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Three-way component analysis techniques are designed for descriptive analysis of
3-way data, for example, when data are collected on individuals, in different set-
tings, and on different measures. Such techniques summarize all information in a
3-way data set by summarizing, for each way of the 3-way data set, the associated
entities through a few components and describing the relations between these
components. In this article, 3-mode principal components analysis is described at
an elementary level. Guidance is given concerning the choices to be made in each
step of the process of analyzing 3-way data by this technique. The complete process
is illustrated with a detailed description of the analysis of an empirical 3-way

data set.

Three-way data refer to data that can be arranged in
a three-dimensional array. Such data can emerge in
many different contexts. Examples include data per-
taining to measurements on various anxiety scales of
a number of individuals in various situations; data on
the strength of various symptoms observed in various
patients by a number of clinicians; data on the impor-
tance of various job requirements for various jobs,
according to different job analysts; and positron-
emission tomography scan data representing different
areas of the brain, measured for various individuals
performing a number of different mental tasks. The
three sets of entities associated with such three-way
data sets are called the three modes of the array.

One may be tempted to analyze three-way data ei-
ther after aggregating over one of the three ways or by
analyzing all two-way data sets contained in the three-
way data set separately. However, it should be noted
that such approaches do not offer an explicit descrip-
tion of the three-way interaction in the data; hence,
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they may lead to conclusions that are incomplete at
best.

The strength of three-way component analysis tech-
niques (described further in this article) is that they
summarize all information in a large three-way data
set (i.e., all main effects and all interactions together)
and that they do so in an efficient way. Specifically,
three-way methods summarize the entities of each
mode through a few components and describe the
relations between these components. Thus, in the case
of scores of individuals on response variables, mea-
sured in different situations, the (most salient) rela-
tions among individuals, response variables, and situ-
ations are captured by the relations among
components summarizing the individuals, response
variables, and situations. This is particularly useful in
the presence of three-way interaction: Without the use
of summarizing components, a full description of a
three-way interaction may require as many terms as
there are data points, which is not feasible unless the
three-way data set is very small.

Another approach is to consider three-way data as
multilevel data (with, e.g., responses being nested
within persons and situations and with crossing of the
latter two). Furthermore, if the primary focus of the
research is on detecting the relationship between the
three-way data and external predictor variables, mul-
tilevel analysis (e.g., Goldstein, 1986) may be called
for. However, if the primary focus is on detecting the
internal structure of the three-way data, methods of
three-way analysis are most appropriate.
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In particular, three-way component analysis tech-
niques are usetul for the exploratory analysis of three-
way data in which the modes of the data set (or at least
some of them) are relatively large and can be sum-
marized through components. Various techniques of
this kind have been proposed (for overviews see, e.g.,
Bro, 1998; Kroonenberg, 1983; Law, Snyder, Hattie,
& McDonald, 1984). The most prominent instances
are parallel factor analysis (PARAFAC), proposed by
Harshman (1970) and Carroll and Chang (1970), and
three-mode factor analysis, proposed by Tucker
(1963, 1966) and further elaborated by Kroonenberg
and De Leeuw (1980), who renamed the method
three-mode principal components analysis (here ab-
breviated as 3MPCA). More recently, the latter
method has also been called Tucker3 analysis (e.g.,
see Kiers, 2000), but we do not use that name in the
present article. Other three-way techniques include
those proposed by Bentler and Lee (1978) and
McArdle and Cattell (1994). These three-way factor
analysis techniques mainly differ from three-way
component-analysis techniques in that they are based
on distributional assumptions (which is particularly
useful in confirmatory analysis) and in that they are
modeling covariances rather than the actual data.
Then, due to the aggregation over the entities in one
mode (usually the participants), information on the
entities of that mode is lost (e.g., no component ma-
trix for the participants is given). For a fully explor-
atory analysis of three-way data, without distribu-
tional assumptions, three-way component-analysis
techniques appear to be more adequately suited.

Three-way component techniques have not yet
been implemented in the major statistical packages,
but special-purpose programs for them are available.
In these programs (e.g., 3WAYPACK and Tucker3.m;
see the Three-Way Component Analysis Techniques
section), several choices have to be taken that may
require some guidance: for example, the choices of
how the data are to be preprocessed (e.g., is standard-
ization called for, and if so, over which of the three
modes), how many components are to be used, and
which simple structure rotations are to be used. Such
problems are analogous to those in principal-
components analysis (PCA) but are more complex in
the three-way situation.

It is the purpose of the present article to provide
some guidance to actually performing a three-way
component analysis. We focus on the most versatile
method, 3MPCA, and only briefly discuss PARAFAC.
Then, the different choices to be made in a three-way

analysis are discussed step by step. Finally, the whole
process is illustrated with a detailed description of the
analysis of an empirical three-way data set with scores
of 140 individuals on [4 response scales filled out for
11 different situations, as obtained with a situation—
response (S-R) inventory of anxiousness.

Three-Way Component Analysis Techniques

In this section, 3MPCA is described at an elemen-
tary level and PARAFAC is discussed briefly. For
readers favoring matrix algebraic descriptions, these
are given in the text as well, in such a way that they
can be ignored by readers not adept at matrix algebra.
Because 3MPCA is a generalization of PCA (for the
analysis of two-way data), we start with a description
of that technique.

PCA

PCA is a popular technique that is often used for
the exploratory analysis of a set of variables. The aim
of PCA is to find a limited number of components,
which are unobserved, new variables that are con-
structed from the observed variables in such a way
that they capture most of the information contained
in the observed variables. Given an / x J data matrix
X with standardized scores of I individuals on J
variables, PCA comes down to finding an I x Q
component scores matrix A (with elements a,, i=1,...,
Lg=1.,0andaJ x Q loadmg matrix B (with
elements qu, = L., J, g = 1,., Q), where the
number of components, Q, is smaller than / and J
(usually much smaller), the component scores are the
scores of the I individuals on Q components, and the
loadings are the weights applied to the scores on the
components so that the weighted sum of component
scores optimally reconstructs the standard scores on
the original variables. Specifically, PCA finds com-
ponent scores and loadings such that the standard
score of individual i on variable j, x;, is approximated
optimally by

zal‘i J‘I

for all combinations (i, j). Technically, this is
achieved by minimizing the sum of squared residuals
for this approximation, that is, by minimizing

ii( S ab H)z (1)

=1 j=1 g=1
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over all possible values for the component scores and
the loadings. In matrix algebra, Expression 1 is writ-
ten as |X — AB'|>, where |.|* denotes the sum of
squares of the elements of the matrix at hand.

The above description of PCA is actually Pearson’s
(1901) description of PCA as a technique for finding
those components that explain the maximum amount
of variance in the data, where the total variance is 1//
times the sum of squares of the elements of X, and the
explained variance is 1/7 times the sum of squares of
its approximations (the elements of AB’). Alterna-
tively, PCA may be defined as finding a J x Q loading
matrix B such that the correlation between the vari-
ables j and j', is approximated optimally by

Q
2 qubj'q
g=1

for all combinations (j, j'),j = 1,..,Jj = 1,...,
J (which is achieved by minimizing |R - BB'|%). Why
the latter method, denoted as Rao PCA, happens to
give a solution to Pearson PCA as well is explained,
for instance, by Ten Berge and Kiers (1996).

One solution for the loadings in B in Expression 1
is obtained by taking the first Q eigenvectors of the
correlation matrix R as the columns of B; the associ-
ated Q eigenvalues then give the componentwise-
explained variances, and the component scores can be
obtained from the loadings straightforwardly (in ma-
trix algebra: A = XB(B’B)™!). These components,
called the principal components, have the additional
property that they maximize the explained variance
sequentially as well as jointly: The first component
explains the maximum amount of variance that can be
explained by a single component, the first two give
maximal explained variance using two components,
and so on. This, however, is not the only solution that
minimizes Expression 1 and maximizes the total ex-
plained variance. In fact, if we replace each compo-
nent (i.e., each column in A) by a differently weighted
sum of all components, the new components together
explain the same amount of variance as do the original
components, provided that the loadings in B are ap-
propriately transformed. Such transformation proce-
dures are called rotations, because when one is plot-
ting the variables using the loadings as coordinates
with respect to the components (used as axes), such
recombinations come down to (possibly oblique) ro-
tations of the axes. In matrix algebra, such rotations
are described by a rotation matrix T, and A is replaced
by A = AT; then, the loading matrix B is replaced by

Tijs

B = BT’ 50 as to ensure that AB’ = AB’, which
implies that the same amount of variance is indeed
explained by the original as by the rotated compo-
nents. Such components are denoted as rotated prin-
cipal components, but, as they have the same explana-
tory power as “unrotated principal components,” this
distinction is of little practical value.

To interpret the PCA solution, researchers often try
to find labels expressing the contents of the compo-
nents. As the components are not given a priori, this
can only be done indirectly, usually by means of the
loadings of the variables on the components. If a
group of variables has high loadings on the same com-
ponent, this indicates that the component at hand
mainly pertains to what this group of variables has in
common. For instance, if variables such as score on
arithmetic test, score on calculus test, and score on
algebra test have high loadings on one particular com-
ponent, then this component may be labeled “math-
ematical skill.” Obviously, such labels are subjective
and thus debatable. The interpretation will, however,
become less debatable as variables are more clearly
related to one and only one component. Therefore, it
is useful to have simple loadings, that is, loadings that
are either high or low (in absolute value) and not in
between, and preferably with only one high loading
per measured variable (i.e., per row of the loading
matrix). In PCA, such a simple structure can be aimed
at by using the “rotational freedom” of PCA solutions:
Replacing component scores and loadings by rotated
versions thereof does not affect the fit, as mentioned
above. In practice, the rotational freedom is therefore
often used to rotate components such that the loadings
become as simple as possible. In this way, PCA fol-
lowed by simple structure rotation is an important tool
for finding groups of variables that measure the same
concept, and it is often used as a first step in test
construction.

3MPCA

PCA is meant for the analysis of two-way data x;;
pertaining to scores of individuals on variables. PCA
yields matrices A and B that summarize the individu-
als and the variables, respectively. 3MPCA is meant
for the analysis of three-way data x; (possibly
preprocessed) that give the score of individual i on
variable j at measurement occasion k (i = 1, ..., [,
i=1...0 k=1,..,K).In3MPCA, as in PCA,
matrices A and B are found that summarize the indi-
viduals and the variables, respectively, but in addition
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a matrix C is found that summarizes the occasions.
Usually, in 3MPCA these matrices are all referred to
by the general term component matrices, and a dis-
tinction between component scores and loadings is
not made.

In PCA, each component that summarizes the in-
dividuals is uniquely related to a component that sum-
marizes the variables. In BMPCA, components that
summarize the entities in the different modes are not
associated uniquely with components for the other
modes. Furthermore, the numbers of components used
for summarizing the entities of the different modes
need not be the same. Thus, in 3MPCA we have an /
x P component matrix A, a J x Q component matrix
B, and a K x R component matrix C, where P, Q, and
R denote the numbers of components used to summa-
rize the entities in the three respective modes (with P
<1, @ <J, R <K). In addition, to relate all components
of all modes to each other, 3MPCA employs a so-
called core array G (of order P x O x R). The function
of this core array is to give a summary description of
the three-way information in the full data table, in
terms of the summarizing components for the three
different modes. Thus, the core can be considered a
strongly reduced version of the full data array, cap-
turing up to three-way interactions between all differ-
ent modes, but in terms of summarizing entities for all
of the modes. The full 3MPCA model reads as fol-
lows:

P Q0 B
Xije S 2 2 E aipquckrgpqr’

=1 ¢g=1 r=l

i=1,...Lj=1,...,J k=1,...,K, )

where = refers to optimal approximation in, for in-
stance, the least squares sense; a;p qu, and ¢, denote
the elements of A, B, and C, respectively; and g,,,

denotes the elements of core array G. The core effi-

Table 1

ciently describes the main relations in the data, and
the component matrices A, B, and C describe how the
particular individuals, variables, and occasions relate
to their associated components.

To illustrate the 3MPCA model, Table 1 gives a
fictitious data set of six individuals with scores on five
response variables (indicating to what extent each in-
dividual displays an emotional, sensitive, caring, thor-
ough, or accurate behavior) for four different situa-
tions. The data were chosen such that they correspond
exactly to Expression 2 with P = Q = R = 2. The
corresponding matrices A, B, and C and the core array
G are given in Tables 2-5, respectively.

The interpretation of the person components, re-
sponse variable components, and situation compo-
nents is shown in the headings of the corresponding
columns in Tables 2—4. The first person component is
Sfemininity, to which all females are related, although
one (Edna) only partly; the second person component
is masculinity, to which all males are related strongly
and to which, in addition, Edna is related partly. Ap-
parently Edna is an androgynous person. The re-
sponse variable components have been labeled emo-
tionality for the component on which emotional and
sensitive depend completely and conscientiousness
for the component on which thorough and accurate
depend completely. Caring apparently has features of
both components, aithough a bit more of emotionality
than of conscientiousness. The situation components
were labeled performance situations and social situ-
ations. It can be seen that doing an exam is a pure
performance situation, whereas giving a speech im-
plies performance to a large extent but also implies
social aspects. A family picnic on the other hand is
entirely social, whereas meeting a new date is to a
large extent social but also has performance aspects. It
should be noted that, in contrast to what is usually the
case in PCA, component and core values in 3MPCA

Fictitious Data Set of Scores of Six Individuals on Five Response Variables for Four Situations

Doing an exam

Giving a speech

Family picnic Meeting a new date

Individual E S C€C T A E S C T

A E S C T A E S C T A

Anne 00 00 12 30 30 06 06 13 24
Bert 00 00 08 20 20 02 02 08 1.8
Claus 00 00 08 20 20 02 02 08 18
Dolly 00 00 12 30 30 06 06 13 24
Edna 00 00 10 25 25 04 04 11 21

Frances 00 00 12 30 30 06 06 13 24

24 30 30 1.8 00 00 36 36 25 09 09
i8 1.0 10 10 10 10 12 12 14 18 138
I8 10 10 1.0 1.0 10 12 12 14 18 18
24 30 30 18 00 00 36 36 25 09 09
21 20 20 14 05 05 24 24 20 13 13
24 30 30 18 00 00 36 36 25 09 09

Note.

E = emotional; S = sensitive; C = caring; T = thorough; A = accurate.
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Table 2
Component Values of Individuals (A), Resulting From a
3MPCA That Describes the Data in Table I Perfectly

A: Individual Femininity Masculinity
Anne 1.0 0.0
Bert 0.0 1.0
Claus 0.0 1.0
Dolly 1.0 0.0
Edna 0.5 0.5
Frances 1.0 0.0

Table 3

Component Values of Response Variables (B) Resulting
From a 3MPCA That Describes the Data in Table

1 Perfectly

B: Response Emotionality Conscientiousness
Emotional 1.0 0.0
Sensitive 1.0 0.0
Caring 0.6 0.4
Thorough 0.0 1.0
Accurate 0.0 1.0

Note. The components have been labeled by the interpretations
given to them on the basis of the component values. 3MPCA =
three-mode principal components analysis.

can exceed 1. In fact, in PCA, loadings do not exceed
1 or —1 because of the common choice to analyze
standardized data. In 3MPCA, different procedures of
preprocessing are used, as is explained in the Prepro-
cessing the Data subsection under The Three-Way
Analysis Process.

The core can be used to concisely describe the main
information in the data, as follows: In performance
situations, feminine and masculine persons behave
equally emotionally, whereas feminine persons be-
have somewhat more conscientiously than masculine
persons; in social situations, feminine persons behave
considerably more emotionally than masculine per-
sons, whereas in these cases masculine persons be-
have more conscientiously than feminine persons.
This description can be checked with the data, in
which it can be seen, for instance, that the feminine
individuals indeed tend to respond particularly emo-
tionally to social situations whereas masculine indi-
viduals respond relatively conscientiously to social
situations. In fact, the core thus gives a summary of all
interactions among the three sources of variation pres-
ent in the three-way data under study, that is, the
individuals, behaviors, and situations.

To more completely understand the model, it seems
useful to follow how the actual scores are created
from the component matrices and the core. For in-
stance, the score of Claus (who is entirely masculine)
on sensitive (which is pure emotionality) when at a
family picnic (which is an entirely social situation)
can be read directly from the core (masculinity, emo-
tionality, social situations), and is 1.0. Similarly, the
score of Anne (who is entirely feminine) on sensitive
{which is pure emotionality) when meeting a new date
{which is a mixture of 0.3 x performance situation and
1.2 x social situation) is 0.3 x 0.0 (score of feminine
persons on emotionality in performance situations) +

Note. The components have been labeled by the interpretations
given to them on the basis of the component values. 3MPCA =
three-mode principal components analysis.

1.2 x 3.0 (score of feminine persons on emotionality
in social situations) = 3.6. All scores can be recon-
structed in this way (up to rounding error). These
reconstructions illustrate the adequacy of the SMPCA
description, as well as the usefulness of the core to
capture the most important information in the data in
a conceptually convenient form.

Analogous to what is the case in two-way PCA, in
3MPCA the matrices A, B, and C can be rotated
orthogonally or obliquely. In PCA, one usually rotates
B to simple structure and compensates for this by a
related transformation of A. In 3MPCA, all matrices
A, B, and C can be rotated independently, provided
that such rotations are compensated for in the core.
This can be exploited by a searching simple structure
not only in B but also, for instance, in C.

One may note, however, that in practice it will not
always be possible to find components that meet the
principle of simple structure. For the individuals, es-
pecially, one may often find several continuous di-
mensions on which a person may jointly take high
values, rather than clearly discrete, nonoverlapping
clusters. Even then, however, if one does find useful
and well-interpretable components for the response

Table 4
Component Values of Situations (C) Resulting From a
3MPCA That Describes the Data in Table 1 Perfectly

Performance Social
C: Situation situations situations
Doing an exam 1.0 0.0
Giving a speech 0.8 0.2
Family picnic 0.0 1.0
Meeting a new date 0.3 1.2

Note. The components have been labeled by the interpretations
given to them on the basis of the component values. 3SMPCA =
three-mode principal components analysis.
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Table 5

Core (G) Resulting From a 3MPCA Thar Describes the Data in Table 1 Perfectly

Performance situations

Social situations

G: Core Emotionality Conscientiousness Emotionality Conscientiousness
Femininity 0.0 3.0 3.0 0.0
Masculinity 0.0 2.0 1.0 1.0

Note. The components have been labeled by the interpretations given to them on the basis of the component values. SMPCA =

principal components analysis.

variables and the situations, 3MPCA can already lead
to interpretable results that give insight in the full
three-way data set, as will be illustrated in the section
Three-Way Analysis of S-R Inventory Data.

The 3MPCA model is usually fitted in the least
squares sense, that is, by minimizing

>SS <x 550> agh ,qck,gpqr)z 3)

=l =1 k=1 p=1 ¢=1 r=1

over A, B, C, and G. The fit is calculated as the sum
of squares of the approximations to the data—i.c., the
sum of squares of the values

o R
Xije = 2 2 2 ipbjgChr&pqr-

p=1 g=1 r=1

This sum of squares is often divided by the total sum
of squares so as to obtain a fit proportion

ii

i=1 j=I

"IMN "iMw

or fit percentage on multiplying the fit proportion by
100. For reasons of simplicity, A, B, and C are usually
constrained to be orthogonal, which can be done with-
out loss of generality as it does not affect the optimal
fit 10 be attained. A least squares algorithm for mini-
mizing Expression 3, and hence maximizing the fit,
has been proposed by Kroonenberg and De Leeuw
(1980). A variant of this algorithm is implemented in
the program called Tucker3.m, which runs under
MATLAB (MATLAB, 1994) and which is freely
available from Henk A.L. Kiers; for commercial soft-
ware with more refined output possibilities, we refer
to BWAYPACK (see http://www.fsw.leidenuniv.nl/
~kroonenby/).

three-mode

PARAFAC

In 3MPCA, the core can describe any form of in-
teraction between summarized individuals, variables,
and occasions. PARAFAC (Carroli & Chang, 1970;
Harshman, 1970) can be easily explained as a con-
strained variant of 3MPCA, in which each person
component is related to only one variable component
and only one situation component. Specifically,
PARAFAC can be seen as 3MPCA with the core
array fixed to a unit superdiagonal array, that is, an
array with g, = 1 ifp = g = r,and g,,, = 0
otherwise. Thus, in PARAFAC all cross-relations be-
tween components are eliminated, which makes the
model considerably more restrictive than 3MPCA. If
this restriction is tenable, however, it does have an
important implication: The PARAFAC model has a
unique solution, and the components found are to be
interpreted without recourse to rotations.

The Three-Way Analysis Process

In the following section seven main steps are dis-
cussed: (a) three-way analysis of variance (ANOVA),
to assess whether a three-way analysis is indicated,;
(b) preprocessing the data; (c) balancing fit and par-
simony to choose the numbers of components; (d) a
detailed study of fit and residuals; (e) choosing a
(simple structure) rotation; (f) studying the stability of
a solution; and (g) interpreting and reporting the so-
lution. All these steps have been implemented in the
program Tucker3.m, guiding the user through each
step.

The main steps of a three-way analysis are given in
the flowchart in Figure 1. Standard preliminary steps,
like inspecting frequency distributions, searching and
eliminating outliers, and dealing with missing data,
are not discussed here, but we emphasize that in prac-
tical data analyses such preliminary steps should not
be ignored and may be most revealing.
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ANOVA: Three-way
analysis needed?
[ Preprocessing :‘
v
Balancing fit and parsimony
(by means of a series of SMPCAs)
vy
Choose numbers of components }4
v
[ Preliminary stability and interpretability check ]
Detailed study of fit and residuals J
T ‘
; I Optimal simple structure rotation
[ Interpreting and reporting the solution j
Figure 1. Flowchart for the three-way analysis process. Arrows pointing upward indicate the iterative nature of the analysis

process. The dashed arrow indicates that this path will sometimes, but not always, be taken. ANOVA = analysis of variance;

3MPCA = three-mode principal components analysis.

Three-Way ANOVA

As has been mentioned, three-way analysis is indi-
cated in cases in which the data contain a nonnegli-
gible three-way interaction across the three data
modes. For example, if all individuals showed
roughly the same response patterns with respect to all
variables and situations, one could simply take the
averages across individuals and analyze the pattern of
average responses in all situations with respect to all
variables. In general, to inspect whether two-way
analysis on data aggregated over one mode would
suffice, it is recommended to carry out a simple fixed-
effects three-way ANOVA on the three-way data

table (using the three different modes as factors), to
assess the effect size of all variance components (in
which the total variance to be explained is the vari-
ance of all data elements with respect to the grand
mean). If virtually all information is captured by main
effects and at most a single two-way interaction (e.g.,
between the B and C mode), there is little reason to
use a three-way analysis and it suffices to report the
main effects and study the interaction (possibly using
a two-way PCA on data averaged over the participants
[A mode]). However, if two or three substantial two-
way interactions are present, one would need two or
three different two-way PCAs, whereas a single three-
way analysis could be used to represent all these in-
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teractions. Furthermore, if substantial three-way inter-
actions are present, these can only be captured by
three-way analysis. Hence, as soon as more than one
substantial two-way interaction is found, three-way
analysis is indicated. The decision as to whether an
interaction is “substantial” should be based on effect
sizes, not on significance tests, because nonsignifi-
cance of an (interaction) effect certainly does not im-
ply that it is absent but only that its presence could not
be reliably confirmed given the present sample. More-
over, because there are no replications in this
ANOVA design, the three-way interaction is con-
founded with the error terms, so it is impossible to test
the significance of the three-way interaction. Note,
however, that in a later stage of three-way component
analysis, a stability analysis verifies if the results are
reliable or if they are based to a too-large extent on
random fluctuations.

Preprocessing the Data

A decision to be made before a three-way analysis
is whether to analyze the raw data or some prepro-
cessed version thereof. In two-way PCA, most often
the correlation matrix is used, which means that, im-
plicitly, the data are used in their standardized form
(centered and normalized to equal sums of squares,
per variable, across individuals). In three-way analy-
sis, no such standard rules prevail and it is necessary
to carefully decide on any preprocessing steps to be
taken. First of all, it should be noted that an analysis
without any preprocessing will often be debatable:
The 3MPCA model, based on taking triple products of
component values, implicitly assumes that the mod-
eled data are treated as ratio-type measurements. Usu-
ally, it is more realistic to consider the data as mea-
sured on an interval scale or as a ratio scale with an
unknown neutral point. For instance, in the case of
Likert scales with labels such as fully disagree to fully
agree, measurements take values 1 through 5, with the
neutral point perhaps at 3 or at some other value be-
tween 1 and 5. If these neutral points are known, one
can simply subtract them and analyze the data in de-
viation from their neutral values. For instance, the
midpoints of semantic differential scales could be
considered neutral points, and hence one can subtract
these from the data to get data at or close to ratio
level. Often, however, neutral points are not known.
For that reason, in the case of two-way data, data are
often analyzed in deviation from their means. This is
not only a useful approach in cases in which the mean
1s considered a good estimate of the neutral point, It is

also useful in cases in which the neutral point is un-
known but in which there is reason to believe that,
with respect to some neutral point, the PCA model
holds in a limited number of dimensions (see Harsh-
man & Lundy, 1984). This can be seen as follows.

Suppose the data can be described as x; =
2,a,b,+ y, where }; denotes the unknown neutral
point for variable j and E,ai,bj, gives a PCA model for
these data. Then, centering the columns of X (i.e., by
subtracting the means over the individuals) leads to
x; — x; = 2/(a; - a,)b;,, where the subscript *.”
denotes taking the mean over the individuals; note
that p; vanishes because the mean of w; over the
individuals equals p;, and hence, these terms cancel
upon subtraction. Thus, applying PCA to column-
centered data with unknown neutral points gives a
PCA solution in which the component scores are cen-
tered versions of the original component scores and
the loadings are equal to the original loadings.
Clearly, centering serves to eliminate the “offset
terms” that represent the neutral points.

When using three-way models, a strictly parallel
situation holds: Neutral points (which may be un-
known) can be eliminated by centering over a single
mode while the component matrices are affected only
by a mere centering (just as the component scores in
A were centered above). For instance, if x; =
2,22, 8,,b,,C1,8pqr + Wy then centering over i (ie.,
over the individuals), hence subtracting x ; from the
data, eliminates the offset terms. In cases in which
neutral points can be expected to differ only across
variables (and hence can be written with only one
subscript as p;), one can eliminate them not only by
centering over the individuals (i.e., subtracting x ;)
but also by centering over the situations (by subtract-
ing x;). In practice, variables often have different
scale labels and thus can be expected to have different
unknown neutral points. Furthermore, it is often as-
sumed that the individuals interpret the scales in (at
least roughly) the same way, which could be trans-
lated into the assumption that neutral values can be
written as Wi (e, the same for all individuals).
Whether they are the same for all situations (i.e.,
whether p;, can be replaced by p,) is no longer im-
portant, because simply centering the data over the
individuals (i) eliminates the offset terms in either
case. If individual differences in response tendencies
are deemed too important to ignore, one could con-
sider that the data contain offset terms that differ
across individuals (e.g., ;). In general, offset terms
will be assumed to be equal across at least one of the
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modes (because otherwise the data x;; would be in-
distinguishable from the offset terms w.;), and they
can be removed by centering over that very mode.

A second type of preprocessing is meant for elimi-
nating artificial scale range differences as well as for
equalizing importance of entities (e.g., variables) in
an analysis. When entities are conceived to be mea-
sured on ratio scales but with considerably differing
ranges (e.g., pulse rate, blood pressure, and adrenaline
level), the ones with the largest ranges will influence
the solution more than those with the small ranges.
Such effects are often undesirable and can be elimi-
nated by simply rescaling the variables. In two-way
analysis, one often standardizes the variables for this
reason. In three-way situations, such normalizations
can be applied per entity of a mode by dividing by the
square root of the sum of squared elements associated
with this entity. For example, one may normalize the
(centered) scores on each variable to a unit sum of
squares by dividing the scores on this variable by the
square root of the sum of squares of the scores of all
individuals in all situations (2,3;x;,>)"* on this vari-
able. Alternatively, one could normalize the scores
for all situations or for all individuals to have equal
sums of squares (by dividing by (2,-2]-x,~jk2)1/2 or
(EjEkxijkz),'Q respectively). However, one should not
normalize combinations of entities of different
modes—for instance, variables and situations—
because that not only equalizes the influences of the
different variables and situations but it also modifies
the data in a nontrivial way (see Harshman & Lundy,
1984, for a technical explanation of this), which dis-
torts the underlying three-way structure.

After preprocessing, 3MPCA (or PARAFAC) can
be applied to the usually centered and subsequently
normalized data. If the data have been centered over
the individuals, we then find estimates for A_ (i.e., the
columnwise-centered matrix with elements a;, — a ),
B, C, and G. Thus, we do not have estimates for the
actual matrix A, nor for the offset terms. Procedures
for estimating these are currently under investigation
but are ignored in the present article, because often
the information in the centered version of A suffices
(e.g., to compute correlations).

Balancing Fit and Parsimony to Choose the
Numbers of Components

In choosing how many components to use for de-
scribing one’s data, three different criteria can be con-
sidered: (a) balancing fit and parsimony, (b} interpret-
ability, and (c) stability. In general, one may note that

the use of those criteria and the weighting thereof
imply, to an important extent, subjective decisions,
although these decisions do involve some objective
measures (amount of fit, amount of parsimony). The
choice for a model should thus be seen as a subjective
and free choice among an infinity of alternative pos-
sibilities, limited only by certain side conditions (e.g.,
not choosing equally parsimonious or interpretable
models, which clearly fit more poorly). In this respect,
descriptive data analysis is similar to journalism in
that one has an infinity of possibilities for describing
what has happened—Ilimited, however, by the require-
ment that the descriptions be in line with all undebat-
able facts available. In a data analysis, the situation is
not essentially different, except that the researcher’s
motivation for his or her choices must be made ex-
plicit. These motivations should not only clarify the
researcher’s preferences in choosing a model but
should also clearly serve to distinguish undebatable
facts (e.g., degree of fit, degree of stability, degree of
parsimony) from subjective choices (what balance be-
tween fit and parsimony is chosen, how components
are interpreted). In the remainder of this section, we
discuss only some issues related to parsimony and fit.
Interpretability and stability are discussed in later sec-
tions.

As mentioned in the 3MPCA subsection of Three-
Way Component Analysis Techniques (following Ex-
pression 3), the (global) fit of the model is defined as
the sum of squares of the approximations to the data,
often divided by the total sum of squares of the data
to obtain a fit proportion (or percentage). Obviously,
the chosen model should have a reasonable fit to the
data, but usually it is hard to establish what is reason-
able. Because the typical goal of the analyses is to
describe the most important information in the data
and to distinguish it from noise, in situations with
much noise small amounts of fit can be reasonable,
whereas in situations with little noise only models
with very high fit values are useful. In practice, we do
not know the amount of noise present in the data;
thus, as far as fit values are concerned, we can use
these only to compare different models and not in an
absolute sense.

Using only fit values would lead to choosing the
most complete and thus the most complex model,
whereas in practice we wish to settle for a useful
compromise between amount of information ac-
counted for and parsimony of the model used. How
one balances parsimony and fit depends on the pur-
pose of the analysis of the data at hand and cannot be
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determined on the basis of external criteria. Thus, in
this respect the choice of the model has a highly sub-
jective aspect. As a guidetine for this choice one may
use the scree test (see Cattell, 1966) or a variant of it
specially designed for 3MPCA by Timmerman and
Kiers (2000). In the latter variant of the scree test,
3MPCA analyses are carried out for a large number of
different triples of numbers of components (P, Q, R;
e.g., all triples obtained by letting P, @, and R run
from 1 through 6), and the fit percentages for these
triples are recorded. (In Tucker3.m such a series of
analyses can be done with a single command and
within a limited amount of time.) Next, solutions
based on the same total number of components (i.e., P
+ Q + R) are compared, and the best of these are
selected. The selected solutions are ordered with re-
spect to the total numbers of components, and a scree
test is applied to these by searching for those numbers
of components that correspond to a considerable fit
increase compared with the best solution with one
component less but for which adding more compo-
nents gives relatively small increases. This is illus-
trated below in detail in the section Three-Way
Analysis of S-R Inventory Data.

Detailed Study of Fit and Residuals

On the basis of the balance of fit and parsimony, we
get one or more solutions that may be useful as de-
scriptions of the data. For these, it is useful to further
study the model fit by partitioning the fit over the
entries of the modes and by studying residuals.

Partitioning of fit. In addition to the fit of the full
model, we can compute the partitioned fit for each
entity of each mode (Ten Berge, De Leeuw, &
Kroonenberg, 1987) and express this with respect to
the total sum of squares of the data elements pertain-
ing to this entity. This gives insight into which aspects
of the data are represented well and which are not. If
for certain entities poor fits are found, this may be
caused both by relatively large amounts of noise for
the associated data and by incomplete modeling of the
data.

Analysis of residuals. To study to what extent a
mode! is “complete,” one can study the residuals
(X — %), that is, those aspects of the data not cov-
ered by the full model for the data. In this respect,
rather than inspecting all residuals separately it is use-
ful to search for structure in the residuals by means of
PCAs on residuals collected in two-way matrices that
may be set up for each of the three modes; for in-
stance, one such matrix of residuals is set up to have

the individuals in the rows and all combinations of
variables and occasions in the columns, and a PCA
may be carried out on this 7 x JK matrix of residuals.
If strong components are found for these residuals, the
model may be incomplete and description of the data
may benefit from the use of additional components
accounting for the structure in the matrices of residu-
als. It should be noted, however, that such compo-
nents are rather complex because they pertain, for
instance, to combinations of variables and occasions;
hence, for simplicity, one may be satisfied with a
model that still has some (but not too much) structure
in the residuals.

Optimal Simple Structure Rotation

Clearly, because the goal of the three-way analyses
as discussed here is description of the data, interpret-
ability is of utmost importance: Uninterpretable solu-
tions have no descriptive value whatsoever. The in-
terpretability of a solution depends not only on the
parameter values in the model but also on substantive
theorizing, and it depends on the experience as well as
the interest of the researcher. Thus, the interpretability
criterion introduces a large amount of subjectivity into
the choice of a model.

As has been mentioned earlier, the 3MPCA solu-
tion is by no means unique. Equivalent descriptions of
the data can be obtained by rotations of A, B, and C
when these are compensated for in the core. The next
step in a three-way analysis (see Figure 1), therefore,
is to choose among all such equally fitting represen-
tations—those solutions that are easiest to interpret.
Sometimes, interpretability can be enhanced by trans-
forming component matrices to optimally resemble
target matrices, but if these are not available, rotation
of the component matrices, of the core, or of both to
optimal simplicity (in the sense of having parameters
with absolute values that are as small or as large as
possible) is recommended. For this purpose, in the
case of two-way PCA, one often uses Kaiser’s (1958)
varimax orthogonal rotation (applied to the compo-
nent loadings), but oblique rotations have also been
proposed and are frequently used.

In 3MPCA, one may wish the three component
matrices to be easily interpretable, and it is often use-
ful if the core is simple as well. Although simplicity
of each of the component matrices can be optimized
independently, for the core to be simple one has to
strike compromises between simplicity of the core
and of the component matrices. The desired simplicity
of each of the component matrices and of the core
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may differ between situations. Kiers (1998) has pro-
posed a procedure for orthogonal rotation of the com-
ponent matrices and the core so as to optimize any
desired weighted sum of simplicity values for the
component matrices and the core. Specifically, the
criterion optimized over rotations of A, B, C,and G is
w,S(A) + w,S(B) + w S(C) + S(G), where w,, w,, and
w,_. denote the relative simplicity weights for the com-
ponent matrices in relation to simplicity of the core;
S(.) denotes a simplicity criterion value (e.g., the vari-
max value, normalized such that it is comparable
across matrices of different size; see Kiers, 1998) for
the matrix or core between parentheses; and A, B, C,
and Q denote the rotated versions of A, B, C, and G.
Thus, a relative weight smaller than 1 indicates that
simplicity of the component matrix at hand is deemed
less important than simplicity of the core, whereas
values above 1 indicate that its simplicity is deemed
more important than that of the core. Now, by opti-
mizing this criterion over all possible rotations, high
joint simplicity of all parts of the solution is attained
in which, by varying the choice for the simplicity
weights, one can ensure that simplicity of particular
parts of the solution is given priority (e.g., by choos-
ing large w, and w, and small w,, the rotation will aim
at high simplicity of B and C, if necessary at the cost
of simplicity of A and G).

A procedure to systematically choose the relative
weights is as follows. First, one should decide wheth-
er some component matrices need not be made simple
at all, and for these the relative weight is set to 0. The
remaining relative weights can then be varied system-
atically by trying a range of values while keeping the
other values fixed. For instance, supposing no sim-
plicity of the A is desired, one may start using w, =
0,w, = 1, and w, = 1 and then gradually increase
w,. By inspecting the simplicity values (e.g., varimax
values) for the different solutions, one will see that the
simplicity of B gradually increases at the cost of that
of C and G. One then selects a value of w,, after which
simplicity of B hardly increases but simplicity of C
and G starts decreasing considerably. Similarly, one
may fix w;, and gradually increase w,. Also, if further
simplicity of the core is desired, one may gradually
decrease the values of w, or w_. It should be kept in
mind that deciding on the weights to be used is not
very critical: All rotated solutions are equally good in
terms of fit, and the procedure is only meant to find a
rotation that leads to a well-interpretable solution.
Small variations in the weights will lead to somewhat
differently rotated solutions, but these lead to virtually

the same interpretation. Procedures for computing and
comparing optimal simplicity values for a whole
range of weights at once are available in Tucker3.m.
A detailed illustration of this procedure has been
given by Kiers (1998); the procedure is also men-
tioned, but in less detail, in the section Three-Way
Analysis of S-R Inventory Data.

The above rotation procedure is limited to orthogo-
nal rotations and as such leaves the component ma-
trices orthogonal. However, sometimes nonorthogo-
nal (“oblique™) component matrices can be used to get
more easily interpretable solutions. In particular, ob-
liqueness of one component matrix can be profitable
to simplify the interpretation of the other component
matrices and the core. Therefore, if one component
matrix does not have to be made simple, it can be
useful to rotate this particular matrix obliquely rather
than orthogonally. A useful form of oblique rotation
can be carried out fairly easily with the above-
described orthogonal rotation procedure, as follows.
We start by rescaling the core such that it has unit
sums of squares rowwise (i.e., we divide each element
8pgr bY 0, = (2,2,8,,)"?), and we compensate for
this by (inversely) rescaling the columns of A (i.e., by
multiplying each element a,, by ¢,,). Second, an or-
thogonal simplicity rotation procedure is applied to
the ensuing core and component matrices. Finally, the
rotated A is normalized back to unit column sums
of squares (i.e., by division of each element g, by
o*, = (X;a;)"?), and this is compensated for in the
core (i.e., by multiplying each element g, by o*,).
This procedure is very similar to the procedure used in
Harris and Kaiser’s (1964) “orthoblique” rotation. As
in their procedure, this rotates A obliquely; thus, the
columns of A will no longer be orthogonal.

The above oblique rotation procedure is particu-
larly useful in cases in which the core has only a few
large elements, corresponding to only one component
(or to a few components) in A. In such cases, rotation
of the core may not be able to redistribute the large
core values in the rows corresponding to the first A-
mode component(s) over the complete set of rows,
and hence it does not reach simple structure. After
first normalizing the rows of the core to unit sums of
squares, however, it usually is indeed possible to find
a relatively simple structure. This simple structure is
left intact after “renormalization,” and the only ad-
verse effect is the nonorthogonality of the A-mode
components. However, the nonorthogonality is only
natural because in cases in which the data can to a
large extent be summarized by one general A-mode
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component, the other A-mode components only serve
to summarize differences in the A-mode entities in
terms of some fine nuances (expressed in deviation
from the general component). Such fine nuances typi-
cally pertain to aspects that are distinct conceptually
but correlated rather strongly across individuals. The
simple structure rotation redirects the A-mode com-
ponents such that they describe these aspects them-
selves (rather than a general component and some
components describing deviations between these as-
pects and the general component). As these aspects
are correlated rather strongly, so are the associated
rotated components.

It is possible that for the given numbers of compo-
nents no interpretable solution can be found whereas
a clearly interpretable solution can be found with ei-
ther fewer or more components. In that case, one has
to reconsider one’s choice for the numbers of com-
ponents (see the associated upward arrow in Figure 1)
and must for the ensuing numbers select the best in-
terpretable solution.

Studying Stability

Having found a well-fitting and interpretable solu-
tion, the next question is whether this solution is
stable over trivial fluctuations in the sample. Stability
is related to generalizability: Does the solution hold
not merely for the present sample but also for other
samples from the same population—that is, does it
hold for the whole population? Usually, a solution is
not deemed sensible if it is not reasonably stable over
trivial modifications of the sample. Therefore, stabil-
ity or generalizability is not a criterion that can be
used in combination with the other criteria to find a
best compromise: Reasonable stability should be used
as a sine qua non, hence, a solution chosen should be
maintained only if it is reasonably stable under trivial
changes in the data. If it is not sufficiently stable, one
should reconsider either the choice for the numbers of
components or the choice for the simple structure ro-
tation (see the associated upward arrows in Figure 1).

In practice, the stability or generalizability issue is
a difficult one, first of all because it is hard to estab-
lish the appropriate population to generalize to (¢.g.,
all possible individuals for the particular variables in
the particular situations at hand, or all possible situa-
tions for the individuals and variables at hand, etc.).
Here, we studied only stability across the entities of
one mode, usually the individuals. Second, such in-
ferences can only be made on the basis of assump-
tions, which, again, introduce subjective decisions. A

more modest approach is to limit oneself to the data
set at hand and only consider to what extent a model
is stable, for instance, when the set of individuals is
randomly split into two subsets of equal size (split-
half procedure), when certain individuals are deleted
from the total set (as in a jackknife procedure), or
when there is a different composition of the set of
individuals (as in bootstrap procedures). Similarly,
split-half, jackknife, and bootstrap methods could be
applied to variables or situations to study the stability
of the results across different variables and situations
(ideally, variation will be high). However, such stud-
ies are not very reliable in cases of small numbers of
variables and situations. One may note that the jack-
knife and bootstrap procedures are based on resam-
pling techniques (see, e.g., Efron & Tibshirani, 1993),
which involve many complete reanalyses. Despite
their potential usefulness for getting proper insight in
the stability of the results, here we avoid complica-
tions and practical problems with resampling tech-
niques and limit ourselves to the more practicable
split-half procedure (for an extensive description of
this procedure in the PARAFAC case, see Harshman
& DeSarbo, 1984). It is worth mentioning that the
outcome of the stability tests, as any accuracy mea-
surement, will to some extent depend on the sample
size (number of individuals). In case of very small
samples (say, smaller than 20), resampling techniques
as well as the split-half procedure will often indicate
that the results are not very stable, simply because the
subsamples used will easily differ considerably. This,
however, is no reason not to use stability analysis in
small- or moderate-size sample situations. To the con-
trary, these are the very situations in which stability is
an issue, whereas in cases of very large samples there
is little reason to study stability because one can ex-
pect to find stable results in almost any case. How-
ever, one should be careful in interpreting the out-
comes of stability studies based on very small
samples, because it is difficult to assess the stability
accurately on the basis of very small samples (just as
the accuracy of standard error estimates is small when
these are based on small samples).

The split-half procedure starts by splitting the data
into two halves by randomly partitioning the entities
of one of the modes, usually the first mode pertaining
to the individuals. In such a situation it is expected
that any structure in B and C should be present for all
subsets of the individuals. Thus, two half samples
obtatned by randomly assigning the individuals to two
equally sized subsamples should give comparable
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three-way analysis solutions, as far as B and C are
concerned. However, in 3MPCA, rotational indeter-
minacy may make solutions for different splits differ
artificially. To eliminate this indeterminacy, several
possibilities are available, each with its pros and cons.
Here we propose to use the solution for the full data
set (which has been made interpretable in the previous
step) as a point of reference. We next rotate the so-
lutions for B and C for the two splits optimally toward
their full data set counterparts. For this purpose, we
regress the full-sample component matrices on the
subsample component matrices (i.e., by means of
multiple regression), which boils down to a (possibly
nonorthogonal) rotation of the subsample component
matrices. To compare the rotated solutions of the
splits, we propose to inspect Tucker’s (1951) congru-
ence coefficients {measuring proportionality of col-
umns) for corresponding columns of the component
matrices B and C. According to guidelines mentioned
by Ten Berge (1986), congruence coefficients of .85
or more are considered to indicate stable solutions:
Apparently, then, in each subsample, solutions for B
and C can be found that are very similar to the full-
data solutions for B and C. Congruence coefficients
of .70-.85 are considered to be of intermediate value,
and in such cases it is advisable to also verify whether
the interpretations of the components in the two sub-
samples are different.

A study of split-half stability for the core can be
carried out in several ways. One approach is to study
to what extent the components obtained in the full set
lead to the same optimal core matrices in the two
subsets. To this end, we use the full-data component
matrices B and C and we split the full-data component
matrix A into submatrices A" and A, using in each
submatrix only the rows of A that are associated with
the A-mode entities used in the split at hand. Now, to
test the stability of the core, we first compute the core
that leads to the best 3SMPCA fit to the data of Sub-
sample 1, using A, B, and C as (fixed) component
matrices. Hence, we search for the core array G that
minimizes Expression 3 using for x;; only the data
values corresponding to the first subsample and keep-
ing the component matrices fixed. Next, we similarly
compute the core that leads to the best 3MPCA fit to
the data of Subsample 2 by using A, B, and C as
(fixed) component matrices (again minimizing Ex-
pression 3, now using for x;; the data values corre-
sponding to the second subsample). If the thus-
computed cores are similar (e.g., in terms of absolute
differences between corresponding elements of the

cores), we conclude that the components for the full
data set—which were well interpretable and appeared
to be good summarizers for the whole data set—lead
to stable core values, so that the conclusions based on
the core values can be considered reliable or at least
not very sensitive to sample fluctuations. Other, stron-
ger ways of checking stability are possible, but the
present one may suffice for most practical purposes.

Interpreting and Reporting the Solution

Having decided on which solution to retain as a
useful description of one’s data, one is in a position to
interpret and report the results. First, interpret the
components for all modes or for only the simple
modes. Next, the core can be used to summarize the
main interactions in the data. For interpretation of the
component matrices A, B, and C, it should be noted
that the component values can be compared only
within components. Specifically, the component val-
ues are simply normalized to unit sums of squares
columnwise; in this respect they differ, for instance,
from component loadings in two-way PCA that in the
orthogonal case can be interpreted as correlations be-
tween variables and components. The interpretations
of the components, however, are not influenced by
this normalization, because the interpretation of a
component depends only on the relative differences of
component values with respect to that component.
Thus, whether a variable or situation is well repre-
sented cannot be read from these component values
but should be read from the fit percentages that can be
computed per A-mode, B-mode, and C-mode entity
(see the Balancing Fit and Parsimony to Choose the
Numbers of Components section).

As far as interpretation of the core is concemed, it
should be noted that the core contains values that
describe the full three-way data, reduced to the sum-
marizing descriptions given by the components for the
three modes. For example, the core value associated
with components Al, B2, and C3 (Al denoting the
first A-mode component, etc.) indicates how a person
scoring high on A1 responds to a variable associated
strongly with B2, in a situation captured well by C3.
Therefore, the core array summarizes the information
in the original three-way array and will contain main
effects and two- and three-way interactions, provided
that these are present in the original three-way array.
To interpret the core, it can therefore be helpful to
draw line plots to visualize two- and three-way inter-
actions. For instance, these plots can consist of a set of
lines, one for each combination of an A-mode and
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B-mode component and connecting core values for
the respective C-mode components, as demonstrated
in the example in the Three-Way Analysis of S-R
Inventory Data section.

The core values can be compared meaningfully
with each other. In fact, when all component matrices
are orthogonal, the squared core values give the con-
tributions of the associated combination of compo-
nents to the total fit. When not all component matrices
are orthogonal, this simple interpretation is no longer
valid; however, interpretation of the sizes of the core
values can be carried out, for instance, by inspecting
contributions due to combinations of two (rather than
three) components, as described in the example analy-
sis in the next section.

When the simple structure rotations are successful,
the interpretation of the solution can be done fairly
easily with tabular information only, on the basis of
which components are interpreted. Sometimes, how-
ever, the components are not easily interpretable. In
such cases it may be more useful to plot several as-
pects of the 3MPCA solution. As described in detail
by Kiers (2000), several possibilities exist: One may
plot the entities of one mode only, plot combinations
of entities of two modes and superimpose the entities
of the third mode, or plot entities of two modes
jointly, for each of the entities of the third mode (so-
called “joint plots”; see Kroonenberg, 1983, pp. 164—
165). An illustration of the last option is given in the
Three-Way Analysis of S-R Inventory Data section.

Preliminary Stability and Interpretability Check

As a final note, we remark that in practice it is not
very efficient to determine the most interpretable so-
lution before one has any insight into the stability of
such solutions. A quick preliminary check on stability
and interpretability is therefore recommended. This
check is to be carried out immediately after every
choice of the numbers of components and proceeds as
follows: First, rotate only parts of the solution to
simple structure (e.g., rotate the component matrices
for the variables and the occasions by varimax, when
these are to be made well interpretable). Then study
the stability of this rotated solution. If the solution is
stable, it can be expected that a solution found by a
more refined simple structure rotation will be simi-
larly stable; if it is not stable, a solution rotated by a
more refined method would probably also not be
stable. Furthermore, if the rotated component matrices
are not well interpretable, there is little reason to be-
lieve that a more refined rotation procedure would

lead to an interpretable solution. This is because the
more refined rotation procedure would simplify the
overall solution (notably also the core) but could not
further simplify the already optimally simple compo-
nent matrices found with varimax. If this simple pro-
cedure shows that for the selected numbers of com-
ponents a stable and interpretable solution can be
obtained, one can take the trouble to carry out a more
detailed study of the fit and determine which rotation
gives the best interpretable solution. If the check turns
out to give a negative result, a new solution (using
different numbers of components) is to be determined
(see Figure 1).

Three-Way Analysis of S-R Inventory Data

In this section a detailed analysis is given of an
empirical three-way data set. In the analysis, we fol-
low the steps described in The Three-Way Analysis
Process section and displayed in Figure 1. The steps
to be taken can be followed most easily in that flow-
chart. For details on the descriptions of the different
steps, the reader may refer back to the relevant sub-
sections of The Three-Way Analysis Process.

Problem and Data

The data analyzed in the present study have been
collected in a contextualized study of personality
(Van Mechelen & Kiers, 1999), that is, a study of
individual differences in the personality domain that
explicitly takes into account the situational context in
which personality-relevant behaviors occur. The pri-
mary goal of that study was the search for parsimo-
nious summary descriptions of individual differences
in behavioral profiles across situations.

The data' are scores of 140 participants on the S-R
Inventory of Anxiousness (developed by Endler,
Hunt, & Rosenstein, 1962, and translated into Dutch
for the present study). The inventory contains 14
anxiety-related responses to be rated for 11 different
stressful situations. Back-translated and abbreviated
descriptions of the responses are “heart beats faster,”
“uneasy feeling,” “emotions disrupt action,” “feel ex-
hilarated and thrilled,” “not want to avoid situation,”
“perspire,” “need to urinate frequently,” “enjoy the
challenge,” “mouth gets dry,” “feel paralyzed,” “full
feeling in stomach,” “seek experiences like this,”
“need to defecate,” and “feel nausea.” Back-translated
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and abbreviated descriptions of the situations are
“auto trip,” “new date,” “psychological experiment,”
“ledge high on mountainside,” “speech before large
group,” “consult counseling bureau,” “sail boat on
rough sea,” “match in front of audience,” “alone in
woods at night,” “job interview,” and “final exam.”
Each response had to be rated on a 5-point scale (1-
5), with the labels along the scales specific to each of
the scales and the label for 5 always pertaining to the
most anxious reactions. However, to simplify inter-
pretation of reactions, scales with positive, abbrevi-
ated descriptions (such as feel exhilarated) have been
reversed (1 = 5,2 = 4,...,5 = 1) in all analyses.
For example, for heart beats faster, 1 = not at all and
5 = much faster; for feel exhilarated and thrilled,
1 = not at all and 5 = very much.

LI N3

Preliminary Analyses

As a first step in the three-way analysis of the data,
the frequency distributions for all S-R combinations
were inspected. Not surprisingly, some of these dis-
tributions were considerably skewed. However, the
distributions for the same response differed consider-
ably over situations and therefore were not deemed
artificially skewed. Furthermore, we did not find any
clear outliers and there were no missing data, so we
saw no reason to adjust the data before the main
analyses.

Three-Way ANOVA

Before carrying out a 3MPCA, we checked whether
the data could reasonably well be analyzed by means
of a two-way PCA on aggregated data. To do this, we
performed a fixed-effects three-way ANOVA (see top
of flowchart in Figure 1) on the 140 x 14 x 11 three-
way data table, after subtraction of the grand mean.
From the decomposition into sums of squares given in
Table 6 it is clear that there are two sizable two-way
interaction terms, as well as the three-way-
interaction-plus-error term, which cannot be ignored.
In fact, the latter has the highest contribution of all
effects. Even though we cannot tell what part of this
term is error, it cannot be excluded that an important
three-way interaction is present in the data in addition
to two important two-way interactions. Therefore, a
three-way analysis is clearly indicated here. More-
over, when this reveals stable solutions representing a
three-way interaction, we have clear indications that
the three-way-interaction-plus-error term pertains to
considerably more than error alone.

Table 6

Three-Way Analysis of Variance of Situation—Response
Data After Subtraction of Grand Mean, With Individuals,
Responses, and Situations as Fixed Factors

Effect SS %
Individuals 2,601 6.2
Variables 7,363 17.6
Situations 2,406 5.7
Individuals x Variables 7,160 17.1
Individuals x Situations 2,398 5.7
Variables x Situations 4,904 11.7
Individuals x Variables x

Situations + error 15,096 36.0
Total 41,930 100

Note. SS = sum of squares.

Intermezzo: Two-Way PCA on
Aggregated Data

Even though the three-way ANOVA pointed out
that a 3MPCA of the present data is indicated, to
illustrate the incompleteness of a two-way analysis
(by offering a baseline that can help illustrate the
gains produced by 3MPCA) we averaged the data
across the individuals (see Table 7) and carried out a
two-way PCA on these averaged data (see Table 8).
From the ANOVA reported in Table 6 it can be seen
that these averaged data, which only represent the
variable and situation main effects, as well as their
interaction carry only 35% (17.6% + 5.7% + 11.7%)
of the variance in the original data. From Table 7 it
can be seen which situations, on average, evoked most
anxiousness or exhilaration, and so on. A PCA on
these data (after standardizing the data across the situ-
ations) led to eigenvalues of 8.49, 3.63, 0.76, 0.61,
0.18, 0.12, 0.10, 0.08, 0.02, 0.01, and 0. From the
eigenvalues, it can be deduced that the first two com-
ponents (accounting for 87% of the variance) capture
by far the greater part of the information in the data.
We therefore considered only the first two compo-
nents and subjected these to a varimax rotation. The
resulting loadings for the variables and the component
scores for the situations are given in Tables 8 and 9,
respectively. As is discussed below, the structures ob-
tained are partly related to the 3MPCA component
matrices B and C reported in Tables 11 and 12. In
fact, it can be seen in those tables that one of the
components for the response scales is split into three
different components; the present situation compo-
nents resemble the 3MPCA situation components
even less. All this is a direct implication of the fact
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Table 8

Response Scale Loadings From Principal Components
Analysis on Situation-Response Data Averaged
Across Individuals

Table 9

Component Scores for Situations From Principal
Components Analysis on Situation—-Response Data
Averaged Across Individuals

Component  Component Component  Component
Variable loading 1 2 Situation 1 2

Heart beats faster 94 22 Auto trip -45 27
Uneasy feeling 95 -.21 New date -.01 42
Emotions disrupt action .86 .00 Psychological experiment -.64 -.38
Feel exhilarated and thrilled -.07 99 Ledge high on mountainside .10 25
Not want to avoid situation -41 836 Speech before large group 45 -13
Perspire 95 -.06 Consult counseling bureau -.13 -.38
Need to urinate frequently 81 -.11 Sail boat on rough sea -.04 .40
Enjoy the challenge .03 99 Match in front of audience .06 .20
Mouth gets dry 9 -25 Alone in woods at night .14 =31
Feel paralyzed 94 -.20 Job interview 25 -.06
Full feeling in stomach 91 -.24 Final exam 27 -.28
Seek experiences like this —03 1.00 Note. For emphasis of the larger values, scores exceeding .30 in the
Need to defecate .84 -.23 absolute sense are in bold.
Feel nausea 75 .09

Note. For emphasis of the larger values, loadings exceeding .30 in
the absolute sense are in bold.

that a PCA of the data averaged over individuals does
not take into account any individual differences in
response profiles across situations—neither in the
form of a two-way interaction involving the individu-
als factor nor in the form of a three-way interaction of
individuals, variables, and situations—whereas such
interactions have been seen to be potentially very im-
portant in this data set. Clearly, if one is interested in
summarizing such a three-way interaction, the above
results are of no avail and a full three-way analysis is
needed.

Preprocessing the Data

Having seen above that a three-way analysis is in-
dicated, we now turn to the second main step (see
Figure 1) preprocessing the data. As mentioned in the
section on the three-way analysis process, the choice
for a preprocessing procedure should depend on the
presumed presence of neutral points in the data and on
the associated form of the complete model that one
supposes to underlie the data; consideration should
also be given to whether to weight variables equally.
For the present data, we assumed that there was a
neutral point or “natural zero” for each response scale
that was unknown and may have differed for each
scale. The latter characteristic is a consequence of the
fact that the response scales have incomparable labels,
which makes it unreasonable to assume that the neu-

tral point is at the same location of the 5-point scale
for all variables. On the other hand, it does seem
reasonable to assume that response scales are consid-
ered the same for each situation and thus, that the
neutral point for the response scales does not differ
across situations. Apart from the uncertainty on the
neutral points of the scales, one could worry about
possible response style differences among individu-
als. However, on the basis of the present data alone,
these differences cannot be distinguished from real
differences between the individuals in global anxiety
level; in fact because it seemed likely that differences
in global anxiety level were present, we chose to ig-
nore response styles. Hence, we took into account
only unknown neutral points for the response scales.
As explained earlier, an adequate way of dealing with
unknown neutral points is simply to eliminate them by
centering over individuals and to fit the three-way
model to the preprocessed data. Incidentally, we point
out that because the data are centered, sums of squares
are proportional to variances. Therefore, rather than
defining fit contributions in terms of sums of squares
accounted for, we can do this in terms of the more
common concept of variance accounted for.

In addition to unknown neutral points, we have to
deal with unknown differences in scale range use. In
the present study we assumed that any individual dif-
ferences in use of scale range were real (simply be-
cause we cannot distinguish real differences from re-
sponse styles). Differences in scale-range use of
different response scales, on the other hand, can be
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due to incomparability of the labels for the different
scales. To eliminate such unwanted differences, we do
normalize the response scales such that, after center-
ing over individuals, the variances of all scores on
each scale are normalized to unity (i.e., by dividing all
elements x;; — x ; by 0; = (2.2,(x;; — x)YIK)'"2).

Balancing Fit and Parsimony to Choose the
Numbers of Components

The next step (see Figure 1) in a three-way analysis
is to balance fit and parsimony to choose the numbers
of components. After some preliminary analyses, we
soon found that for each mode we would use at least
two components. To choose among the multitude of
possible 3MPCA solutions, we performed 3MPCAs
for all models using two, three, four, five, and six
components for each of the modes and computed the
associated fit values. We limited our search to six
components for practical reasons and afterwards saw
that this did not seem a serious limitation. We listed
the fit values, ordered according to the value of P + Q
+ R, and checked the highest fit value per value of P
+ @ + R. A subset of all fit values obtained in this way
is given in Table 10, where especially for the lower
values of P + Q + R different solutions are given (only
for illustrative purposes). Using the variant of the
scree test proposed by Timmerman and Kiers (2000),
we selected four cases (indicated by bold and italics in
Table 10) in which the last addition of a component
(i.e., moving from P+ O+ R—-1t0 P+ J+R) led
to a relatively large increase in fit but in which a
further increase of the number of components led to a
relatively low increase in fit. These were P = 3, Q =
2,R=2(it =313%), P =4,Q =2, R = 3 (fit
= 34.8%); P = 5,0 = 3, R = 3 (fit = 37.9%); and
P=6Q=4R=3(fit = 41.1%).

Preliminary Stability and Interpretability Check
for a Number of Solutions

For each of the four above solutions, we carried out
a preliminary stability and interpretability check. Spe-
cifically, in each case the solution was rotated by
varimax applied to B and C because it was expected
that the B- and C-mode components would indeed
have an intrinsic simple structure. For these solutions,
split-half stability and interpretability were checked
only in terms of the component matrices B and C. In
a later stage, stability and interpretability are also
studied in terms of the core.

Table 10

Fit Percentages for a Subset of the Results of IMPCA for
Different Numbers of Components Applied to the
Situation—Response Data

P Q R P+Q+R Fit (%)
2 2 2 6 27.5
2 2 3 7 277
2 3 2 7 277
3 2 2 7 313
2 2 4 8 27.8
2 3 3 8 28.3
2 4 2 8 27.7
3 2 3 8 318
3 3 2 8 319
4 2 2 8 32.2
4 2 3 9 34.8
4 3 2 9 34.4
3 2 5 10 321
3 3 4 10 328
4 2 4 10 35.2
4 3 3 10 355
5 2 3 10 35.8
5 3 2 10 35.4
5 3 3 11 37.9
6 3 3 12 39.2
6 4 3 13 41.1
6 4 4 14 42.0
6 4 5 15 42.6

Note. Rows with the highest fit for each value of P + Q + R are in
bold. Rows that, in addition, meet the scree test criterion proposed
by Timmerman and Kiers (2000) have also been italicized. 3SMPCA
= three-mode principal components analysis.

For assessing the split-half stability, the sample of
individuals was split into two halves by simply dis-
tinguishing the odd and even individual numbers, and
the data for both splits were preprocessed and ana-
lyzed in the same way as the full data set. It was found
that the P = 3, Q = 2, R = 2 solution was not very
stable over split halves. Specifically, the second situ-
ation component led to a congruence over splits (¢) of
.64, and on visual inspection it could be seen that the
two splits indeed gave quite different second situation
components. Thus, it can be concluded that this solu-
tion is unstable (despite the fact that the B-mode com-
ponents were reasonably stable).

The P = 4, QO = 2, R = 3 solution was consid-
erably more stable. The lowest ¢ value was .81 for
one of the C-mode components, which implies a rea-
sonable stability. This solution therefore merited a
follow-up analysis. However, we soon realized that
even when optimizing the simple structure rotation,
the two-dimensional solution for the response scales
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could not be satisfactory from a substantive view-
point: The optimally simple B-mode component ma-
trix displayed a first component pertaining to a mix-
ture of exhilaration-related variables and the distress
variables heart beats faster, uneasy feeling, and emo-
tions disrupt action, where the second component per-
tained to the other physiological anxiety reactions.
Although the finding that exhilaration tends to go with
certain distress variables is interesting, it seems an
oversimplification to merge these into one compo-
nent. In fact, the earlier results of the PCA on data
averaged across individuals indicated that the exhila-
ration scales formed a subgroup on their own. There-
fore, we searched for stable solutions with more than
two B-mode components from then on.

The P = 5, Q = 3, R = 3 solution was next
inspected, and it was found that it was rather unstable
with respect to the B mode (congruences between .70
and .85). Furthermore, the B-mode component ma-
trix was again not well interpretable: Whereas one of
the three B-mode components did pertain to the
exhilaration-related variables—and this component
was reasonably stable—the other two components ap-
parently distingnished between different aspects of
physiological anxiety reactions, with different splits
yielding different partitionings and each partitioning
based on a different merging of three different sub-
groups of physiological reactions. These results sug-
gested that one more component was needed for the
B mode.

Finally, the P = 6, Q = 4, R = 3 solution was
inspected. It was found that this solution was reason-
ably stable: The ¢ values for B were .93, 91, .95, and
.90, and those for C were .95, .82, and .80. For the
relatively unstable second and third C-mode compo-
nents, we inspected the main component values on
these components in each of the splits and found that
in both splits, the main component values indicated
the same partitioning of situations; the most important
difference was that the relatively large negative load-
ing of new date on the third component was recovered
to only half the extent in one of the splits and there-
fore could hardly be considered salient.

Detailed Study of Fit and Residuals for
Selected Solution

The above preliminary checks led us to consider the
P = 6,Q = 4, R = 3 solution in more detail. First
we inspected whether each of the B- and C-mode
entities were fitted well enough. We saw that fit per-

centages (given in detail below) were reasonable for
all response scales and for most of the situations; only
auto trip and psychological experiment fitted rather
poorly, but given the small number of situations at
hand, increasing the number of components did not
seem an adequate remedy.

To see to what extentthe P = 6,0 = 4, R = 3
model covered the most important structural aspects
in the data, we next studied the residuals for this
model. Specifically, we calculated residuals by sub-
tracting the 3MPCA estimates from the preprocessed
data. To see whether they retained important struc-
tural information, we analyzed the residuals using
PCA after constructing data matrices with one mode
for the rows and the other two combined for the col-
umns. By means of the three possible PCAs, we
searched for remaining structure in the residuals with
respect to relations between individuals, between re-
sponse scales, and between situations. The first prin-
cipal component of the I x JK residual matrix (with
rows pertaining to the individuals) accounted for 6%
of the sum of squares of the residuals, that of the J x
IK residual matrix (with rows pertaining to the re-
sponse scales) for 19%, and that of the K x IJ residual
matrix (with rows pertaining to the situations) for
14%. Given that the residuals accounted for 59% of
the variance in the data (100% — 41%), these percent-
ages were all multiplied by .59 to get an idea of the
contributions of the ensuing components to the total
fit of the data. These values were then evaluated in
light of the complexity of the components concerned
(e.g., one individual component pertained to different
component values for all Response Scale x Situation
components). Given the complexity of such additional
components, we concluded that the main, simple in-
formation in the data was adequately captured by the
3MPCA solution reported. On the other hand, a com-
plicated interaction between response scales and situ-
ations did seem to exist and was missed by the pres-
ent, more simple, description of the data. Taking all
this information into account, we retained the P = 6,
Q = 4, R = 3 model as our final choice.

Optimal Simple Structure Rotation of
Selected Solution

In our preliminary checks, we focused on simplic-
ity of the component matrices for the response scales
(B) and for the situations (C) only, using varimax on
both matrices. Having selected our model, however,
we were in a position to optimize our choice for
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simple structure rotations of the solution. For the pres-
ent data, we decided to rotate the solution in such a
way that the core and the component matrices B and
C jointly tended to simple structure. In fact, in pre-
liminary investigations of the present data, we tried to
find a simple structure for the mode of the individuals
as well, but as this appeared hard to achieve we de-
cided to ignore simplicity of this mode altogether.

On our first applications of the general procedure
for optimizing a weighted sum of simplicity values
across orthogonal rotations of the core and the com-
ponent matrices B and C, the resulting rotated cores
tended to have very high values in only one row (i.e.,
pertaining to only one A-mode component). This
prompted us to consider an oblique rotation (as de-
scribed earlier in this article). Specifically, we first
normalized the slices of the core pertaining to the
A-mode components to unit sums of squares and com-
pensated for this in the component matrix for the in-
dividuals. With this normalization of the core, the
observed unequal influences of A-mode components
were effectively equalized. Next, we applied Kiers’
(1998) procedure for joint varimax rotation of the core
and component matrices a number of times, during
which we varied the relative weights attached to sim-
plicity of the (normalized) core and simplicity of B
and C. Specifically, we gradually increased the rela-
tive weights for B and C from 1 to 5, leading to
simplicity values of 2.31, 2.57, 2.91, 3.06, and 3.10
for B (for which the maximum was 3.14) and 2.98,
3.30, 3.46, 3.53, and 3.57 for C (maximum = 3.65).
The simplicity values for the core decreased as fol-
lows: 9.82, 8.94, 7.71, 6.97, and 6.60. We concluded
that increasing the relative weights beyond 4 made
little sense for enhancing simplicity of B and C.
Moreover, for the rotation with a relative weight of 4
for B and C, the core (after adjusting it for the renor-
malization of A) was still easily interpretable, so we
considered this solution a useful representation of the
data. We discuss this more in detail in the Interpreting
and Reporting the Solution section later.

Studying the Stability of the Selected Solution

For the final solution, split-half stability was
checked more fully, not only for B and C but also for
the core. For B and C, the congruences were very
similar as in the preliminary check (which was based
on varimax of B and of C rather than on the weighted
Joint rotation procedure used here): The ¢ values for
B were .95, .90, .94, and .90, and those for C were .97,

.80, and .79. The intermediate-size congruence values
found for C were associated with components that in
both splits did lead to the same interpretation. To
inspect the stability of the core, given the full data
descriptions, we computed the cores for the two splits
and observed that these were very similar indeed, es-
pecially in terms of the core elements with values
exceeding 10 or ~10 (which were the ones actually
used in the interpretation [see next section)). Specifi-
cally, for these core elements, differences across the
two splits were never larger than 3 and this hardly
affected the interpretations. The biggest difference be-
tween corresponding core values was 4.6, and this
was found for a case in which the actual core value
was 1.7. This clearly demonstrates that interpretation
of such small core values as pointing to nonnegligible
contributions is not warranted.

Interpreting and Reporting the Solution

In this section, the final solution is interpreted and
reported. The rotated component matrices for the re-
sponse scales and the situations are given in Tables 11
and 12, respectively. The rotated core is given in
Table 13. For the obliquely rotated A-mode compo-
nents, we do not give the full (140 x 6) component
matrix, but only the correlations between these com-
ponents (Table 14).

We recall that the values in the component matrices
contain only relative information, which suffices to
interpret the components but cannot be used to assess
whether a variable or situation is represented well. For
the latter purpose, the fit percentages are given in the
last columns of Tables 11 and 12.

The first component of the responses is called ap-
proach—avoidance; the second component is related
to autonomic physiological reactions including heart
beating faster and heavy perspiring and is therefore
labeled autonomic physiological reaction; the third
component pertains mainly to full feeling in stomach
and feel nausea and is therefore labeled sickness, the
fourth has highest component values on two response
scales pertaining to an increased need for excretion
and is therefore labeled excretory need.

The first situation relates to various contexts in
which one’s performance is judged by others, and it is
denoted likewise; the second is called inanimate dan-
ger, being related mainly to the two inanimate dan-
gers formed by being on the ledge of a mountainside
and sailing on a rough sea; the third is almost com-
pletely covered by the single situation alone in woods
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Table 11

Component Values for Response Scales, Resulting From 3MPCA of Situation-Response Data, With P = 6, Q = 4, and R

= 3 Components for the Respective Modes

Autonomic

Approach— physiological Excretory Fit

Response avoidance reaction Sickness need (%)

Heart beats faster -.06 57 -.07 -.18 38.9
Uneasy feeling -.28 25 .07 -.06 43.0
Emotions disrupt action -.18 .20 23 -.01 422
Feel exhilarated and thrilled 46 11 .05 .09 254
Not want to avoid situation 41 -11 .06 -.02 394
Perspire -.07 .52 -.03 -.03 471
Need to urinate frequently .06 21 -.03 48 42.0
Enjoy the challenge 48 .09 .08 .01 29.5
Mouth gets dry .08 36 .00 32 44.1
Feel paralyzed -.06 18 28 .19 47.6
Full feeling in stomach .00 .00 .79 -12 56.2
Seek experiences like this 48 12 .09 -03 289
Need to defecate -.09 -.12 -.09 72 49.0
Feel nausea -.14 -.18 45 25 41.7

Note. For emphasis of the larger values, values exceeding .30 in the absolute sense are in bold. 3MPCA = three-mode principal components

analysis.

at night and is labeled likewise. This component may
seem limited because it pertains to only one situation,
but it is worthwhile because it apparently elicits sys-
tematically different responses.

To describe the summarized interactions and to in-
terpret the six components for the individuals (which
can be considered individual difference dimensions),
we used the core array. We focused on the sets of core
values associated with a single individual component

Table 12

and compared these profiles across all individual
components. From the viewpoint of a contextualized
approach to the study of personality, these profiles
could be considered a summary description of indi-
vidual differences in behavior across situations. Thus,
these core profiles concisely describe all three-way
information ranging from main effects to three-way
interaction. Figure 2 shows line plots of core values
for the different components for the individuals. Spe-

Component Values for Situations, Resulting From 3MPCA of Situation—-Response Data, With P = 6, Q =4, and R = 3

Components for the Respective Modes

Performance judged

Alone in woods

Situation by others Inanimate danger at night Fit (%)
Auto trip 13 15 ~-.11 13.0
New date .26 A5 -30 22.7
Psychological experiment .04 .09 13 6.8
Ledge high on mountainside .04 77 .09 54.7
Speech before large group 49 -.14 -.11 44.0
Consult counseling bureau 25 -.07 .19 29.7
Sail boat on rough sea 15 53 -.07 39.1
Match in front of audience 38 11 -.09 42.2
Alone in woods at night .09 05 .89 58.1
Job interview 48 -13 -.04 50.8
Final exam 46 -.16 .16 51.1

Note. To emphasize the larger values, values exceeding .30 in the absolute sense are in bold. 3MPCA = three-mode principal components

analysis.



Table 13

4, and R = 3 Components for the Respective Modes

Core Array Resulting From 3IMPCA of Situation-Response Data, With P = 6, Q

Alone in woods

Performance judged

Inanimate danger at night

by others

Excr.

Approach— Auto.

Excr.

Approach— Auto.

Excr.

Auto.

Approach-

Individual
component

Sickness need avoidance phys. Sickness need avoidance phys. Sickness need
-0.2 =22

phys.

avoidance
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24
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N
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-7.0

1.7

0.8
8.4
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9.8
39

0.9

4.3
-0.4
-18.5
5.0
1.7
-0.5

04

26.4
1.2
3.0
1.6

2.5

1.0
-9.0
1.9
-0.6
—4.7
15.2

2.0
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1.9

0.5
6.5
24

1.1

34
-11.1
-2.6
11.2
-4.0
3.5

1.6
2.7

-0.4
29

0.2
04
4.0

22
0.9
1.2
0.2
36.9

1.2
1.2

-0.4
-0.3
34.9
-0.1

1.0

-1.0
1.6
0.7

-0.1
40.0

-1.0

364
0.8
0.5

-0.4

-0.2

—_— NN T N \O

<
=

3.0 1.9

14
three-mode principal components analysis; Auto. phys. = autonomic physiological
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Table 14

Correlations Between A-Mode Components, Resulting
Sfrom 3MPCA of Situation—Response Data, With P = 6, Q
= 4, and R = 3 Components for the Respective Modes

Component

Component 1 2 3 4 5 6
I — .27 40 ~-56 -47 -35
2 27 — 22 =28 -32 -38
3 40 22 — -49  -41 -35
4 -56 -28 -49 — .60 58
5 -47 =32 -4l 60 — .52
6 -35 -38 =35 .58 52 —

Note. 3MPCA = three-mode principal components analysis.

cifically, each of the 24 plots corresponds to one A-
mode component and one B-mode component and
thus displays the core values for the different situa-
tions for persons scoring high on the A-mode com-
ponent at hand on the variables related most strongly
to the B-mode component at hand. From these plots it
can be seen that the lines are by no means parallel and
that the patterns differ for both the different A- and
B-mode components. Thus, in this summary descrip-
tion, we find a considerable three-way interaction,
which we could assume to be rather free of error,
having seen that the description was reasonably
stable. By averaging the core values over one mode at
a time (which is easier using Table 13 than Figure 2),
we could verify the presence and shape of the two-
way interactions between the other two modes.

To give a substantive interpretation of the informa-
tion in the core, we refer to Table 13. It can be seen
that A-mode Component 1 distinguished individuals
in terms of their approach—avoidance behavior in situ-
ations in which one’s performance is judged by oth-
ers, with high scores pertaining to a higher tendency
to be attracted to such situations. The second compo-
nent pertained to approach—avoidance evoked by in-
animate danger (again with high scores pertaining to
a higher tendency to approach). The third component
distinguished individuals with respect to approach—
avoidance and, to some extent, to autonomic physi-
ological reactions, in situations like being alone in the
woods at night; on this, high scores pertained to high
approach and weak autonomic physiological reac-
tions. The fourth and fifth components pertained to
autonomic physiological reactions and sickness, re-
spectively, in response to judged performance situa-
tions (with high scores pertaining to strong reactions).
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Figure 2.

Line plots of core values, resulting from three-mode principal components analysis of situation—response data, with

P = 6,0 = 4,and R = 3 components for the respective modes. Each line plot gives core values for one A-mode component
(A1-A6) and one B-mode component {approach—avoidance, autonomic physiological [autonom. physiol.] reaction, sickness,
or excretory need); the core values pertain to the three different situation components (performance judged by others [per-
form.], inanimate danger, and alone in woods). The dashed lines give the baseline value (0).

The sixth component distinguished individuals with
increased need toward excretion (high scores) from
others, especially in performance judgment situations
but, to a lesser extent, also in other situations.

The fourth A-mode component showed a relatively
complex pattern of core values. Rather than studying
the information associated with this A-mode compo-
nent only in terms of tabular information, one could
also visualize this information as follows by a means
of a “joint plot.” We produced a joint plot (see Figure
3) representing the relations between the variables and
the situations for persons scoring high on this fourth
A-mode component. Specifically, a two-way matrix
of scores on response scales for different situations
was constructed that corresponded only to the fourth
A-mode component (technically, this is the matrix
product BG,C’, where G, denotes the fourth horizon-
tal plane of the core G), and these scores were de-
composed by a PCA. Next, the response scales and
situations were plotted jointly, using only the first two

components. It can be seen that for persons scoring
high on the fourth A-mode component, situations like
final exams, playing a match in front of an audience,
and so forth are situations in which their hearts beat
faster and they perspire heavily (as follows from their
joint location to the far right in Figure 3); persons
scoring low on this dimension have an increased need
to defecate and feel nauseous in such situations (as
follows from the fact that the situations and these
responses are located at opposite sides in Figure 3).
The latter holds not only in judgment situations but
also notably in the situation in which one is alone in
the woods. The joint plot thus displays the informa-
tion in the fourth row of Table 13, combined with the
interpretation of the B- and C-mode components. One
should realize that the figure is based only on part of
the variance explained by the fourth A-mode compo-
nent (together with B, C, and the core), namely that
part that could be expressed by its first two principal
components. In this case, however, virtually no loss
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Figure 3. Joint plot for A-mode Component 4, resulting from three-mode principal components analysis of situation—response
data, with P = 6, Q = 4, and R = 3 components for the respective modes. Response scales are given in lower case, and
situations in capitals. The plot is based on the part of the data represented by the fourth A-mode component, as well as the full
B- and C-mode component matrices and the associated core values. For persons scoring high on the fourth A-mode component,
in a particular situation relatively high response scores can be expected on those response variables that lie close to the situation
at hand and far from the origin. Al woods = alone in woods at night; boat sea = sail boat on rough sea; challeng = enjoy
the challenge; counsel = consult counseling bureau; disrupt = emotions disrupt action; dry mth = mouth gets dry; exhilar
= feel exhilarated and thrilled; fin exam = final exam; full stom = full feeling in stomach; heart = heart beats faster; job
int = job interview; match = match in front of audience; mnt ledge = ledge high on mountainside; nausea = feel nausea;
need def = need to defecate; need urin = need to urinate frequently; no avoid = not want to avoid situation; paralyz = feel
paralyzed; perspir = perspire; psych exp = psychological experiment; seek exp = seck experiences like this; speech =
speech before large group; uneasy = uneasy feeling.

the latter can be seen as the contributions of each
combination of a situation component and a response

was incurred because these components accounted for
99.6% of that variance.

The core array is not only used in interpreting the
A-mode components, but it also indicates which com-
binations of situations and responses are most useful
in distinguishing individuals. For this purpose, we
computed per combination of a situation component
(g) and a response component () the variance across
individuals (i) of the values of

P
2 Aip8pgrs
p=1

component to the total amount of variance accounted
for by the model (i.e., 41%). These variances have
been converted to percentages and are listed in the
bottom row of Table 13. It can be seen that in the
performance judged by others situations each of the
responses contributed considerably to the variance
(and hence, the distinction between individuals),
whereas for the other types of situations the
approach-avoidance responses accounted for by far
the greatest part of the variance.



108 KIERS AND VAN MECHELEN

Incidentally, the above fit values also help in inter-
preting the sizes of the individual core elements. For
instance, the first core element (36.4) is by far the
greatest in the first column, and hence the core value
of 36.4 is predominantly responsible for the 6.6% fit
of the total data fit accounted for by the components
related to this column. Continuing in this way, one
can see, for instance, that the core value of 26.4 re-
lates to a little less than 3%, and one can conclude that
a value of 10 contributes less than 1%. It should be
noted, however, that, because of the correlatedness of
the A-mode components we cannot simply associate a
particular fit percentage to each core element: As in
the case of correlated predictors in regression, in
which fit contributions of different predictors depend
on each other, in this case fit contributions associated
with different core elements depend on each other.
Only if the A-mode components were uncorrelated
could the core elements be converted into fit contri-
butions. In that case, this could be done by squaring
the core elements, dividing by the total variance in the
data (here IJK = 21,560), and multiplying by 100 to
get percentages. To compare this with some core val-
ues found here, the value of 36.4 would then corre-
spond to 6.2%, whereas that of 26.4 would correspond
to 3.3%—values that do not differ much from the
values given in Table 13.

We are now in a position to compare the results of
3MPCA on the full data to the results of two-way
PCA on the data averaged over participants (see
Tables 8 and 9). On comparison of Tables 8 and 11,
it can be seen that the second component from PCA
on averaged data resembles the approach-avoidance
component found in our 3MPCA. The first compo-
nent from PCA on averaged data is, in the 3MPCA
solution, split into three components. This refinement
into three components is due to the fact that 3SMPCA
takes into account individual differences. As to the
situation component values, it can be seen that the
values in Table 12 are only partly similar to those in
Table 9. For instance, the first 3MPCA component
covers all clear performance situations, whereas the
first component from PCA on averaged data is hardly
related to match in front of an audience, which clearly
is a performance situation. Various similar differences
can be found on comparison of the two solutions. This
reveals not only that the PCA on averaged data ig-
nores individual differences in responses to situations
patterns but also that it misses worthwhile distinctions
in groups of responses or situations, even though it
analyzes responses by situation data.

Conclusion and Discussion

We have described how three-way analysis can be
applied fruitfully in practice and can lead to interest-
ing and interpretable results. Notably, it has been seen
that SMPCA concisely summarizes the three-way data
in all its facets, that is, in terms of main effects but
also in terms of two- and three-way interactions. It
should be kept in mind that the representation of the
three-way data analyzed here is only one of many
possible different representations of the information
in the data. However, the main phenomena encoun-
tered here can be expected to be found in any other
good representation of these data.

The present article has illustrated the complete pro-
cess of obtaining a concise description of one’s three-
way data. All basic three-way analysis steps (prepro-
cessing, balancing fit and parsimony to choose the
numbers of components, studying fit and residuals,
optimization of simple structure rotation, and study-
ing stability of the solution) can be carried out with
Tucker3.m. Most of these steps can also be performed
in SWAYPACK.

Sometimes, in addition to the three-way data, ex-
ternal information on (for instance) the individuals is
available, and one may wish to relate this information
to the components found through 3MPCA. A straight-
forward way to do this is to relate the individuals
scores on such external variables directly to the A-
mode components, For quantitative external variables,
one can simply use correlations between these vari-
ables and the components; in case of categorical ex-
ternal variables, one can compute category averages
for each component. In both ways one gains further
information for interpreting the A-mode components
as well as for understanding the process that generated
the three-way data. An example of a use of external
information for the present data can be found in Van
Mechelen and Kiers (1999).

The present example data set has been analyzed
only with 3MPCA. We did, however, check whether
a good PARAFAC solution could be found for this
data set. It was found that PARAFAC with two com-
ponents accounted for 28% of the variance in the data,
three components accounted for 32%, and four com-
ponents accounted for 36%. Although these values are
reasonable, they are relatively low compared with the
3MPCA results, and more importantly, the solutions
were rather uninteresting. For example, in the four-
dimensional solution, the columns of B were very
similar, and so were those of C. Thus, the solution by
no means gives a useful grouping of response scales
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or situations. This also held for the three- and two-
dimensional solutions. The columns of A did differ,
but all in all the PARAFAC solutions did not appear
useful. Therefore, 3MPCA seems better suited for
these data.

The presented application was one in the area of
personality psychology. As mentioned at the begin-
ning of this article, three-way data can emerge in
many different contexts in psychology, and modeling
such data by PARAFAC or 3MPCA can be expected
to be fruitful as soon as the data can be reduced
through components. In all cases, three-way analyses
have the advantage over two-way analyses in that they
take differences along the three modes and all inter-
actions into account; in addition, they summarize
these differences by providing the main dimensions of
within-mode differences and give a concise descrip-
tion of the interactions between all the modes.
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