whendataareobtained in a second-ordersensor calibration study(seeSection1.3),we first haveto
checkhow many interferents we have,as can be doneby assessing the approximate rank of the
mixture matrix M . Herewe considerthe casewhere the numberof interferentsturnsout to beone;
whenmorethanone interferentis present,a similar but moreextensive model canbeused.Herethe
datafor thecalibration sample (in N) andfor themixture (in M ) canbedescribedmathematically as

N � z1x2yT
2 � z1x3yT

3 � EN �4a�
M � z2x2yT

2 � z2x3yT
3 � z3x4yT

4 � z3x5yT
5 � EM �4b�

whereEN andEM contain error termsfor the calibration sample andthe mixture respectively and

x2 temporal profile of species1 formedby the analyte(TCE)
y2 UV/VI S spectrum of species1 formedby the analyte
x3 temporal profile of species2 formedby the analyte
y3 UV/VI S spectrum of species2 formedby the analyte
x4 temporal profile of species1 formedby the interferent
y4 UV/VI S spectrum of species1 formedby the interferent
x5 temporal profile of species2 formedby the interferent
y5 UV/VI S spectrum of species2 formedby the interferent
z1 concentration of the analytein the standard
z2 concentration of the analytein the mixture
z3 concentration of the interferent in the mixture

in which thefirst speciesis anintermediateproductin thereactionandthesecondspeciesis anend-
product.

128 H. A. L. KIERS AND A. K. SMILDE

 1998JohnWiley & Sons,Ltd. J. Chemometrics, Vol. 12, 125–147(1998)



As statedearlier,theinterferentsaresimilar to theanalytein chemicalstructure.For thisparticular
sensor,all compoundsdiffusing throughthe membranearesmall trichlorinatedcompoundssuchas
TCEandCHCl3. Accordingto themechanismsproposedfor theFujiwarareaction, it is reasonable to
assumethat these small trichlorinated compoundsform the same end-product, i.e. the second
species.18,19Note that the temporalprofilesdo not needto be equal: different reactionratescanbe
involvedin theformation of thesecond speciesby eithertheanalyteor theinterferent. Formally, the
aboveknowledgeimpliesthaty5 equalsy3. When,for convenience,therelative concentration z2/z1 is
replacedby g, z1 is absorbedin x2 andx3, andz3 is absorbedin x4 andx5, (4a,b)reduceto

N � x2yT
2 � x3y3 � EN �5a�

M � 
x2yT
2 � 
x3yT

3 � x4yT
4 � x5yT

3 � EM �5b�

To further clarify the equivalenceof (4a,b) and(5a,b), it shouldbe noted that if the ratio of the
analytepresentin M andN (i.e. g) is known, thentheabsoluteamount is alsoavailable becausethe
amountof theanalytegiving theresponseN is known. Notethatin fact anynumberscanbeusedfor
z1 andz3 aslongasz2 is suchthatz2/z1 = g. Hencein thefollowing thealternativemodel formulations
(5a,b)will beused.

Severalcommentsare appropriate.First, owing to the fact that the responsematrix of a single
analytehaspseudorank(i.e. the rankof the responsematrix without noise)two, it is not possible to
obtainfrom sucha matrix thepurespectra andkinetic profilesof the two absorbing species. This is
known as the curve resolution problemand hasattractedconsiderable interestin the literature.11

Secondly,althoughthesecondspeciesbeing formedby theanalyteandtheinterferentareequal,the
kinetic profilesaredifferent when being formedby the analyteor the interferent. This gives some
selectivity. Thirdly, sincetheanalyte andthe interferentarevery similar (owing to themembrane!),
the differencein responsesfrom the two is very small. This makescalibration difficult but not
impossible.

Themodelcanbereformulated14 astheC3MFA model givenin (3), with thefrontal planesof the
I � J� 2 arrayX takento beN andM respectively, the componentmatrices definedas

A � �x2lx3lx4lx5�; B � �y2ly3ly4�; C � 1 0

 1

� �
andthe coreG with frontal planes

G1 �
1 0 0
0 1 0
0 0 0
0 0 0

0BB@
1CCA; G2 �

0 0 0
0 0 0
0 0 1
0 1 0

0BB@
1CCA

which is thereforecompletely specified.Thustheunknown parametersin thismodel canbeestimated
by fitting theaboveC3MFA model to thedata.In fact,thisC3MFA model cannotbefitteddirectly by
the core-constrained3MFA algorithms12 because,in addition to the zeroconstraints on manycore
elements, a zeroconstraint is alsoimposed on elementc12 of C. Moreover, two otherelementsin C
andall non-zeroelementsin thecorehavealsobeenspecifiedandcanhencebefixedto thespecified
values(althoughthesevaluescanalsobeobtained by rescalingsof thesolution). Therefore in Section
4 a general algorithm is proposed for fitting the C3MFA modelwith variouskinds of constraints.
First, however, in thenext section we focuson a different issuerelated to C3MFA models: to what
extentdo thesemodelslead to uniqueparameter estimates?
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3. UNIQUENESSOF C3MFA MODELS

3.1. Somegeneral results

When C3MFA methodsare usedfor parameterestimation, it is very importantthat the estimated
parametersareuniquelydeterminable.This is becauseif differentparametervalueslead to thesame
modelfit, thedatado notprovideadequateinformation to pinpoint ausefulestimateof theparameter
at hand.To assessuniqueness, it is necessary to study the following problem.Supposetwo setsof
parameterslead to the sameestimateX̂ for X, i.e. suppose

X̂k � A
XR

r�1

ckrGrBT � ~A
XR

r�1

~ckr
~Gr ~BT; k � 1; . . . ;K: �6�

Thena parameter is considered to be uniquely, determinable if its ‘til ded’ version is necessarily
equalto its ‘untilded’ version.In theunconstrainedmodel this is by no meansthecase. For instance,
(6) is satisfiedfor Ã = AT and G̃r = Tÿ1 Gr, r = 1,…,R, for any non-singular T. However, certain
patternsof zeroconstraintson G imply ‘essentialuniqueness’for thecomponentmatrices A, B and
C.15 Here ‘essential uniqueness’ meansthat A, B and C are unique up to scaling, reflection and
sometimespermutationof thecolumnsof A, B andC. Becausethis freedomin scaleandpermutation
canbeundonerathereasily,theparametersareeffectively uniqueandcanbeconsideredasuniquely
determinableparameters.

In practicetheconstraintsimposed in aC3MFA modelusuallydonothaveapatternthatbelongsto
theclassfor which uniquenesshasbeenestablished.15 Thereforea procedureis needed to study the
uniqueness for the particular model at hand.In the Appendix someresults aregiven to help assess
uniqueness. Theseresultswill be usedto establishpartial uniqueness in the practical examples
discussed in the presentpaper.

3.2. Partial uniquenessin model for second-order sensorcalibrat ion example

For thesecond-ordersensor calibrationexample it canbeproven (seeAppendix, Section A2) thatthe
modelin (5) is partially unique.Specifically, for thismodel, g, x2, x4 andy3 areuniquelydeterminable
and x3, x5, y2 and y4 are not. Therefore we may expect reasonable estimatesfor the relative
concentrationparameter g andfor the temporalprofilesof species1 formedby theanalyte (x2) and
species1 formedby the interferent (x4), aswell asfor theUV/VIS spectrum of species2 formedby
the analyte(y3). For the other profilesandspectrawe do not expect to get reasonableestimates.

4. ALGORITHMS

4.1. General

AbovewehavediscussedC3MFA modelsandtheir uniquenessproperties. Little hasbeensaid about
fitting suchmodels to empirical data.In thecurrentalgorithmsfor C3MFA,12,13only certainelements
of thecoreareconstrainedto zero,andin oneof them,13 alsothecomponentmatricesA, B andC are
constrained to be columnwise orthonormal. Here it will be described how modelsincorporating
additional constraints(e.g.on certain specificelementsof A, B andC, or non-negativity constraints)
can be fitted. Moreover, attention will be paid to fitting such models in the presenceof severe
multicollinearity.
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Both currentC3MFA methods12,13arebasedon ALS algorithms.TheALS algorithm whereA, B
andC areunconstrained12 will serveasour startingpoint here. In this algorithm the lossfunction

f �A;B;C;G� � xÿ
XP

p�1

XQ

q�1

XR

r�1

gpqr�ap 
 bq
 cr�













2

�7�

is decreasedby alternatelyupdatingthematrices A, B andC andthecoreG. Thealgorithm canbe
describedschematically asfollows.

1. Initialize A, B, C andG.
2. Computef0 = f(A,B,C,G).
3. UpdateA.
4. UpdateB.
5. UpdateC.
6. UpdateG.
7. Computef = f(A,B,C,G).

If f0ÿ f> f0" (where" is aprespecifiedsmallvalue),setf0 = f andreturnto step2; elseconsiderthe
algorithmconverged.

In step1 all parametermatrices areinitialized,e.g.by takingrandom valuesfor all unconstrained
parameters or by taking the first P principal componentsof (X1l…lXK) for A and analogous
initializationsfor B andC. Steps3–6aretheiterativestepsfor updatingtheparametermatrices.Each
update is chosen such that it minimizes the function over one parameter set, while the other
parameters are considered fixed. In this way it is guaranteed that the function value decreases
monotonically. Because the function value is boundedbelow by zero, it is guaranteedthat the
algorithmwill convergeto astable function value.Incidentally, it maybenoted thatthealgorithm is
easilyadjustedfor handling missingdata:20 beforeeachstepin whichthefunctionvalueis computed,
the valuesof x that aremissingare replacedby the estimates for thesevalueson the basisof the
currentvaluesfor A, B, C andG.

The updatefor A (step3) is foundby minimizing

f �A; �; �; �� �
XK

k�1

Xk ÿ A
XR

r�1

ckrGrBT














2

� �X1l . . . lXK� ÿ A
X

r

c1rGrBTl . . . l
X

r

cKrGrBT

 !












2

�8�

which is a seriesof linear regression problemsfor the rows of A. Defining the I�JK matrix Y :
(X1l…lXk) and the P�JK matrix Z : (�rc1rGrB

Tl…l�rcKrGrB
T), the problem reducesto

minimizing

kyT
i ÿ aT

i Zk2 � kyi ÿ ZTaik2 �9�
whereyi

T andai
T aretheith rowsof Y andA respectively,i = 1,…,I. Theupdatesfor B andC (in steps

4 and5) arefound in a fully analogousway. The updatefor G (in step6) is foundby minimizing

f ��; �; �;G� � kxÿ �A 
 B
 C�gk2 �10�
wherex andg arevectorswith elementsof X andG respectively, orderedsuchthat the third index
runsfastestandthefirst index runsslowest. Thesolution for unconstrained g canbefoundfrom the
regression of x on F : A6B6C. Whencertain elements in g areconstrainedto be zero,12,13 the
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updatefor g is still obtained by meansof regression of x on columnsof F, but now this regression is
performed only on those columns of F that correspondto the unconstrained elements of g.
Specifically, let w denoteabinary vector of thesameorderasg thathasunit elementsat thepositions
of theunconstrainedelementsin g andzeroselsewhere. Furthermore,let F(w) denotethesubmatrix
of F containing thecolumnscorresponding to theunit elementsin w andlet g(w) denotethevector
with elementsof g corresponding to the unit elementsin w; henceg(w) contains the unconstrained
elements of g. Then the problem is to minimize jjx ÿ F(w)g(w)jj2, and the g(w) solving this
regression problemgives the updatedvaluesfor the unconstrained elementsof g. In the following
subsectionsit will be described how the abovegeneralalgorithm can handle a variety of other
constraints in additionto the coreconstraints.

4.2. Zero constraints on A, B and/or C

Supposecertainelementsof A areconstrained to bezero. Thentheupdate for ai
T, the ith row of A,

canstill befoundby regressingyi oncolumnsof ZT, butnowonthosecolumnsof ZT thatcorrespond
to the unconstrainedelementsof ai. Specifically, when w is the indicatorvector indicating (by unit
elements) which elements of ai are unconstrainedand which are constrained, then the regression
problemis to minimize jjyi ÿ ZT(w)ai(w)jj2, where thenotation ZT(w) andai(w) is analogousto that
of F(w) andg(w) respectively above.Of course,constrainedupdatesof (therowsof) B andC canbe
found in a fully analogous way. In fact, the aboveapproach is fully analogousto the approach to
updateG subject to zeroconstraints.

4.3. Non-zero constraints on A, B, C and/or G

In certainsituations one wishesto constrain certain elementsof G to be equal to a non-zerobut
prespecified value, e.g. one. To updatethe other elements of G, we can use basically the same
approachasabove.Whenw still indicatesunconstrained elementsandwhen wedefinev asthevector
indicating constrained elements, we haveto minimize

kxÿ F�v�g�v� ÿ F�w�g�w�k2 �11�

Hencewe haveto solve the problem of regressingthe columns of x ÿ F(v)g(v) on F(w). The
resultingvectorof regressionweights,g(w), gives theupdatesfor theunconstrained valuesof g. The
procedures to update the rows of A, B and/or C subject to non-zero constraints can be derived
analogously. It should be notedthat as far as in different rows of a matrix the same elements are
constrainedto fixedvalues(e.g.whencompletecolumnsof amatrix areconstrainedto fixedvalues),
theserowsemploy thesameregression andregressandmatrices,whichhenceneednotberecomputed
for everyrow.

4.4. Equality constraints on A, B, C, and/or G

Sometimesit is desirable to constrain certain(non-zero) parametersto beequalto eachother. Such
constraints havebeenfound useful whenapplied to certainelements of the core, but may alsobe
interesting for certainelements in A, B and/orC. Whensuchconstraintsareimposed on elementsof
thecoreor on elementsin thesamerow of oneof thecomponentmatrices, theupdatescanbefound
straightforwardly as follows. Let Ws indicatea subset of elements of g that are constrained to be
equal,s= 1,…,S. Thentheupdatefor theSdifferentsubsetsof elementsof g (denotedby g1,…,gs) can
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be foundby minimizing

xÿ �F�w1�1l . . . lF�wS�1�
g1

..

.

gS

0B@
1CA


















2

�12�

overg1,…,gs, whichis againalinearregressionproblem; here1 is avectorof unit elements. To givea
little more insight into why the problemof updatingg subjectto equality constraints amounts to
minimizing (12), considerthe following simple example. Let g = (g111 g211 g121 g221)

T and
denotethe columnsof F by f1,…,f4. Supposethat the constraints specify that g111= g121: g1 and
g211= g221:g2. Thenthe problemis to minimize

kxÿ �f 1lf 2lf 3lf 4��g1 g2 g1 g2�Tk2 � kxÿ �f 1 � f 3lf 2� f 4��g1 g2�Tk2

Clearly, this expression is in agreement with (12), because w1 = (1 0 1 0)T implies
F(w1) = (f1lf3) andF(w1)1 = f1� f3, andsimilarly, F(w2)1 = f2� f4.

Obviously, updatesfor rowsof A, B or C subjectto equality constraintscanbefoundanalogously
to the above.

4.5. Non-negativity constraints on A, B, C and/or G

Whenthe(unconstrained)elementsof A, B, C and/orG arerequired to benon-negative, we haveto
solvethecorresponding regression problemssubject to theconstraint that theregression weights are
non-negative. Forthiswecanusethenon-negativeleastsquares(NNLS) procedure.21 In fact, it is not
necessary thatall elementsof A, B or C areconstrainedto benon-negative.TheNNLS procedurecan
beusedfor updatingseparaterows;henceit is possibleto constrain only certainrowsof amatrix to be
non-negative, whereas others areleft unconstrained.

4.6. Combination of constraints

The abovefour types of constraints on A, B, C andG canbe imposed simultaneouslyas long as
equalityconstraintsdo notpertainto parametersin differentregressionproblems.This leavesabroad
rangeof possible applicationsof combinationsof constraints andthusmakesour generalalgorithm
very flexible.

4.7. A procedure for handling severemulti collinearity

An algorithm incorporating most of the possibilities abovehas beenprogrammed in MATLAB
4.02.22 When analysingthe example datasetsstudied in the present paper, it turnedout that the
algorithmwasvery slow,andresultsof differentrandomly startedrunstendedto differ only slightly
in termsof loss function value but considerably in termsof obtained parameter estimates.These
problemscan be attributed to the large size of the arraysunder study and especiallyto severe
multicollinearitiesin thedata.This motivatedthedevelopmentof a procedurefor dealingwith these
problemssimultaneously.

To dealwith thelargesizeof theproblem, weusedacompression technique23–25whichsearchesa
low-dimensionalapproximation of thedataandconsequentlyfits a compressedversionof themodel
to thecompresseddata.Af ter thiscompressedfitting procedurethefull datamodel canberecomputed
from thefittedcompressedmodel.Forthepractical examplesstudiedhere,weusedcompressiononly
for the two largemodes (A andB) andthusleft theC-mode intact.Therefore in the analysis of the
compresseddatatheconstraintson C andG arethesame astheyarein theanalysisof thefull data.
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We foundthataneffectiveprocedureto dealwith theseveremulticollinearity in thesedatawasto
usea new kind of compression basismatrix, namely suchthat the resulting compressedarray no
longer showed high multicollinearity. In fact, we took bases that themselves captured the
multicollinearity, andtransferredcollinearity from the compresseddatato the basis matrices, thus
‘regularizing’ thedata,asfollows. For themodefor which thecorehadthe largestsize(r1 say), we
took asbasisthematrix with thefirst r1 principal componentsof theassociatedsupermatrix, having
sums of squaresequal to the associatedeigenvalues. The now obtained compressed array
(compressedover one mode) was usedto determine the next basismatrix. The next basismatrix
wasobtained for the modewith the second largestsize (r2) and consistedof the first r2 principal
components of the supermatrix associated with the current compressedarray. In our examplesthe
third modehadonly two entries,socompressionwasnotsensible.It turnedout thatanalysingthethus
compresseddataled to reasonableestimatesfor the parametersof interest.

Theaboveprocedureworkedreasonably well, but it turnedout thatbetterestimateswereobtained
with a procedurecombining ‘regularized’ compression with ordinarycompression (i.e. asdescribed
in Reference23) as follows. From an analysis of the regularized data(possiblyusinga multistart
procedure) we constructed a solutionfor the full datasetby premultiplications with the associated
basismatrices.Fromthissolutionwederivedastartfor arunof theanalysisof datacompressedin the
original way.23 From the solution obtained by this run, a new solution for the full data set was
obtained (by premultiplication with thepresentbasismatrices),which in turn wasusedasinput for a
final analysis of the complete dataset.Thuswe useda three-stepprocedureconsistingof

(1) analysis of regularizedcompresseddata
(2) analysis of ordinary compresseddata
(3) analysis of full data.

This three-step procedurewasa prototype for a procedure26 developed,shortly after the present
developments,for fitting thePARAFAC model. BecauseReference26 is fully devotedto this typeof
compression-based procedurefor handling multicollinearity, the readeris referredto that paperfor
moredetailson the generalideaof the three-step methodproposedhere.

5. ANALYSIS OF SECOND-ORDER SENSORCALIBRATION DATA

To testthe calibrationprocedureusingthe sensordescribed in Section1.3, a mixture wasprepared
containing 0.976ppmTCE and0.995ppmCHCl3 (which is oneof thepossibleinterferentsthatcan
passthroughthemembrane).Threephysicallydifferentstandardswerepreparedandmeasured,each
containing 0.488 ppm TCE. Experimental details have been given in Reference16, the only
differencebeingthatthepresentdataweremeasuredat10°C whereasthedataanalysedin Reference
16 weremeasuredat 20°C. Hencethecircumstancesarenot exactlycomparable. Thethreedifferent
standards can be used to calculate the reproducibility of the measurementswith the procedure
mentionedin Reference14. This results in a coefficient of variation (CV) or a relative standard
deviation of 5.1% in the measured absorbances.This is a measureof the reliability of the
measurements.For the final calibration of the sensorthe averageof the datafor the threeoriginal
standardswasusedasthe standard(N).

Two different kinds of error arepresentin the data.The first error is dueto imperfectionsin the
experimental conditions. Al thoughall measurementsshould be performedunderequalconditions
(e.g.temperature,startof dataacquisition, etc.),smalldeviationsareunavoidable.Theresulting error
will be called experimental error. The second kind of error is pure instrumental error. Even with
perfect repeatability of the experimental conditions of the measurements,therewill alwaysexist
differencesbetween repeatedmeasurements.Thosedifferencesaredueto instrumentalnoiseandwill
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becalled instrumental error.
The influenceof thecombination of experimental errorandinstrumental error canbeestablished

by using the three original standards separately in three different calibrations. The differences
betweentheestimatedconcentrations, expressedasacoefficient of variation,canbeattributedto the
aforementionederrors.Note that the thusobtainedstandard deviationgivesan upperbound to the
expectedstandard deviationof the estimated concentration of the final calibration, because in this
final calibration the averageof threestandardsis usedandthis filters out some error.

Theinfluenceof thepureinstrumentalerrorcanbeestablishedby usinga jack-knife procedureon
the dataset usedfor the final calibration. In ten stepsseveral rows and columns of N and M are
deletedfrom N andM , where in eachstep differentrowsandcolumnsaredeleted. Thisgeneratesten
matrices N andM and,uponusing the C3MFA model for eachsetof N andM , this generatesten
different concentration estimates.The differencesbetween theseestimates (again expressedas a
standard deviation)aredueto instrumentalnoise.Notethatthethusobtainedstandarddeviationgives
a lower boundto thestandarddeviationof theconcentrationestimatesof thefinal calibrationmodel,
becauseinstrumental error is always presentin the data and will influence the quality of the
concentration estimate.

To all datasetswe fitted the C3MFA model, with the core elementsfixed to one or zero, as
indicatedin Section 2.2. In C, only the valuec21 (representing g) wasleft unconstrained, the other
elementsbeingfixed to oneor zero,asindicatedin Section2.2.Furthermore, becausethevalue c21

representsapositivevalue,wedeemedit useful to constrain it to benon-negative,asameansto steer
thesolutionin theproper direction; becauseall other parametersalso pertain to non-negativeentities,
they could, in principle, havebeenconstrainedin the same way, but the compression procedures
cannothandle suchconstraints. Theensuingmodelwasfitted to thedataby meansof the three-step
proceduredescribed in Section4.7,using five randomly startedrunsfor thefirst step(andchoosing
the best solution of theseas input for the secondstep); in all stepsa run of an algorithm was
consideredconvergedif the function valuedid not changeby morethan0.0001%.

It is worthnotingthatthemodelandestimationprocedureareseverelytested:only onestandardis
usedand, to predict the concentration of TCE in M , the model is usedto extrapolate.This is an
extrapolation becausethe unknownconcentration lies outsidethe interval [0,0.488] definedby the
two calibrationpointsusedhere. In practice,multiplestandardsshouldbeusedto obtain morestable
resultsandto avoid extrapolation.

Thepurpose of thecalibrationis twofold: quantitative analysis, i.e. estimating therelative amount
of the analyte presentin the mixture, and qualitative analysis, i.e. estimatingthe instrumental
responseof the unknown interferents, therebyenabling the researcherto identify that unknown
compound.Theseissueswill be discussed in two separatesubsections.

5.1. Quantitative results

Theanalysisof thefull datasetled to anestimateof theconcentrationof TCEin themixtureof 0.997
(obtainedby dividing the estimatefor g by 0.488). Compared with the true value of 0.976, this
representsa relative errorof only 2.2%.A similar figureof merit wasreported for the,at first sight,
very similar dataanalysis reported in Reference27, but it shouldbe notedthat the experimental
conditionsfor thosedatawereessentially differentfrom thosefor our dataaswell those for thedata
analysedin Reference16. This embarrassesa thoroughcomparisonof the resultsreported in the
earlier paperswith our results.We can, however, compareour resultswith that obtained by the
conventionalmethodfor suchanalysis,RAFA.28 With RAFA theestimatewas2.045,which is 110%
in error.

To study thereliability of theseresults, wealsoanalysedthethreeoriginaldatamatrices.Thethree
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concentrationestimateswere0.923,1.133and1.022(average1.026andCV of 10.3%), which show
somevariation, but not morethancould be expected on the basis of variationdueto experimental
error.As a second procedureto assessthereliability of theseresults, we did a small jack-knifestudy
(seeearlier)onthefull dataset. Wecreatedtendatasetsfrom theoriginal datasetby leavingoutparts
of thedata. Specifically, in eachsuchjack-knife dataset, dataon 10%of thewavelengths andtime
pointswereleft out using theVenetianblind method(leavingout 1,5,9,…;2,6,10,…; etc.).The ten
analysesledto anaverageconcentrationestimateof 0.995andhadastandarddeviationof 0.006,thus
indicating very little variation over the different jack-knives. We therefore conclude that the
concentrationestimatereportedaboveis not only quite accurate but alsoquite reliable.

5.2. Qualitative results

Qualitative informationis obtained in thecalibration for theanalyte andthe interferent. It hasbeen
shown in the Appendix that x2, x4, y3 and the concentration of the analyte in M are uniquely
determinable.The estimatedspectraandprofilescanserveasstartingpoint for further analyses.

Figure1 showstheestimatedtemporalprofilesof x2 andx4. Theestimatedtemporal profileof x2 is
reasonable and shows that the analytebehaves according to the theory of reactionkinetics. The
reactionkineticsdictatethat thetemporalprofile of x4 shouldalsogo downduringthereaction(like
x2) since it is an intermediate product, but it is not knownat whatpoint in time. Hence, if the time
window which is usedto follow the reactionis too short,thenno decreasecanbeobserved.

The estimatedspectrumfor y3 (i.e. the UV/VIS spectrum of species2 formedby the analyte) is
shownin Figure2. Thisspectrum resemblestheoneobtainedin anearlieranalysis,17 butcomparison

Figure1. Estimatedtemporalprofilesx2 andx4 of sensorexample.The abbreviation‘min’ standsfor time in
minutesand‘a.u.’ standsfor arbitraryunits.Themeaningof x2 andx4 is explainedin the text.

Figure2.Estimatedspectrumy3 of sensorexample.Theabbreviation‘nm’ standsfor nanometresand‘a.u’ stands
for arbitraryunits.The meaningof y3 is explainedin the text.
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is difficult sincethe measuring conditionswereslightly different.
Summarizing thequalitative results,it canbestatedthattheobtained results arein agreementwith

thetheory.Only thebehaviourof x4 is perhapsnotcompletelyaccordingto thetheoreticalresults, but
the possible reason for this behaviour is explainedabove.

6. A DIFFERENT EXAMPLE: SECOND-ORDERCALIBRATION USING FIA–UV DATA

In thissection anexampleis discussed whichdiffersconsiderablyfrom thepreviousexampleasfar as
themeasurementset-upis concerned.It alsoseemsthatthiscalibrationproblemis evenmoredifficult
than the one discussed before.Sincewe could perform an auxiliary experiment, we were able to
obtain the true underlyingprofilesandspectra.This makesthis example ideally suitedto testand
illustratethe C3MFA method.

6.1. Intro duction

This example pertainsto a flow injection analysis (FIA) systemcoupled with UV diode array
detection(250–450 nm). Experimentaldetails aregivenelsewhere.29 Thesystemconsistsof a flow
injectionchannelwith adiodearraydetectorat theoutlet. Thecarrierstreamis abufferof pH 4.5.The
sampleS is caughtin betweenthe reagentplug (a buffer with pH 11.4)andthecarrierstream.This
generatesa reproducible pH gradientoverthesample plug. If thesamplecontainsdifferentanalytes,
selectivity is obtainedowing to differencesbetween pKa valuesof theseanalytes.ThepKa valueof a
soluteis thatpH value at which half of thesolutemoleculesarein theacidic form (protonated) and
half in thebasic form (deprotonated).Thescanning starts20 s after injection andcontinuesfor 88 s
with a 1 s interval. At eachscanning, absorbancesat theindicatedwavelengthsaremeasured.Hence
the result is an 89 time pointsby 100 wavelengths matrix of absorbances.No physicalseparation
takesplace.

In practice theanalytein thecalibration sample is of courseknown,andit is alsoknown to which
classof chemical substancespossible interferentsin the mixture belong. Again, on the basis of the
approximate rank of the mixture matrix, one assesseshow many interferents thereare. Here we
considerthesituation with oneinterferent.Specifically, we studythesituation where thecalibration
sampleis 3-hydroxybenzaldehyde(3-HBA) andthe interferent is 2-hydroxybenzaldehyde(2-HBA)
or a different substancein the classof possible interferents,which canall be assumedto havethe
samebehaviour as2-HBA. For convenience,we only considerthe situation where this interferent
actually is 2-HBA, but neitherthe calibration procedurenor the model would changeif it werea
different substancein this class.

ThepKa valuesof 2-HBA and3-HBA are8.37 and8.98respectively. Thereforeboththeacidicand
basicformsof asolute will bepresentalongthepH gradient.HencetheUV spectraof theacidicand
basicformsof eachsoluteproducethesignaltogetherwith theconcentrationprofilesof theacidicand
basic forms. If the spectraof the acidic forms are called sa2 and sa3 for 2-HBA and 3-HBA
respectively andca2 andca3 aretheconcentrationprofilesof theacidicformsof 2-HBA and3-HBA,
andif analogousdefinitionsareusedfor thebasicforms(sb2, sb3, cb2, cb3), thentheresponsesof the
puresolutes2-HBA and3-HBA canbe written as

N2-HBA � z2 � ca2 � sa2
T � z2 � cb2 � sb2

T �13a�
N3-HBA � z3 � ca3 � sa3

T � z3 � cb3 � sb3
T �13b�

wherez2 andz3 arethe concentrationsof 2-HBA and3-HBA in the standardsrespectively.
During ananalysisthetotal concentrationof a solute (acidic andbasicforms)at a given time and

placein theFIA channel is ca�cb. This gives two total concentrationprofiles:ctot2 (=ca2�cb2) and
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ctot3 (=ca3�cb3) for 2-HBA and3-HBA respectively.Theshapeof thetotal concentrationprofile is
definedby thediffusionpropertiesof thesolutes.Sincethesolutesresembleeachotherverymuch,it
canbe expected that their diffusion behaviour is equal.Hencethe shapeof the total concentration
profiles is equal:ctot2 = a.ctot3, wherea is a constant. This phenomenon putsa restriction on the
calibration problemwhich translatesinto a C3MFA model. Moreover,themixturesmade of 2-HBA
and3-HBA arenotrank-additive.30 This canbeseenby adding(13a)and(13b)in certainamounts; if,
for simplicity, amountsof 2-HBA and3-HBA at unit concentrationareaddedto form M , thenthe
result is

M � ca2 � sa2
T � cb2 � sb2

T � ca3 � sa3
T � cb3 � sb3

T � �ca2lcb2lca3lcb3�
sa2

sb2

sa3

sb3

0BB@
1CCA �14�

with

ca2 � cb2 � ��ca3 � cb3�

It caneasilybeseenthattherankof theresponseof anindividualsoluteis two, whereastherankof
M is threeand not four, owing to the restriction on the columnsof M . Of course, all these rank
considerations hold for the casewithout measurementnoise. In practice, measurement noise is
presentandthe abovereasoning should beunderstoodin termsof pseudorank.

To testour procedure, we useddatafrom a mixture for which the concentrationswereknown.29

Specifically, we analyseddatafor a mixture containing 0.05 mM of 3-HBA and 0.10 mM of the
interferent(2-HBA). Again theactual analysis datasetwasobtained astheaverageof threeoriginal
datasets.The threerepeatedstandardscanagainbeusedto calculate thecoefficientof variation due
to experimentalandinstrumental error,asexplainedabovefor thesensor example. This resultsin a
value of 1.1%. This value is lower than in the example of the sensor, indicating that the FIA
experimental set-upis morestablethantheset-up for thesensor, asexpected.This valuecanserveas
a threshold value for evaluating the predictive performanceof the C3MFA models.In the original
paper,RAFA wasusedfor thecalibration,which resultedin somecases in relative prediction errors
of 60%–80%. The reasonsfor suchhigh prediction error arediscussed in Reference30.

An auxiliary experiment wascarriedout in which the spectraof the solutes2-HBA and3-HBA
weremeasuredin asolution of pH 4.5 andasolution of pH 11.4.Hencethetruespectraof theacidic
andbasicspeciesof 2-HBA and3-HBA wereavailable.Usingthesespectra, asimple regression step
of thestandard N on these spectragivesthe true temporal profilesof 2-HBA. This canbedonein a
similar way for 3-HBA. Hence,owing to this auxiliary experiment, we havethe true spectra and
temporal profilesof 2-HBA and3-HBA, which is helpful in assessingthepotential usefulnessof the
C3MFA model.

In orderto illustratetheworking of theC3MFA models,wewill showtheresults of acalibration in
which thestandardcontainsonly 3-HBA andthemixture contains 3-HBA andthe(in this testcase)
known interferent2-HBA. Note that this is a difficult calibration: thereis only oneanalytein the
standard, while in the mixture thereis an interferentwhich strongly resemblesthe analyte.

6.2. Mathematical formula tion of calibration problem

In thiscalibration,3-HBA is thestandardandthemixturecontains3-HBA asananalyte togetherwith
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anunknowninterferent(which canbe2-HBA or asimilarsubstance).Theformalcalibration model is

N3-HBA � ca3 � sa3
T � cb3 � sb3

T �15a�
M � 
 � ca3 � sa3

T � 
 � cb3 � sb3
T � cau � sau

T � cbu � sbu
T �15b�

where the unknown interferent is indicated with the subscript ‘u’ and the concentration of this
interferentis absorbedin cau andcbu. Assumingthatthetotal concentrationprofilesof theinterferent
andthe analyte areproportional gives

cau � cbu � ��ca3 � cb3� � � � ctot3 �16�
wherea is anunknown constantandnotof directimportance.Thecalibrationproblemof (15a,b)can
be rewritten using cbu=a.ctot3-cau andca3=ctot3-cb3. This resultsin

N3-HBA � ctot3 � sa3
T ÿ cb3 � sa3

T � cb3 � sb3
T �17a�

M � 
 � ctot3 � sa3
T ÿ 
 � cb3 � sa3

T � 
 � cb3 � sb3
T � cau � sau

T � � � ctot3 � sbu
T ÿ cau � sbu

T

�17b�
wheretheparameterg andthespectraandtimeprofileshaveto beestimated.If thematricesA, B and
C aredefinedas

A � �ctot3lcb3lcau�; B � �sa3lsb3lsaulsbu�; C � 0 1
1 


� �
�18�

andthematrices N3-HBA andM arestackedto form a three-way array X (which for thepresentdata
hasorder 89� 100� 2), then calibration model (15a,b)can be written as a C3MFA model with
loadingmatricesA, B andC asgiven in (3) andthe3� 4� 2 corearrayG with elementsg141, g331,
g341, g112, g212 andg222 fixed to one.All other elements in G are forced to be zero.This specific
patternof zerosandonescanbe deducedby looking carefully at the calibration problem (17) and
keepingtrackof which triple productsof elementsof columnsof A, B andC should beincorporated
in theC3MFA model(seealso equation (2)).As shown in theSection A3 of theAppendix, thepresent
C3MFA model leads to unique estimatesof g and ctot3 and of the subspaces of (sa3lsb3) and
(saulsbu).

6.3. Analyses

In the analysesof thesedata,as in the analysesof the second-order sensor data, the three-step
approach(with five random starts for the first step) was employed and the value of g in C is
constrainedto benon-negative.In additionto thefull dataset,weanalysedthethreeoriginaldatasets
andtenjack-knife datasets.Theseadditionalanalysesweremeantto gain insight into thereliability
of our resultsfor the full dataset.

6.3.1. Quantitative results

The analysis of the full dataset led to an estimate of the concentration of 3-HBA of 0.048(upon
dividing the obtained value for g by 0.15).Comparedwith the true value of 0.05, this representsa
relative error of 4.2%. In comparison, the estimate obtained by RAFA was0.081(62.6%relative
error). It can be seenthat our procedure leads to a considerable improvement over the RAFA
procedure.

Our procedure also turned out to be reliable: the three original data setsled to concentration
estimatesof 0.046,0.051and0.046(average0.048andCV of 6%),whichclearly variedonly slightly.
Thejack-knives(constructedby leavingout observationson 5%of thewavelengthsandtime points)
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ledto anaveragevalueof 0.048with aCV of 6%,againindicating very little variationdueto changes
in thedata.It canbeconcludedthat theconcentrationestimate is againbothquiteaccurate andquite
reliable.

6.3.2. Qualitative resultsof FIA calibration

The estimatedconcentration profiles (Figure 3) and spectra(Figure 4) as a result of the C3MFA
modelclearly demonstratetheconsequencesof thenon-uniquenessof themodel.Exceptfor thectot
profile,noneof theprofilesandspectracanbeestimateduniquely, andasaconsequence, nonsensical
values(e.g.negativeabsorbances)canbefoundfor theseparameters.Negativevaluescould of course
havebeenpreventedby imposingnon-negativity constraints,buteventhenresultsmaynotbeunique;
moreover, non-negativity constraints can only be used in analysesof the full rather than the
compresseddata, andour experiencewith suchanalysesis that results become very unreliable and
start-dependent.

Theestimatedconcentrationprofilesconfirm our theoretical results:thefirst concentrationprofile
(ctot) is recovered very well, ascanbeseenuponcomparisonwith thetrueprofile,establishedusing
theauxiliaryexperimentasexplainedearlier,whichis alsoplotted.No otherconcentrationprofilecan
be obtained reliably, as is clearly illustrated for the profile cb3 which assumesnegative values
throughout; surprisingly, but coincidentally,profile cau is very closeto the actual profile.

Theresults for theestimatedspectraarelesseasilyexplained.Theestimatedspectrum for thebasic
speciesof the unknown interferent is surprisingly good. As was statedin the theory section, the
C3MFA model should (only) be ableto identify the subspace spanned by sa3 andsb3. This canbe
checkedby a simplecalculation regressing S= (sa3lsb3) on thefirst two columnsof B. Theresiduals

Figure3. Concentrationprofilesof FIA–UV example:—, estimatedprofiles;- - -, trueprofiles.Theabbreviation
‘sec’ standsfor secondsand‘a.u.’ standsfor arbitraryunits.Themeaningof ctot, cb3 andcau is explainedin the
text.
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of that regressionarevery small, indicating that the first two estimatedspectrado indeedspanthe
rangeof S. Usingconventional curveresolution techniques,a rotationcanbe foundof the first two
columnsof B in sucha way that theresultingrotated spectraobeythenon-negativity constraint and
give betterestimatesof the true spectra.This topic is not pursuedfurther.

In a similar fashionit canbe shown that the last two columnsof B give a goodestimate of the
subspacegeneratedby sa2 (=sau) andsb2 (=sbu). This is in agreementwith thetheoretical derivation.
Hence,by applying againconventional curve resolution techniques,reasonable estimatesfor the
spectraof the unknown interferentcan be obtained. The transformations implied by such curve
resolution techniquesareto be compensatedin a transformationof the profilesin matrix A, which
will, however, only affect the second andthird profiles.

Thepresentexemplaryanalysisshowsthattheresultsof thecalculationsarein full agreementwith
the theory.Only oneconcentration profile can be obtained directly (ctot), whereas the other con-
centrationprofilesandspectracannotbeobtained directly.Yet, curveresolution techniquesshould be
ableto give betterestimatesof thelatter.In addition,andmostimportantly, theconcentrationcanbe
determineduniquely,andit is indeedfoundherethattheestimatedconcentrationis goodandreliable.

7. A SMALL SIMULATION STUDY COMPARING OUR ALGORITHMS AND RAFA

To testour three-step algorithmandcompareit with RAFA andtwo variantsof our algorithm, we
conducteda smallsimulation study. For this we createddataresembling theFIA data(Section 6) as
follows. The true spectraof the solutes2-HBA and 3-HBA were obtained from the auxiliary
experimentdescribed in Section6.1. Thesespectraandprofileswereusedto construct matrices B0

andA0 respectively.Togetherwith C0 andG (defined in Section6.2),we areableto construct data

Figure4. Spectraof FIA–UV example:—, estimatedspectra;- - -, truespectra.Theabbreviation‘nm’ standsfor
nanometresand‘a.u’. standsfor arbitraryunits.Themeaningof sa3, sb3, sau andsbu is explainedin the text.
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thatresembletheFIA dataandexactly fit theC3MFA model.By addingsomenoiseto suchdata,we
created a realistic situation, with which we testedour algorithm andcomparedit with RAFA and
other algorithms.As in Section6, the concentration of 3-HBA waschosen to be 0.05,and in the
construction of the datawe usedthe matrix

C0 � 0 0:15
0:10 0:05

� �
We constructedthe ‘perfect’ three-way dataarrayX0 from A0, B0, C0 andthe corespecifiedin

Section6.2according to the3MFA model.We constructed30 datasetsasX = X0� N1� N2, where
N1 andN2 represent three-way arrayscontaining different kindsof instrumentalnoise.Thenoise in
N1 pertainedto uniformly distributedrandom valueswith meanzero,theexpectedabsolute valueof
which was0.5%of themeanvalueof X0, sothat this noisetermcanbeconsideredas0.5%uniform
offset noise,a percentagewhich resembles that occurring in practice. The noise in N2 was taken
proportional to the size of the valuesin X0, at threedifferent levels. Specifically, this noisewas
chosensuchthattheexpectedabsolutevalueof (X ÿ X0)/X0 (wherethesolidusdenoteselementwise
division) wasa, where a wastaken equalto 0.002,0.005and0.01respectively, thuscreating noise
levels of 0.2%, 0.5% and 1% respectively. Theseamountsof proportional noisewere considered
reasonable amountsof measurementerror.For eacherror level we constructed ten datasets.

The 30 datasetswere analysedby RAFA and the three-step approach, as well as by two less
complex variants:method1—five randomlystartedanalysesof theregularizedcompresseddata,the
bestsolution of whichwasusedasinput for afinal analysisof thefull data;method2—fiverandomly
startedanalysesof theordinarycompresseddata, thebestsolution of which wasusedasinput for a
final analysis of the full data.All iterativealgorithmsused" = 10ÿ6 asconvergence criterion.

For all four methodswe recordedthe number of iterations required, the computationtime, the
numberof local optimaencounteredin theinitial analyses(with five runs)and,mostimportantly, the
absolute deviation of the estimatedconcentrationparameter from the real value (0.05).

Theabsolute deviations, averagedwithin eacherror level, arereportedin Table1. It canbeseen
thatthethree-stepapproachperformsconsiderablybetterthanRAFA (which in thelastconditionhad
relative errors of 24% on average). Method 1 was outperformed consistently by the three-step
approach.Thebestmethodturnedoutto bemethod2,closelyfollowedby thethree-stepapproach.As
alreadyanticipated in Section4.7, the latter is considerably moreefficient thanmethod2: the three-
stepapproachused99sonaverage,whereasmethod2 (basedontheordinary compressionapproach)
required 2216 s on average.This differencecan be explainedupon inspecting the numbers of
iterationsrequired(which in ouranalyseswasnotallowedto exceed 20000):thefiverunsin method
2 required 10155iterationseachonaverage,while thefinal runof thefull datarequired 182iterations
on average; the three-stepapproach required24 iterations for eachof the five initial runs, 1454
iterationsfor thesecondstepand40 iterationsfor thefinal analysis,all averagedover30replications.
It wasalsoseenthat thefive runsin method2 very often led to widely differing values,of which at
least50%wereclearlysuboptimal; thefive runsstarting thethree-stepapproach,on theother hand,
consistently led to thesamefunctionvalue.Finally, we inspectedthelossfunctionvaluesobtainedin
thefinal, full data,analysesby methods1 and2 andthethree-stepapproach.It turnedout that these
valuesonly differedin thesixth decimal place(which impliesdifferencessmaller than0.15%); thus,
asfar asapproximationof theactualdatais concerned, noclearpreferencecanbegivento anyof the
methods.

It canbeconcludedfrom thissmallsimulationstudy thatmethod2 andthethree-stepapproachgive
thebestconcentrationestimates.Thethree-step approachis muchmoreefficientthanmethod2 andis
muchlesssensitive to local optima, andfor this reasoncanbeexpected to be morestableaswell.
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8. GENERAL DISCUSSION

Clearly, thesuccessof theestimationof concentrationsdependsonhowwell themodel fits thedata.If
measurementsarenotveryaccurate,theparameterestimateswill usuallynotbeveryaccurateeither.
However, as indicatedabove,an even more important issue is the uniqueness of the parameter
estimatein themodel. If theparametercannotbeestimateduniquely, C3MFA will fail to givecorrect
parameter estimates,evenwith perfectly accuratemeasurements. Thereforeprovinguniqueness is of
paramount importancein parameter-estimatingapplicationsof C3MFA. Thepresentpaperillustrates
how uniquenesscanbe proven in practice.

In thepresentpaperaflexiblealgorithm for fitting avarietyof C3MFA modelshasbeenproposed.
Furthermore, for caseswith severe multicollinearity it is proposed to usea three-stepprocedure
consistingof applicationsof thealgorithm to compressedversionsof thedataarray. In theanalyses
reportedin thepresentpaper,thethree-stepapproachturnedout to beveryefficientandstable(in the
senseof sensitivity to local optima as well as in the senseof stability over repeatedtrial data);
moreover, it performedwell in terms of concentration estimates.In all cases the concentration
estimatesweremuchbetterthanthoseobtainedby theRAFA method.Thusit hasbeendemonstrated
that the C3MFA model, especially when fitted by the three-step approach, is a useful tool for
obtaining concentration estimates when data on a mixture and one or more calibration setsare
available.
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APPENDIX

A1. Some results useful for assessing uniqueness

Result1

If A, B and C havefull column rank and the supermatrices formed by concatenating the frontal,
lateralandhorizontalplanesof G respectively havefull row rank(which impliesat leastQR� P, PR
� Q andPQ� R), then(6) holdsif

~Gk � S
XR

r�1

ukrGrTT; k � 1; . . . ;K �19�

andA = ÃS, B = B̃T andC = C̃U for certainnon-singular matrices S, T andU.

Table1. Averageabsolutedeviationsof true concentrationestimates

Error level (%) RAFA Three-step Method1 Method2

0�02 0�0036 0�0013 0�0013 0�0016
0�05 0�0061 0�0024 0�0026 0�0018
1�0 0�0121 0�0026 0�0042 0�0017
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Proof If (6) holds, we obtain, upon concatenating the frontal planesof X̂ into X̂F and of G
into GF that X̂F = (X̂1l…lX̂K) = AGF (CT 6 BT) = ÃG̃F(C̃T6B̃T). Here C6B has full column
rank (QR) andGF hasfull row rank (P). It follows that A = X̂F(Ct 6 Bt)�GF

�, where � denotes
the Moore–Penrose inverse. Because A has rank P, X̂F must have at least rank P and henceÃ
mustalsohaverank P. BecauseA and Ã spanthe same column space, it follows that A = ÃS for
a certain non-singular matrix S. In a completely analogousfashion we find that B = B̃T and
C = C̃U for non-singular matricesT andU. Hence it follows from (6) that

~A
XR

r�1

~ckr
~Gr ~BT � ~AS

XR

r�1

�~CU�krGrTT ~BT; k � 1; . . . ;K �20�

It canbe verified15 that (20) is equivalent to (19). Conversely, suppose (19) holdsandA = ÃS,
B = B̃T andC = C̃U; then(6) follows trivially uponmultiplicationof theleft- andright-handsidesof
(19) by A, B andC (in the proper directions). &

Result2

Whentheconditionsof Result 1 aresatisfiedandacomponentmatrix (A, B or C) is constrainedsuch
that a subset of rows forms a non-singular lower (upper)triangular matrix, thenthe corresponding
transformationmatrix is lower (upper)triangular.

Proof Supposethat a subset of rows of A (collected in As) is constrained suchthat As and Ãs

are non-singular and lower (upper) triangular. From Result 1 it follows that A = ÃS hence
As = ÃsS. Therefore S= Ãs

ÿ1As which is lower (upper) triangular. &

A2. Proof for partial uniquenessin second-order sensorcalibrat ion example

To assess(partial) uniquenessfor model (5) in Section 2.2 (underthe assumption that A, B andC
havefull columnrank),wefirst useResults1 and2 of Section A1. HencewehaveG̃k = S�rukrGrT

T,
k = 1,2,andA = ÃS, B = B̃T andC = C̃U with

U � 1 0
u21 1

� �
Next we use

~G2 �
0 0 0
0 0 0
0 0 1
0 1 0

0BB@
1CCA � S

u21 0 0
0 u21 0
0 0 1
0 1 0

0BB@
1CCATT �21�

from which it follows that

u21 0 0
0 u21 0
0 0 1
0 1 0

0BB@
1CCA

144 H. A. L. KIERS AND A. K. SMILDE

 1998JohnWiley & Sons,Ltd. J. Chemometrics, Vol. 12, 125–147(1998)



hasrank two. This implies that u21 = 0, henceU = I . Now we haveG̃1 = SG1T
T and G̃2 = SG2T

T

hence

~G1 �
1 0 0
0 1 0
0 0 0
0 0 0

0BB@
1CCA � s1t1

T � s2t2
T �22�

~G2 �
0 0 0
0 0 0
0 0 1
0 1 0

0BB@
1CCA � s3t3

T � s4t2
T �23�

From(22) andthenon-singularity of S andT it follows that thelast two elementsof s1 ands2 and
thethird elementsof t1 andt2 arezero.From(23) it follows thatthefirst two elementsof s3 ands4 and
the first elements of t2 and t3 are zero. Furthermore, for the element (2,1) in (22) we have
0 = s21t11� s22t12 = s21t11. Becauset11 = 0 would imply that the first row of T is zeroandhenceT
would be singular (violating the assumption that B hasfull column rank), it follows that s21 = 0.
Similarly, from (23) it follows for element (4,3) that s43t33 = 0; hence, becauset33 = 0 would imply
that T would be singular, it follows that s43 = 0. To sumup, we have

S�
s11 s12 0 0
0 s22 0 0
0 0 s33 s34

0 0 0 s44

0BB@
1CCA; T �

t11 0 0
t21 t22 t23

0 0 t33

0@ 1A; U � I �24�

To seeif we haveusedall the informationavailable, we elaborate the right-handsidesof the
expressionsfor Gk = S�rukrGrT

t, k = 1,2,in termsof thepresentexpressionsfor S,T andU. Thuswe
find

G1 �
s11 s12 0 0
0 s22 0 0
0 0 s33 s34

0 0 0 s44

0BB@
1CCA

1 0 0
0 1 0
0 0 0
0 0 0

0BB@
1CCA t11 t21 0

0 t22 0
0 t23 t33

0@ 1A � s11t11 s11t21� s12t22 0
0 s22t22 0
0 0 0
0 0 0

0BB@
1CCA

G2 �
s11 s12 0 0
0 s22 0 0
0 0 s33 s34

0 0 0 s44

0BB@
1CCA

0 0 0
0 0 0
0 0 1
0 1 0

0BB@
1CCA t11 t21 0

0 t22 0
0 t23 t33

0@ 1A � 0 0 0
0 0 0
0 s34t22� s33t23 s33t33

0 s44t22 0

0BB@
1CCA

Because G1 and G2 are completely specified, it follows that s11t11 = s22t22 = s33t33 = s44t22 = 1,
s11t21�s12t22 = 0 ands34t22�s33t23 = 0. Theserestrictionscanbesatisfied for arbitrary choicesof the
elementsof T involved(providedthatT is non-singular), aslongastheelementsof Sarechosensuch
that we haves11 = t11

ÿ1, s22 = s44 = t22
ÿ1, s33 = t33

ÿ1, s12 =ÿt11
ÿ1t22

ÿ1t21 and s34 =ÿt22
ÿ1t33

ÿ1t23.
HenceGk = S�rukrGrT

t, k = 1,2, is satisfied for matrices S, T andU of the form specified in (24),
wheretheelementsof Sareexpressedin theelementsof T by theaboverelations. It follows thatthe
first andthird columnsof A andthesecond columnof B areuniquelydeterminable(up to scaling and
reflection), whereastheothercolumnsof A andB arenot uniquelydeterminable.Thustwo of thex-
profiles(x2 andx4) andoney-profile (y3) canbeidentified.In addition,it follows from U = I thatC is
uniquelydeterminable, hencethe relative concentration value g is uniquely determinable.
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A3. Proof for partial uniquenessin FIA–UV example

TheC3MFA modelemployedin theexample in Section 6 involvesaconstrainedcorearrayG which
canbe written as

G1 � ~G1 �
0 0 0 1
0 0 0 0
0 0 1 1

0@ 1A; G2 � ~G2 �
1 0 0 0
1 1 0 0
0 0 0 0

0@ 1A
Furthermore, the matrix C is constrainedas

C � 0 1
1 


� �
To provepartialuniquenessfor thismodel(under theassumption thatA, B andC havefull column

rank), we first useResults1 and2 again,giving G̃k = S�rukrGrT
T, k = 1,2, andA=ÃS, B=B̃T and

C=C̃U with

U � 1 u12

0 1

� �
Next we use

G1 �
0 0 0 1
0 0 0 0
0 0 1 1

0@ 1A � S
u12 0 0 1
u12 u12 0 0
0 0 1 1

0@ 1ATT �25�

from which it follows that

u12 0 0 1
u12 u12 0 0
0 0 1 1

0@ 1A
hasrank two. This implies that u12 = 0, henceU = I .

UsingU = I , from G̃k = S�rukrGrT
T we haveG̃1 = SG1T

T andG̃2 = SG2T
T, hence

G1 �
0 0 0 1
0 0 0 0
0 0 1 1

0@ 1A � s1t4
T � s3t3

T � s3t4
T �26�

G2 �
1 0 0 0
1 1 0 0
0 0 0 0

0@ 1A � s1t1
T � s2t1

T � s2tT
2 �27�

From(26) andthenon-singularity of S andT it follows that thefirst two elementsof t3 andt4 and
thesecondelementsof s1 ands3 arezero.From(27) it follows that thelast two elementsof t1 andt2
andthe third elementsof s1 ands2 arezero. Thus,we have

S�
s11 s12 s13

0 s22 0
0 0 s33

0@ 1A; T �
t11 t12 0 0
t21 t22 0 0
0 0 t33 t34

0 0 t43 t44

0BB@
1CCA

It canbeshownthatthezerosin SandT abovearetheonly elementsthatcanalwaysbetaken zero.
It canbe concludedthat C is uniquely determinable(sinceC̃ = C) andthat the first column of A is
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identified uniquely, since A and Ã are related by A = ÃS and hence their first columns are
proportional. Furthermore,thesubspacesof thefirst two columnsandof thelast two columnsof B are
uniquely identified, as follows from B = B̃T. The second andthird columnsof A arenot uniquely
determinable,sincethey areconfoundedwith the first columnof A.

REFERENCES

1. P. Geladi,ChemometricsIntell. Lab. Syst.7, 11 (1989).
2. A. K. Smilde,ChemometricsIntell. Lab. Syst.15, 143 (1992).
3. E. SanchezandB. R. Kowalski, Anal. Chem.58, 496(1986).
4. S. LeurgansandR. T. Ross,Statist.Sci.7, 289 (1992).
5. P.Geladi,H. Isaksson,L. Lindqvist,S.Wold andK. Esbensen,ChemometricsIntell. Lab.Syst.5, 209(1989).
6. P. NomikosandJ. F. MacGregor,Technometrics, 37, 41 (1995).
7. K. A. Kosanovich,K. S. Dahl andM. J. Piovoso,Ind. Engng.Chem.Res.35, 138(1996).
8. L. R. Tucker,Psychometrika, 31, 279(1966).
9. P. M. KroonenbergandJ. de Leeuw,Psychometrika, 45, 69 (1980).

10. W. H. LawtonandE. A. Sylvestre,Technometrics, 13, 617 (1971).
11. R. Tauler,A. K. SmildeandB. R. Kowalski, J. Chemometrics, 9, 31 (1995).
12. H. A. L. Kiers, Statist.Appl. 4, 659(1992).
13. R. Rocci,J. Italian Statist.Soc.3, 413(1992).
14. A. K. Smilde,R. Tauler,J.M. Henshaw,L. W. BurgessandB. R. Kowalski,Anal. Chem.66, 3345(1994).
15. H. A. L. Kiers, J. M. F. ten BergeandR. Rocci,Psychometrika, 62, 349 (1997).
16. J. M. Henshaw,L. W. Burgess,K. S. BookshandB. R. Kowalski, Anal. Chem.66, 3328(1994).
17. R. Tauler,A. K. Smilde,J.M. Henshaw,L. W. BurgessandB. R. Kowalski,Anal. Chem.66, 3337(1994).
18. G. A. Lugg, Anal. Chem.38, 1532(1966).
19. J. F. Reith,W. C. vanDitmarschandTh. deRuiter,Analyst, 99, 652 (1974).
20. J.WeesieandH. vanHouwelingen,GEPCAMUsers’Manual:GeneralizedPrincipal ComponentsAnalysis

with MissingValues, Instituteof MathematicalStatistics,Universityof Utrecht(1983).
21. C. L. Lawsonand R. J. Hanson,Solving LeastSquaresProblems, Prentice-Hall,EnglewoodCliffs, NJ

(1974).
22. MATLAB, MathworksInc., Natick, MA (1992).
23. C. J. Appellof andE. R. Davidson,Anal. Chem.53, 2053(1981).
24. B. K. AlsbergandO. M. Kvalheim,ChemometricsIntell. Lab. Syst.24, 43 (1994).
25. H. A. L. Kiers andR. A. Harshman,ChemometricsIntell. Lab. Syst.36, 31 (1997).
26. H. A. L. Kiers, J. Chemometrics, in press.
27. K. S. Booksh,J. M. Henshaw,L. W. BurgessandB. R. Kowalski, J. Chemometrics, 9, 263 (1995).
28. C. -N. Ho, G. D. ChristianandE. R. Davidson,Anal. Chem.50, 1108(1978).
29. L. NørgaardandC. Ridder,ChemometricsIntell. Lab. Syst.23, 107 (1994).
30. H. A. L. Kiers andA. K. Smilde,J. Chemometrics, 9, 179(1995).

CONSTRAINEDTHREE-MODEFACTORANALYSIS 147

 1998JohnWiley & Sons,Ltd. J. Chemometrics, Vol. 12, 125–147(1998)


