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SUMMARY

PARAFAC is a generalization of principal component analysis (PCA) to the situation where a set of data
matrices is to be analysed. If each data matrix has the same row and column units, the resulting data are three-way
data and can be modelled by the PARAFAC1 model. If each data matrix has the same column units but different
(numbers of) row units, the PARAFAC2 model can be used. Like the PARAFAC1 model, the PARAFAC2
model gives unique solutions under certain mild assumptions, whereas it is less severely constrained than
PARAFAC1. It may therefore also be used for regular three-way data in situations where the PARAFAC1 model
is too restricted. Usually the PARAFAC2 model is fitted to a set of matrices with cross-products between the
column units. However, this model-fitting procedure is computationally complex and inefficient. In the present
paper a procedure for fitting the PARAFAC2 model directly to the set of data matrices is proposed. It is shown
that this algorithm is more efficient than the indirect fitting algorithm. Moreover, it is more easily adjusted so as
to allow for constraints on the parameter matrices, to handle missing data, as well as to handle generalizations to
sets of three- and higher-way data. Furthermore, with the direct fitting approach we also gain information on the
row units, in the form of ‘factor scores’. As will be shown, this elaboration of the model in no way limits the
feasibility of the method. Even though full information on the row units becomes available, the algorithm is
based on the usually much smaller cross-product matrices only. Copyright 1999 John Wiley & Sons, Ltd.

KEY WORDS: principal component analysis; multiple-set data; repeated measurements; three-way data;
PARAFAC

1. INTRODUCTION

Principal component analysis (PCA) is a popular technique for the exploratory analysis of a set of
variables. IfX denotes anI � J data matrix, then PCA comes down to minimizing

��F;A� � kX ÿ FATk2 �1�

over theI � R factor score matrixF and theJ� R loading matrixA; in PCA, factor scores are usually
denoted as component scores, but for consistency with the other terminology in the present paper we
denote them as ‘factor scores’ here. The solution forF andA is not unique, because replacingF by FT
andA by A(TT)71, whereT is an arbitrary non-singular matrix, gives the same function value. Faced
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with the problem of choosing a particular orientation of the axes in the PCA solution, Cattell1

proposed the principle of parallel proportional profiles as a basis for determining such orientation.
According to this principle, different observations of the same variables on the same observation units
are determined by a single set of factors, of which only the relative importance may differ over
occasions. This principle led to the PARAFAC2 model, which has been proposed independently by
Carroll and Chang3 under the name CANDECOMP. The PARAFAC model, here named PARAFAC1
to distinguish it from the PARAFAC2 method to be discussed later, is based on the parallel
proportional profile principle as follows. Let theI � J matrix Xk, k = 1,…,K, denote thekth slab of a
three-way data arrayX, for instance, consisting of scores ofI observation units onJ variables atK
occasions; in a particular chemical context, e.g. chromatography, one may haveK samples separated
in a chromatographic system using spectral detection withJ wavelengthsI times during elution. Then,
according to the PARAFAC1 model, we have

Xk � FDkAT � Rk �2�

whereF is anI � R matrix of factor scores (for the row units),A is aJ� R matrix of weights for the
column units (analogous to loadings in PCA),Dk is a diagonal (R� R) matrix containing the weights
for thekth slab ofX, andRk denotes anI � J matrix with residuals,k = 1,…,K. If we defineAk = ADk,
this model can be seen as a variant of the PCA model, with the same factor scores matrix for all slabs,
and loading matrices that are columnwise proportional across slabs. The PARAFAC1 model is fitted
to the data in the least squares sense, which amounts to minimizing

�1�F;A;D1; . . . ;Dk� �
XK

k�1

kXk ÿ FDkATk2 �3�

where summation is overk = 1,…,K. In addition to the original algorithms2,3 for this, various
improvements have been proposed.4,5

Harshman6 and Kruskal7 have shown that, under certain relatively mild conditions, there is a
unique solution forF, A and D1,…,DK that minimizes (3), up to scaling and permutation of the
columns of the matrices. Hence the above-described PARAFAC1 method offers a solution to the
problem of rotational indeterminacy of factor analytic solutions in cases where a number of
observation units are measured on the same variables a number of times. However, sometimes the
model is too restrictive in that it employs the same factor score matrixF for all data matrices, which
need not always be a plausible assumption. An obvious case in point is where the observation units
vary from data set to data set, but even if basically the same observation units are used, it is possible
that the assumption of equality of the factor scores is too strong. In such cases where all data matrices
pertain to the same set of variables, but where observation units are not comparable (and may even
differ in number), one may use the parallel proportional profile principle in an adjusted way, as
follows. For each occasion one can model the observations on thenk� J matrix Xk as

Xk � FkDkAT � Rk �4�

which differs from the PARAFAC1 model only in that for each data matrix we have a different factor
score matrix, which is a natural implication of having incomparable observation units in each data
matrix. As is readily verified, the present model does not have the uniqueness properties of the
PARAFAC1 model. This is because the factor scores can no longer be constrained to be equal for the
different data matrices. The only invariance constraint imposed in (4) is that the loading matrices
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AD1,…,ADK be proportional, thus modelling the relations of the variables to the factors (as expressed
by the loadings) in essentially the same way for every data matrix. Indeed, this is not sufficient to get
uniqueness, as follows from the fact thatFkDkAT � FkDkTÿ1Eÿ1

k EkTAT � GkEkBT, with
Gk � FkDkTÿ1Eÿ1

k , Ek diagonal andB : ATT, for any non-singular matrixT. Hoping to find a
model which does have a unique representation, Harshman8. imposed a particular invariance
constraint on the factor scores, as follows. He has proposed to impose that the cross-product matrix
FT

k Fk is constant overk. The model in equation (4) combined with this constraint is called the
PARAFAC2 model. WhenFK contains centred scores, this implies that the correlations between the
factors are kept invariant, as can be seen upon noting that scale differences are captured by theDk

matrices. More generally, this constraint implies that congruence coefficients,9 also called10

‘uncorrected correlation coefficients’, between columns ofFk are invariant overk. The congruence
coefficient is defined as

'�x,y� � xTy��������
xTx
p ��������

yTy
p �5�

wherex andy denote vectors of the same order.
An example of a situation with incomparable cases, where the PARAFAC2 model can be useful, is

the following. In typical chromatography with spectral detection the data can be arranged in a three-
way array, with the first mode designating elution time, the second mode wavelength and the third
mode samples. An ideal model for such data would be the PARAFAC1 model, with the first mode
(here seen as factor scores) corresponding to elution profiles, the second mode to pure spectra and the
third mode to concentration profiles. However, if the retention times of specific analytes shift from
sample to sample, the model no longer holds, because in fact the first-mode units become
incomparable. Assume, however, that the following holds for the elution profiles of each sample, i.e.
for each column in the elution profile matrix. All profiles are approximately shifted the same amount,
and for every profile, sufficiently many elution times are sampled such that at both extremes of the
profile the same (baseline) values are found. Then it holds that, even though the elution profiles shift
from sample to sample, the cross-products of the factor score matrix holding the elution profiles
remain constant (see Part II11).

Instead of fitting model (4) itself to the data subject to the constraint thatFT
k Fk be invariant across

occasions, Harshman8 proposed to fit the cross-product version of model (4) to the observed cross-
products. Specifically, ifCk denotes the cross-product matrix associated withXk, then he proposed to
fit (in the least squares sense) the model

Ck � ADkFDkAT � Rk �6�

whereF denotes the invariant matrixFT
k Fk, andRk now denotes a matrix with residuals for the cross-

product matrixCk, k = 1,…,K (and hence is entirely different from that in (4)).
In the present paper it is proposed to fit the model (4) itself to the data, rather than fitting the derived

model (6) to the cross-products. Specifically, it is proposed here to minimize

�2�Fk;A;D1; . . . ;DK� �
XK

k�1

kXk ÿ FkDkATk2 �7�

subject to the constraint thatFT
k Fk � FT

l Fl for all pairs k, l = 1,…,K, and thatDk, k = 1,…,K, be
diagonal. The first reason for direct fitting of the PARAFAC2 model (by minimizing (7)) instead of
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indirect fitting (by minimizing the sum of squared residuals in (6)) is that in this way the actual data,
rather than derived entities, are fitted and, as a consequence, factor scores (for the row units) will be
obtained, whereas these are not obtained by the indirect fitting procedure. An additional reason is that
the present fitting procedure is easier to adjust when constraints (e.g. non-negativity constraints) are
to be imposed on the parameters, as well as when missing data are to be handled by replacing them by
the optimal model estimates (as in expectation maximization (EM) procedures). Also, the present
procedure is easier to generalize to situations with sets of three-way or higher-way data, as will be
discussed at the end of the paper. Finally, the algorithm for direct fitting turns out to be considerably
more efficient.

In the present paper it will first be derived how (7) can be minimized subject to the constraints at
hand. Next it will be shown that the present method, just as the original PARAFAC2 method, is based
on the cross-productsXT

k Xk, k = 1,…,K, only. Then a simple lower bound to the function�2 will be
given. Finally the procedure will be tested and compared with the algorithm for the original
PARAFAC2 method. For an application of the newly developed method we refer to Part II.11

2. AN ALGORITHM FOR DIRECT FITTING OF THE PARAFAC2 MODEL

Before dealing with the minimization of (7), we will first reformulate the constraint thatFT
k Fk � FT

j Fj

for all pairsj,k = 1,…,K. For this constraint to be met, it is necessary and sufficient to haveFk = PkF
for a columnwise orthonormal (nk� R) matrix Pk and anR� R matrix F, k = 1,…,K. Sufficiency
follows from the fact thatFT

k Fk � FTPT
k PkF � FTF is constant overk. To prove necessity, we start

from the fact thatFT
k Fk � FT

j Fj for all pairs j,k = 1,…,K, hence that, takingj = 1 as a point of
reference,FT

k Fk � FT
1F1 for k = 1,…,K. We expressFk with respect to a columnwise orthonormal

basis matrixQk (nk� R) asFk = QkTk, k = 1,…,K, whereTk is anR� R matrix. Then it follows that
TT

k Tk � TT
1T1 and henceTk = NkT1, whereNk is an orthonormalR� R matrix, for k = 1,…,K. As a

consequence,Fk = QkNkT1, which, upon definingPk : QkNk and F : T1, givesFk = PkF for a
columnwise orthonormal (nk� R) matrix Pk and anR� R matrix F, k = 1,…,K.

Having proven that the constraintFT
k Fk � FT

j Fj for all j,k = 1,…,K is equivalent to the constraint
Fk = PkF for some columnwise orthonormal (nk� R) matrixPk and anR� R matrixF, k = 1,…,K, we
substituteFk = PkF for Fk in (7) to find

�3�P1; . . . ;PK ;F;A;D1; . . . ;DK� �
XK

k�1

kXk ÿ PkFDkATk2 �8�

which is to be minimized over all its arguments, subject to the constraints thatPT
k Pk � IR andDk is

diagonal,k = 1,…,K. To minimize this function, we propose an alternating least squares algorithm
that alternately minimizes (8) overPk for fixed F, Dk andA, k = 1,…,K, and overF, D1,…,DK andA
for fixed P1,…,PK.

Minimizing (8) overPk subject toPT
k Pk � IR is equivalent to maximizing

f �Pk� � tr FDkATXT
k Pk �9�

k = 1,…,K, the solution for which is found as follows.12 Let FDkATXT
k � UkDkVT

k be a singular value
decomposition (SVD); then the maximum of (9) over columnwise orthonormalPk is given by

Pk � VkUT
k �10�

k = 1,…,K.
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The problem of minimizing (8) overF, D1,…,Dk andA reduces to minimizing

�3�F,A,D1; . . . ;DK jP1; . . . ;PK� �
XK

k�1

kPT
k Xk ÿ FDkATk2� c �11�

wherec denotes a constant with respect toF, A andD1,…,DK. Clearly, minimizing (11) is equivalent
to the PARAFAC1 problem of minimizing (3) withXk replaced byPT

k Xk. Hence for the minimization
of (8) over F, D1,…,DK and A we can use any PARAFAC1 algorithm. Rather than actually
minimizing (8) overF, D1,…,DK andA, it suffices todecrease(8) over these parameter matrices, as is
achieved by using one cycle of updates from a PARAFAC1 algorithm.

A complete alternating least squares algorithm can now be set up by alternately minimizing�3 over
Pk according to (10) and applying a cycle of PARAFAC1 updates to theR� J� K three-way array
with frontal planesPT

k Xk, k = 1,…,K. Because both steps decrease the function value of�3 and
because�3 is bounded below by zero, this procedure will converge to a stable function value.

The algorithm needs to be started at certain values for three of the four parameter sets. These can be
chosen randomly, but alternatively one may choose an initialization which has particular useful
properties and which it is hoped will have a relatively high chance of leading to the global (rather than
a local) minimum of the function. As such a ‘rational’ start, forA we propose to take the loadings
obtained from a PCA of the matrix containingX1,…,XK stacked below each other. The matricesF
andD1,…,DK are initialized as identity matrices. As will be demonstrated in the simulation study
reported below, this start indeed has a relatively high chance of leading to the global minimum.
Furthermore, this start has the advantage that in the special case whereK = 1 (in which case our
method reduces to fitting the ordinary PCA model) the start itself gives the global minimum of the
loss function, and hence no iterations are required whatsoever. Nevertheless, in practice it is
recommended to use several randomly started runs in addition to a run started rationally, in order to
decrease the chance of missing the global minimum of the function.

A schematic description of the algorithm is postponed to the end of Section 3. In Section 3, first a
procedure for enhancing computational efficiency is proposed.

3. SUFFICIENCY OF CROSS-PRODUCTS

If nk (the number of rows in thekth data matrix) is considerably larger thanJ, it will be inefficient to
work with the full data matrixXk. In such cases the original PARAFAC2 method, working with cross-
product matricesXT

k Xk, might seem to be more efficient. However, as will be shown below, our direct
PARAFAC2 method similarly uses only the cross-product matricesXT

k Xk during the iterations.
Hence our direct PARAFAC2 method can be made considerably more efficient in such cases by
replacingXk by a smaller matrix with the same cross-product matrix, as will be explained below.

The direct PARAFAC2 method consists of minimizing�3 over Pk for fixed F, Dk and A,
k = 1,…,K, subject to certain constraints. However, we can eliminate the largest matrixPk from the
minimization problem by expressing the solution forPk in terms of the other parameters andXk. That
is, from (10) we havePk � VkUT

k � VkDkUT
k �UkD2

kUT
k �ÿ1=2, which can be written as

Pk � XkADkFT�FDkATXT
k XkADkFT�ÿ1=2 �12�

Substituting (12) forPk in (8) gives
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�3�F,A,D1; . . . ;DK� �
XK

k�1

kXk ÿ XkADkFT�FDkATXT
k XkADkFT�ÿ1=2FDkATk2

�
XK

k�1

kXkk2ÿ 2
XK

k�1

tr XT
k XkADkFT�FDkATXT

k XkADkFT�ÿ1=2FDkAT �
XK

k�1

kFDkATk2

�
XK

k�1

tr XT
k Xk ÿ 2

XK

k�1

tr �FDkATXT
k XkADkFT�1=2 �

XK

k�1

kFDkATk2 �13�

Clearly, in this function,Xk only appears in the cross-productsXT
k Xk. Therefore the minimum of�3

depends onXk only through the cross-productsXT
k Xk.

Above we have seen that the minimum of the loss function (8), as well as the set [F,A,D1,…,DK]
that minimizes the loss function, depends onXk only throughXT

k Xk. It follows that the problem of
minimizing (8) reduces to that of minimizing (13) even if we replace thenk� J matrix Xk by any
other (mk� J) matrix Hk (with mk considerably smaller thannk) which has the same cross-product
matrix asXk. Such a matrix can, for instance, be obtained by the Cholesky decomposition ofXT

k Xk, in
which caseHk will have ordermk = J. As a consequence, function (8) withXk replaced by a (much
smaller) matrixHk for whichHT

k Hk � XT
k Xk has the same minimum, reached for the same parameter

matricesF, A and D1,…,DK, as has the original function (8). Thus we can efficiently find the
minimum of �3 and the minimizingF, A andD1,…,DK by first computing matricesHk for which
HT

k Hk � XT
k Xk and then applying our algorithm to the set of these matricesHk, k = 1,…,K. This

procedure does not give the correct solutions forPk, k = 1,…,K. In order to obtain the solution for the
matrix Pk, which we expressed in terms of the other parameter matrices in (12), we do need the
original data matrixXk, and computePk according to (12). Thus, only in order to compute factor
scores, given byFk = PkF, we need to have the full matricesXk, k = 1,…,K. This situation is similar to
that of PCA: One can compute loading matrices using the cross-product matrix only, without having
access to the raw data; however, in order to compute factor scores, the data for each individual
observation have to be used.

To summarize, both the original PARAFAC2 method and our direct PARAFAC2 method use only
the cross-product matrices, albeit that they optimize different functions involving these cross-
products. Furthermore, the indirect PARAFAC2 method has no method for obtaining factor scores,
whereas factor scores are explicitly defined in the model (4) fitted in our direct PARAFAC2 method.

The complete direct fitting PARAFAC2 algorithm can be summarized as follows.

Step 0. IfJ< nk, replaceXk by Hk, e.g. from the Cholesky decompositionXT
k Xk � HT

k Hk.
Step 1. InitializeA as the loading matrix from PCA on

P
k XT

k Xk and initializeF andD1,…,DK

asIR.
Step 1a. Compute the SVDFDkATXT

k � UkDkVT
k and updatePk asVkUT

k , k = 1,…,K.
Step 1b. UpdateF, A and D1,…,DK by one cycle of a PARAFAC1 algorithm applied to the

R� J� K three-way array with frontal planesPT
k Xk, k = 1,…,K.

Step 1c. Evaluate the function value�3 (P1,…,PK,F,A,D1,…,DK) =
P

k jj Xk 7PkFDkA
Tjj2; see

(8). If �old
3 ÿ �new

3 > ��old
3 for some small value", repeat Step 1; else go to Step 2.
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Step 2. IfXk has been replaced byHk in Step 0, now replaceHk by Xk again and computePk

according to Step 1a,k = 1,…,K.

4. UPPER BOUND TO THE PARAFAC2 FIT VALUE

The minimum of the direct PARAFAC2 loss function can easily be related to the minimum of a loss
function based on a PCA. That is, we have

min
XK

k�1

kXk ÿ FkATk2 � min
XK

k�1

kXk ÿ PkFDkATk2 �14�

where ‘min’ means that the minimum of the function over all parameter matrices at hand is taken,
k = 1,…,K. This inequality follows at once from the fact that forFk constrained to be equal toPkFDk

the minimum of the loss function is never smaller than for unconstrainedFk. The left-hand term gives
the loss function value resulting from a PCA of the supermatrixX � �XT

1 . . . XT
K �T. To verify this, it

should be noted that

XK

k�1

kXk ÿ FkATk2 � k �XT
1 . . . XT

K � ÿ A�FT
1 . . . FT

K � k2 �15�

the minimum of which is obtained by a PCA ofX. This minimum is equal to the sum of theJ7R
smallest eigenvalues of

P
k XT

k Xk. Upon defining the PARAFAC2fit value (often reported as fit
percentage, after multiplication by 100) as the proportion of the total sum of squares that is explained
by theR-dimensional model (i.e. the total minus the residual sum of squares), namely

FitPF2�R� � 1ÿ
XK

k�1

kXk ÿ PkFDkATk2=
XK

k�1

kXkk2 �16�

we find that inequality (14) immediately leads to

FitPF2�R� �
XR

r�1

�r

XK

k�1

XT
k Xk

 !
=
XK

k�1

kXkk2 �17�

where�r () denotes therth eigenvalue of the matrix in parentheses; the right-hand side gives the
proportion of variance explained by a PCA of the supermatrixX.

This upper bound for the direct PARAFAC2fit value is easily evaluated and gives an idea of the
severeness of the constraints imposed in the direct PARAFAC2 method. That is, if the direct
PARAFAC2 fit value is only slightly smaller than that for PCA ofX, then apparently the more
parsimonious PARAFAC2 representation is almost just as good as the PCA representation ofX.

5. TESTING THE DIRECT PARAFAC2 ALGORITHM

5.1. Simulation study I. Comparison of direct fitting algorithm with indirect fitting
algorithm

Kiers13 has developed an algorithm for least squares fitting of the original indirect PARAFAC2 model
(6), but found very slow convergence. Here we compare the presently proposed method with his
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method and investigate some further aspects of the performance of the new method by means of a
simulation study. For this purpose we have constructed 80 data sets according to the model

Xk � FkDkAT � PkFDkAT �18�

based on random matricesA, D1,…,DK (all diagonal) andP1,…,PK (all columnwise orthonormal) and
fixed matricesF, thus fitting the direct PARAFAC2 model exactly. The elements ofA were drawn
from the standard normal distribution. The elements ofD1,…,DK were drawn from the uniform [0, 1]
distribution and hence are non-negative; to avoid computational problems that might be caused by
multicollinearity of the columns of the matrixC containing the diagonal elements ofD1,…,DK in its
rows, we selected only cases where the congruences between columns ofC were smaller than 0⋅8.
The elements ofPk were obtained by first sampling from a standard normal distribution and next
applying a standard orthonormalization routine to the obtained matrix, thus leading to columnwise
orthonormal matricesP1,…,PK. The matrixF was taken such thatFTF equalled a matrix with unit
diagonal elements and all other elements equal to either 0⋅4 or 0⋅8; in fact,F was obtained from the
Cholesky decomposition of such matrices.

In the present simulation study, four variables were varied: the number of columns inXk was
chosen to beJ = 10 or 20; the number of data matrices per data set was chosen asK = 3 or 6; the
number of underlying factors was chosen to beR = 2 or 3; and the factor scores (in the columns of
PkF) were chosen to have unit sums of squares and to be mildly related (congruences of 0⋅4) or
strongly related (0⋅8); nk was always set equal toJ. These choices were fully crossed to give a
2� 2� 2� 2 design; in each cell, five replications were used, thus leading to the number of 80 data
sets mentioned above. The sizes of the data were chosen relatively small, because the indirect fitting
program was limited to relatively small sizes.

The above 80 data sets were analysed by the direct PARAFAC2 algorithm (programmed in
MATLAB (Mathworks Inc., Natick, MA)) as well as by the indirect PARAFAC2 algorithm13

(programmed in PASCAL) using the constraint thatF be positive semidefinite. In the comparison of
the two methods, for both algorithms the rational start was used. As stopping criterion for the
algorithm we used that successive function values should differ by less than 0⋅0001%; and the number
of iterations should not exceed 5000.

5.1.1. Retrieval of perfect fit

The first issue studied pertained to the quality of the fit. Since we are dealing with perfect data, the fit
could be 100% in all cases, but this theoretical maximum can be expected to beapproximatedonly by
means of the two methods studied here. For both analyses we computed the fit both according to the
direct criterion (as defined in (16)) and according to the indirect criterion (defined as (16) withXk

Table 1. Frequency of finding fit values below various percentages with direct and indirect fitting algorithma

applied to 80 data sets in Simulation study I

Direct fitting algorithm Indirect fitting algorithm

Threshold value for fit % Direct fit % Indirect fit % Direct fit % Indirect fit %

<99⋅99% 5 2 51 22
<99⋅90% 0 0 26 9
<99⋅00% 0 0 6 1

a All analyses were based on one rationally started run, using 1074% as convergence criterion.
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replaced byCk and withPkFDkA
T replaced byADkFDkA

T), even though the two methods aimed to
maximize only one of these. The frequencies of failures to find a perfect fit from the analyses of the 80
data sets are summarized in Table 1 for different ‘definitions’ of perfect fit. It can be seen at once that
the indirect fitting algorithm rather frequently failed to approximate the 100% fit value very closely,
whereas the direct fitting algorithm did so only rarely, and always led to fit percentages higher than
99⋅9%, in terms of both fit measures. These differences may have various causes. First of all, the
methods aim at the minimization of different loss functions, so for that reason alone one would expect

Figure 1. Numbers of iterations and (b) computation times required by direct algorithm (lightly shaded) and
indirect algorithm (heavily shaded), averaged over all analyses, as well as over analyses with same value of

independent variables in simulation study
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the direct fitting algorithm to perform best in terms of the direct fitting criterion, as is indeed the case,
and the indirect fitting algorithm to perform best in terms of the indirect fitting criterion, which is not
the case. The surprising second finding, that the direct fitting algorithm leads to better indirect fitting
criterion values than does the indirect fitting algorithm, implies that the indirect fitting algorithm
either led to suboptimal stationary points or was stopped prematurely. This suggests that convergence
criteria for the two methods were not comparable and that a more lenient convergence criterion
should be used for the indirect fitting procedure. However, this would make the indirect fitting method
less efficient, whereas it is doubtful if this would really help.

5.1.2. Efficiency of the algorithms

To study the efficiency of the algorithms, we compared numbers of iterations and computation times
(on the same Pentium 100 MHz computer) needed by the two methods for the analyses of the 80 data
sets. The numbers of iterations for both methods, averaged within all conditions, are displayed in
Figure 1(a); the computation times are similarly given in Figure 1(b). It can be seen that both the
number of iterations and the computation time are usually considerably larger for the indirect fitting
algorithm than for the direct fitting algorithm (the only exception being the number of iterations for
the K = 3 condition, which was larger for the direct fitting algorithm than for the indirect fitting
algorithm). By means of an ANOVA it was verified that the overall difference in numbers of
iterations required could be distinguished from chance fluctuations (p< 0⋅01), and so could the effect
of the number of slabs (p< 0⋅001) and the effect of strength of relations between factors (p< 0⋅05) on
this difference in numbers of iterations required; the number of variables did not have a significant
effect on the difference in numbers of iterations required as could be expected upon inspection of
Figure 1. Differences in computation times can be seen to increase rapidly with increasingJ, K andR
and with increasing strength of relations between factors. By means of an ANOVA it was verified that
the overall difference, as well as the effects of the design variables on these differences, could be
distinguished from chance fluctuations (p< 0⋅03 for the effect of strength of relations between
factors; for all other effects,p< 0⋅001). Given that the currently studied data sets are relatively small
compared with what can be found in actual practice, we may expect differences to become even more
pronounced in real practice.

It can be concluded that in the present comparison on relatively small data sets the direct fitting
algorithm not only fitted better than the indirect fitting algorithm, but also did so much more
efficiently. For larger data sets, differences in efficiency can only be expected to grow.

5.1.3. Sensitivity to hitting suboptimal solutions

Because the above results clearly point out that the direct fitting algorithm is to be preferred over the
indirect one, we stop our comparison of the two algorithms at this point. We do, however, continue
our study of the performance of the direct fitting algorithm. As can be inferred from Table 1, the direct
fitting algorithm led to fit values over 99⋅99% in 75 cases. In the other five cases (all associated with
K = 6, R = 3 and strongly related factors), fit values were all over 99⋅94%, which is still close to
perfect, but not as high as desired. In none of these analyses was the maximum of 5000 iterations
reached, so apparently in these cases the algorithm stopped because it had reached a suboptimal (e.g.
locally optimal) solution or entered a region of very small changes. A standard procedure for avoiding
such situations is to use several differently started runs of the algorithm. To see to what extent this is
useful and, more generally, how sensitive the algorithm is to hitting suboptimal solutions, we
reanalysed all data sets by nine additional randomly started runs of the algorithm. Furthermore, in
each run we used 1077% of the function value as a convergence criterion. The run leading to the
highest fit value was taken as the globally optimal solution. Now inall 80 cases the best run led to a fit
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exceeding 99⋅999%. As can be seen from Table 2, the rationally started runs rarely led to suboptimal
solutions, and randomly started runs led to suboptimal solutions more frequently. This happened
mainly whenK = 6. The frequency of finding suboptimal solutions was also related to the other
dependent variables (being highest for the highest values ofJ andR and for strongly related factors),
but not as strongly as to the value ofK. Thus it can be recommended to use more randomly started
runs asK increases. Fortunately, asK increases, the computation time of the algorithm decreases (at
least in our simulation study; see Figure 1(b)), so the use of many restarts is not problematic in such
situations.

5.2. Simulation study II. Testing the direct fitting algorithm on large data and on data with
noise

Simulation study I was limited to relatively small data sets so that the indirect fitting PARAFAC2
algorithm could be used on it. The PASCAL program for that algorithm did not allow for
considerably larger data sets. Moreover, extrapolating the results from the simulation study to larger
values ofJ or K clearly indicates that computation times for the indirect fitting program will soon
become prohibitive. Furthermore, Simulation study I was limited to noise-free data so that it could be
checked if the global optimum was indeed attained. In typical practical applications,nk andJ may be
quite large (> 100) andK of intermediate or small size. To study the performance of the direct fitting
algorithm for such data sets, 20 data sets were constructed according to (18), withnk = 100,k = 1, …,
K, J = 100,K = 6 or 24,R = 3 or 2, and using strongly related factors (cross-products of columns ofF
equal to 0⋅8); the conditions forK andR were fully crossed, and for each combination, five data sets
were constructed, leading to the total of 20 data sets. The choices forA andPk, k = 1, …, K, were
made as in Simulation study I; the elements ofD1,…,DK were now drawn from the uniform [0⋅1,1⋅1]
distribution so as to avoid near-zero values in these matrices, but no further precautions were taken.
To overcome the second limitation of Simulation study I, in addition to the 20 data sets constructed
above, 20 data sets of the same sizes were constructed, but with 25% noise added. This was done as
follows: to each matrixXk a matrixNk of the same size asXk was added, which contained elements
drawn randomly from the standard normal distribution, multiplied by 0⋅5kXkk/(Jnk)

1/2. As a
consequence, the expected sum of squares ofNk equals 0⋅25kXkk2, which clarifies why this is denoted
as 25% noise. All data sets were analysed by the direct fitting algorithm with one rationally started run
and 19 randomly started runs; the convergence criterion was again taken as 1077% of the function
value.

5.2.1. Noise-free data

The results for thenoise-freedata sets are summarized in Table 3. First of all, it can be seen that the fit

Table 2. Frequency of hitting suboptimal solutions (fit<99⋅99%) with direct fitting algorithma in Simulation
study I, broken down over conditionsK = 3 and 6

Best run
(80 in total)

Rationally started run
(80 in total)

All ten runs
(800 in total)

K = 3 0 0 25
K = 6 0 5 195
Overall 0 5 220

a The 80 data sets were analysed using ten runs (one started rationally and nine randomly), with 1077% as convergence
criterion.
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values were all very high, the lowest two being found whenK = 24 andR = 3. Furthermore, it can be
seen that the computation times for the present large data sets are by no means prohibitive, being only
a few times as high as for the much smaller data sets in Simulation study I. Specifically, it can be seen
that the number of iterations, and to a smaller extent also the computation time,decreasedas K
increased, whereas itincreasedasR increased. Finally, it can be seen that for the present large data
sets with strongly related factors the algorithm is quite prone to hitting suboptimal solutions, as
defined by the rather strong criterion employed here. On the other hand, relatively few of these
pertained to rationally started runs. Furthermore, out of the 20 runs used in each analysis, the best run
was suboptimal in only two cases, while the fit values obtained were still high enough for all practical
purposes. Thus we conclude that, using 20 differently started runs, among which is at least the
rationally started run, the algorithm performs reasonably well for large data sets.

5.2.2. Noisy data

For thenoisydata sets we do not expect fit values close to 100%. In fact, it was found that the best out
of 20 runs all gave fit percentages between 80% and 81%, which corresponds very well to the fact that
25% noise wasaddedto the noise-free data: the noise-free part has (100/125)�100% = 80% of the
total sum of squares. Results on the frequency of finding suboptimal solutions (defined as values
below 0⋅9999 times the highest fit value found in 20 runs) can be found in Table 4, where it can be
seen that the algorithm is even more prone to suboptimal solutions in the case of the analysis of noisy
data. As far as efficiency is concerned, it can be seen from Table 4 that the analyses of noisy data are a

Table 3. Results of Simulation study II: analyses of noise-free data sets with direct fitting algorithma

Overall K = 6, R = 2 K = 6, R = 3 K = 24,R = 2 K = 24,R = 3

Frequency of fit>99⋅9% 20 5 5 5 5
Frequency of fit>99⋅99% 19 5 5 5 3
Frequency of fit>99⋅9999% 18 5 5 5 3
Mean number of iterations per run 775 1188 1521 205 188
Mean computation time (s) per run 428 425 664 299 325
Overall occurrence of suboptimal

solutions
70% 32% 70% 85% 96%

Frequency of suboptimal solutions
with rational start

9 0 3 3 3

Frequency of suboptimal solutions
with best run

2 0 0 0 2

a The 20 noise-free data sets were analysed using 20 runs (one started rationally and 19 randomly), with 1077% as convergence
criterion.

Table 4. Results of Simulation study II: analyses of noisy data sets with direct fitting algorithma

Overall K = 6, R = 2 K = 6, R = 3 K = 24,R = 2 K = 24,R = 3

Overall occurrence of suboptimal
solutions

77% 45% 80% 87% 95%

Mean number of iterations per run 358 225 977 93 138
Mean computation time (s) per run 223 80 430 137 244

a The 20 noisy data sets were analysed using 20 runs (one started rationally and 19 randomly), with 1077% as convergence
criterion.
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bit less time-consuming than those of the noise-free data. The differences between the conditions
were comparable with those for the noise-free data. The main topic of interest in the analysis of noisy
data is, of course, whether the noise-free parts of the data are accurately recovered. In other words, the
question is to what extent the underlying parameters are recovered. Adequate recovery, however,
presupposes uniqueness of the model estimates, which will be discussed in Section 6.

6. UNIQUENESS OF THE DIRECT PARAFAC2 SOLUTION

6.1. Proving uniqueness under certain conditions

For the indirect PARAFAC2 model, some results have been obtained concerning uniqueness of the
parameter estimates.14,15Basically, these results imply that, under certain conditions (here denoted as
uniqueness conditions), PARAFAC2 estimates are ‘essentially unique’. An indirect PARAFAC2
solution (see (6)) is considered ‘essentially unique’ ifA, D1, …, DK andF are determined up to:

(1) joint permutations of the columns ofA and the columns and rows ofD1, …, DK andF
(2) arbitrary scalings/reflections of the columns ofA and of the supermatrix (D1,…,DK)T,

combined with the inverse scalings/reflections of the columns and rows ofF
(3) reflections of any subset of the matricesD1,…,DK.

For the case whereR = 2, it has been proven15 that, almost surely (i.e. with probability one in
practice), the indirect PARAFAC2 estimates are essentially unique under the following uniqueness
conditions.

1. K� 4.
2. F is positive definite.
3. A has full column rank.
4. At least four of the matricesD1, …, DK are non-singular and mutually not proportional.

For the variant of PARAFAC2 whereD1, …, DK are constrained to be non-negative, the first
condition should be replaced byK� 3. These conditions are ‘sharp’. As soon asK< 4,
(unconstrained) PARAFAC2 withR = 2 is no longer unique; likewise, as soon asK< 3, constrained
PARAFAC2 withR = 2 is not unique. For the case whereR> 2, it has been proven14 that essential
uniqueness for a general model incorporating PARAFAC2 holds under a set of uniqueness
conditions, among which is the condition thatK� R(R� 1)(R� 2)(R� 3)/24 (see Reference 14, pp.
145–146). This condition is sufficient for uniqueness in practice, but not necessary (see Reference 14,
p. 152), as follows at once from the fact that forR = 2 it specifiesK� 5 (rather thanK� 4). ForR� 3
it can be expected that the condition forK can be relaxed even more. For instance, forR = 3 it
specifiesK� 15, whereas in Reference 15 (p. 130) it is reported, on the basis of computer
simulations, thatK� 5 seems to suffice for uniqueness.

The results mentioned above have been derived specifically for the indirect PARAFAC2 model and
pertain only to the parameters therein. It will be shown now that these results are directly related to
those for the direct PARAFAC2 model.

Definition

The parameters of the direct PARAFAC2 model are called ‘essentially unique’ ifA, D1, …, DK and
F1, …, FK (except for those columns ofFk that correspond to zero diagonal values in the associated
matrix Dk) are uniquely determined up to

(1) joint permutations of the columns ofA and F1, …, FK and of the rows and columns of
D1,…,DK
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(2) arbitrary scalings/reflections of the columns ofA and of the supermatrix (D1,…,DK)T, provided
that the inverse scalings/reflections of these are applied to the supermatrix�FT

1 ; . . . ;FT
K�T

(3) reflections of any subset of the matricesD1,…,DK, provided that these are accompanied by
reflections of the corresponding subset of the matricesF1,…,FK.

Solutions satisfying the above definition are called ‘essentially unique’, because, as far as they are
not uniquely determined (e.g. in terms of ordering or scaling of factors), this has no implications for
the interpretation of the solution; even the possibility of total indeterminacy of certain columns ofFk

is inconsequential, because it pertains only to columns that, in the model, are weighted by zero (as
they occur in the productFkDk).

Theorem

The parameters of the direct PARAFAC2 model are essentially unique if and only if the parameters of
the indirect PARAFAC2 model are essentially unique, provided that the ‘loading’ matrix (A) has full
column rank, the ‘factor cross-product matrix’ (F) is positive semidefinite and at least one of the
matricesD1,…,DK is non-singular.

Proof

See Appendix.
As a consequence of the above Theorem, we know that the uniqueness conditions (which includeA

having full column rank and at least four of the matricesD1,…,DK being non-singular) specified for
the indirect PARAFAC2 model14,15also pertain to the direct PARAFAC2 model. Thus, for example,
for R = 2 the direct PARAFAC2 model can be expected to give unique solutions in practice as soon as
K� 4. Furthermore, forR = 3, uniqueness can be expected to hold ifK� 5. In fact, the latter
conjecture can now be tested by using the direct fitting PARAFAC2 algorithm, which has been seen
to be more well behaved than the indirect fitting PARAFAC2 algorithm. If such analyses applied to
simulated data suggest uniqueness of the direct PARAFAC2 model under certain conditions, our
Theorem implies that these should also lead to uniqueness in the indirect PARAFAC2 model. In the
next subsection the results of such simulations will be reported.

6.2. Checking uniqueness by means of simulation studies

The uniqueness results derived here imply that, in the simulation studies described in Section 5, we
should recover the original matricesA, D1,…,DK and F1,…,FK, up to columnwise permutations,
scalings and reflections, in the cases whereK = 6 andR = 2. For the other cases, whereK = 3 and
R = 2, recovery would depend on the signs of the elements of the matricesD1,…,DK. If these remain
non-negative, then full recovery of the parameter matrices is expected as well.15 For the cases with
R = 3, uniqueness is known to hold ifK� 15, but is expected to be obtained for much smaller values
of K as well. For all data sets in the simulation studies we checked to what extent the original
parameter matrices were recovered, by computing congruence coefficients (j; see equation (5))
among corresponding columns of the original and the obtained parameter matrices (after adequate
permutation and reflection). The parameter matrices wereA, C and Fsup, whereC contains the
diagonals of the matricesD1,…,DK as its rows, andFsup� �FT

1 . . . FT
K �T. Recovery up to scaling

implies that thesej values should be unity. In practice, however, recovery will not be perfect owing
to finite convergence, but also owing to the possibility that the uniqueness conditions are almost
violated (e.g. having some elements ofD1,…,DK very close to zero). Here we consider a matrix
recovered if the averagej value exceeds 0⋅99.

The results for the two simulation studies in Section 5 are reported in the first two panels of Table 5.

288 H. A. L. KIERS, J. M. G. TEN BERGE AND R. BRO

Copyright  1999 John Wiley & Sons, Ltd. J. Chemometrics, 13, 275–294 (1999)



Here recovery always pertains to the solution from the run that gave the highest fit value. It can be
seen that recovery occurred surprisingly often. Uniqueness, and hence recovery, is only known for the
20 cases withK = 6 andR = 2, whereas now recovery was found inall 40 cases withK = 6 (bothR = 2
and 3), disregarding the two cases with near-zero values in the matricesD1,…,DK that causedFsupnot
to be recovered. Thus the proven uniqueness was confirmed in all cases withK = 6 andR = 2, and,
more interestingly, uniqueness was also indicated for cases withK = 6 andR = 3, for which no proven
uniqueness results are available as yet; on the other hand, the results for the cases withK = 3 (both
R = 2 and 3) demonstrate clearly that, although sometimes the original parameter values are
recovered rather closely, the many exceptions imply that, for these cases, uniqueness certainly does
not hold.

The results from Simulation study II for thenoise-free datashow uniqueness not only in the cases
with R = 2 (as expected), but also in those withR = 3, disregarding the two cases for whichFsupwas
not recovered as accurately as desired (which, moreover, corresponded to the cases with suboptimal
fit percentages). For thenoisydata, perfect recovery could not be expected, but it can be seen from
Table 5 thatA andC wererecovered very well, and in the five cases whereFsupwas not recovered up
toj> 0⋅99, it did givej> 0⋅95. Thus, even with noisy data, the direct fitting PARAFAC2 algorithm
is able to adequately recover the underlying parameters.

The above surprising findings of recovery withR = 3 stimulated us to study possible uniqueness in
various other situations. It is known15 that, forR = 2, uniqueness is always found in practice ifK� 4.
The results reported above suggest that, for cases withR = 3, uniqueness holds at least ifK = 6.
However, it is possible that, forR� 3, uniqueness holds even for smallerK. On the basis of counting
equations and unknowns, and the assumption that uniqueness holds if the former exceeds or equals
the latter, we conjecture that uniqueness holds in practice for any value ofR, provided thatK� 4. We
tested this conjecture by means of Simulation study III, set up analogously to the earlier simulation
studies. Specifically, data sets were constructed according to (18), withnk = J = 10, and with
parameter matrices constructed in largely the same way as earlier, except that now cases where the
congruence coefficient between the diagonals of a pair ofDk matrices exceeded 0⋅9 were excluded so
as to avoid non-uniqueness due to near duplication ofDk matrices. Forty such data sets were
constructed withK = 4 andR = 3–6 (10 for each case). After analysing these data sets, it was checked
whether the original parameter matrices were recovered, which would be a confirmation of our
uniqueness conjecture. In addition, 40 data sets were constructed forK = 3 andR = 3–6 (again 10 for
each case); for these cases, uniqueness was expected not to hold, as would be confirmed by clear

Table 5. Frequency of recovery (j> 0⋅99) of A, C andFsup in each simulation study

A C Fsup

Study I (ten runs, convergence at 1077%)
K = 3 (R = 2,3; nk = J = 10,20); 40 sets 15 13 8
K = 6 (R = 2,3; nk = J = 10,20; 40 sets 40 40 38a

Study II (20 runs, convergence at 1077%)
Noise-free (K = 6,24;R = 2,3; nk = J = 100); 20 sets 20 20 18b

Noisy (K = 6,24;R = 2,3; nk = J = 100); 20 sets 20 20 15
Study III (20 runs, convergence at 1077%)

K = 4 (R = 2,3,4,5,6;nk = J = 10); 40 sets 40 40 40
K = 3 (R = 2,3,4,5,6;nk = J = 10); 40 sets 9 15 10

a In the two failing cases, values inDk were close to zero.
b In the two failing cases, j values were still large (> 0⋅96).
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failures of recovery of the original parameter matrices. All data sets were analysed by the direct fitting
algorithm, with 1077% as convergence criterion, and using 20 differently started runs. The results, in
the bottom panel of Table 5, clearly confirmed our conjecture. In the 40 cases withK = 4, A, C and
Fsupwere recoveredalways. For the 40 cases withK = 3, on the other hand, the original parameters
were recovered infrequently. In all cases the fit value exceeded 99⋅99%, so the failures of recovery
cannot be attributed to failure in fit. In fact, in cases where the parameter matrices were not recovered,
the averagej values frequently fell below 0⋅8. Such low values were encountered even in cases
where the fit value exceeded 99⋅999999%, which takes away all doubt about whether the results really
pertain to non-uniqueness rather than to inaccuracies. Thus we conclude that our simulations sustain
the conjecture that, in practice, the direct PARAFAC2 model gives unique solutions ifK� 4
(irrespective ofR), whereas uniqueness is not guaranteed ifK = 3 (irrespective ofR). Furthermore, if
the direct PARAFAC2 model is unique under such conditions, then so is the indirect PARAFAC2
model, so our conjecture supplements proven results15 with the empirically sustained conjecture that
K� 4 suffices for uniqueness in practice.

7. MODIFICATION OF DIRECT PARAFAC2 ALGORITHM

In some applications it is useful to constrain some of the parameter sets to have, for instance, non-
negative values only. Because, as far as the parameter matricesF, Dk andA are concerned, the direct
PARAFAC2 algorithm uses steps from a PARAFAC1 algorithm, these parameter matrices can be
constrained in exactly the same way as they can be constrained in PARAFAC1 algorithms. Thus it is
straightforward to constrain, for instance, the matrixA to non-negativity, which is not at all
straightforward in the indirect PARAFAC2 algorithm. Non-negativity constraints on the matricesDk

can be implemented straightforwardly as well. It should be noted, however, that the use of these
constraints may frequently lead to zero values in some of the matricesD1,…,DK and hence violate one
of the uniqueness assumptions. ForR = 2 this has been shown not to violate uniqueness (Reference
15, pp. 130–131) as long as at least three mutually non-proportional matricesDk are obtained. For
R> 2 no such results are available as yet, so it must be kept in mind that uniqueness may no longer
hold if too few non-singular matricesDk remain. Unfortunately, non-negativity constraints on the
matricesFk cannot be imposed in a straightforward manner, because it involves constraining the
product of two matrices, one of which is itself constrained to be columnwise orthonormal.

Another modification of the PARAFAC2 algorithm is needed for the situation where data are
missing. With the current direct algorithm this may be handled by straightforward iterative
imputation of missing data after each full cycle of updates.

As a second extension, complex data structures consisting of sets of three- or higher-way arrays can
easily be handled by the present PARAFAC2 approach (also see Reference 16). The main
modification consists of replacing the PARAFAC1 updates by more generalN-way PARAFAC
updates. To explain this in more detail, below we consider the case with asetof three-wayarrays.

Let a set ofK three-way arraysXk of ordersnk� J1� J2, k = 1,…,K, be given and let each of these
be modelled by a PARAFAC1 model with parameter matricesGk, A and B. Defining Xk as the
nk� J1J2 supermatrix with frontal planes ofXk next to each other, then we can describe the
PARAFAC1 model forXk as3

Xk � Gk�B� A�T � Ek �19�

k = 1,…,K, where� denotes the columnwise Kronecker product (also denoted as the Khatri–Rao
product17). Furthermore, let the models be related to each other by the constraint thatGk = FkDk, with
Dk diagonal andFT

k Fk invariant overk, k = 1,…,K. Then we have a direct four-way generalization of
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the original PARAFAC2 model that can be written as

Xk � PkFDk�B� A�T � Ek �20�
This model can be fitted in the least squares sense by using an alternating least squares algorithm,

wherePk is updated by maximizing

f ��Pk� � tr FDk�B� A�TXT
k Pk �21�

k = 1,…,K, in analogy to (9), i.e. by using the SVDFDk�B� A�TXT
k � UkDkVT

k and updatingPk as
VkUT

k . To update the other parameter matrices, we have, in analogy to (11), to minimize (or at least
decrease) the function

g��F,A,B,D1; . . . ;DK� �
XK

k�1

kPT
k Xk ÿ FDk�B� A�Tk2 � c �22�

overF, A, B andD1,…,DK. This minimization problem can be recognized as a four-way PARAFAC
problem for the four-way array consisting of the elements of the supermatricesPT

k Xk, k = 1,…,K.
Algorithms for the four-way PARAFAC problem can be and have been devised in complete analogy
to the three-way PARAFAC algorithm.3 Thus a first generalization of the PARAFAC2 model has
been described. Further generalizations involving sets ofN-way arrays can be made straightforwardly
along the same lines. The algorithms will consist of iteratively updatingPk on the one hand and using
a full cycle of an (N�1)-way PARAFAC1 algorithm on the other hand.

8. DISCUSSION

The direct fitting algorithm for the PARAFAC2 model has been demonstrated to have various
advantages over the indirect fitting algorithm. The direct algorithm is more efficient, yields
parameters for the first-mode (row) units, offers a possibility for handling missing data by iterative
data imputation, allows for easy implementation of various constraints on the parameter matrices, fits
the data according to a more sensible loss function and is straightforwardly generalized to the analysis
of higher-way data structures. At first sight a disadvantage seems to be that the direct fitting approach
has to deal with an often large first mode, but it has been demonstrated that this can be circumvented
effectively.

In the simulation study for comparing direct PARAFAC2 and indirect PARAFAC2, mainly small
data arrays were used. The differences in efficiency have been seen to increase as the data size
increases. Furthermore, it has been seen that the direct PARAFAC2 algorithm performs reasonably
well on large data sets with strongly related factors, and that computation time increases only slowly
with increasing data size. The performance of the direct PARAFAC2 algorithm on large data arrays is
further illustrated in the application in Part II.11 Furthermore, the direct PARAFAC2 solutions have
been found to recover underlying structures adequately in the cases where uniqueness was proven to
hold, provided that the global optimum is indeed approximated sufficiently closely. The algorithm
also recovered underlying structures in many cases where uniqueness has not been proven; in fact,
simulations suggest that the model gives unique solutions as soon asK� 4, for arbitrary values ofR.

In the simulation study we also inspected the sensitivity of the direct PARAFAC2 algorithm to
hitting suboptimal solutions. It turned out that for the small data sets the rational start led to
suboptimal solutions only rarely, but suboptimal solutions were found more frequently as the data
size increased. To be on the safe side, it can be recommended to use several randomly started

DIRECT FITTING ALGORITHM FOR THE PARAFAC2 MODEL 291

Copyright  1999 John Wiley & Sons, Ltd. J. Chemometrics, 13, 275–294 (1999)



additional runs of the algorithm, especially in conditions where data sets consist of large numbers of
(large) data matrices with strongly related factors.

MATLAB M-files for direct fitting of the PARAFAC2 model are available from http://
newton.foodsci.kvl.dk/srccode.html.
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APPENDIX

This appendix gives the proof of the Theorem on equivalence of essential uniqueness for the direct
and indirect PARAFAC2 models. The ‘if and only if’ parts will be proven subsequently under (a) and
(b).

(a) Proof that essential uniqueness of the indirect PARAFAC2 model implies essential
uniqueness of the direct PARAFAC2 model

We assume that the indirect PARAFAC2 model gives essentially unique parameter estimates.
Suppose the two direct PARAFAC2 solutions [A, D1,…,DK, F1,…,FK] and [B, E1,…,EK, G1,…,GK],
with FT

k Fk � F andGT
k Gk � G, k = 1,…, K, give the same estimates forX1,…,XK. Then we have

FkDkAT � GkEkBT �23�

k = 1,…, K. It follows from (23) that

ADkFDkAT � BEkGEkBT �24�

which describes the indirect PARAFAC2 model on both sides of the equality sign. Essential
uniqueness of the parameters of the indirect PARAFAC2 model implies that

B � AS1P �25a�

Ek � �kPTDkS2P; k � 1; . . . ;K �25b�

and

G � PTSÿ1
2 Sÿ1

1 FSÿ1
1 Sÿ1

2 P �25c�

whereP is a permutation matrix,S1 and S2 are diagonal (scaling/reflection) matrices and�k is a
variable with value 1 or71, k = 1,…,K. Combining (23) with (25a),(b)), we obtain

FkDkAT � Gk�kPTDkS2PPTS1AT � �kGkPTS2S1DkAT �26�
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Using the fact thatA has full column rank (see the third condition of the Theorem) and assuming
that Dk is non-singular, we find, upon postmultiplying both sides by the expressionA�ATA�ÿ1Dÿ1

k ,
that

Gk � �kFkSÿ1
1 Sÿ1

2 P �27�

k = 1,…, K, which demonstrates essential uniqueness of the direct PARAFAC2 solution under the
assumption thatDk is non-singular. WhenDk is singular, (27) still holds for the columns ofFk

corresponding to the non-zero diagonal elements ofDk, and thus essential uniqueness is again
obtained.

(b) Proof that essential uniqueness of the direct PARAFAC2 model implies essential
uniqueness of the indirect PARAFAC2 model

We assume that the direct PARAFAC2 model gives essentially unique parameter estimates. Suppose
the two indirect PARAFAC2 solutions [A, D1,…,DK, F] and [B, E1,…,EK, G] give the same
estimates forXT

1X1; . . . ;XT
KXK . Then we have

ADkFDkAT � BEkGEkBT �28�

k = 1,…, K, from which it follows that

F1=2DkAT � NkG1=2EkBT �29�

for certain columnwise orthonormal matricesNk, k = 1,…,K. Essential uniqueness of the parameters
of the direct PARAFAC2 model implies that

B � AS1P �30a�

Ek � �kPTDkS2P; k � 1; . . . ;K �30b�

and

NkG1=2 � �kF1=2Sÿ1
1 Sÿ1

2 P for each value ofk for which Dk is non-singular �30c�

whereP,S1, S2 and�k are defined as above. Taking cross-products of the columns of both sides of
(30c), we find

G � �k
2PTSÿ1

2 Sÿ1
1 FSÿ1

1 Sÿ1
2 P � PTSÿ1

2 Sÿ1
1 FSÿ1

1 Sÿ1
2 P �31�

which, together with (30a),(b), establishes essential uniqueness of the parameters of the indirect
PARAFAC solution.
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