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Producing a uniform polymer by batch processing is important for the following reasons: to
improve the downstream processing performance, to enable material produced at one site to be
used by another, and to remain competitive. Eliminating the sources of batch-to-batch variability
and tightening the control of key variables are but two ways to accomplish these objectives. In
this work, it is shown that multiway principal component analysis (MPCA) can be used to identify
major sources of variability in the processing steps. The results show that the major source of
batch-to-batch variability is due to reactor temperature variations arising from disturbances in
the heating system and other heat-transfer limitations. Correlations between the variations in
the processing steps and the final product properties are found, and recommendations to reduce
the sources of variations are discussed.

1. Introduction

Multivariate statistical analysis methods can assist
in the identification of process correlations, thereby
supporting or improving existing process knowledge.
Previous researchers have used the multivariate meth-
ods of principal component analysis (PCA), partial least
squares (PLS), and canonical correlation analysis (CCA)
successfully in several ways (MacGregor et al., 1994,
Wold, 1978, Piovoso et al., 1992a, Kosanovich and
Piovoso, 1991). They include, but are not limited to,
data analysis, model development, prediction, and
control variable selection. Most of the examples are
taken from continuous processes. In the application
investigated here, a variant of the PCA technique,
multiway PCA (MPCA), is used to analyze data taken
from an industrial batch process.
Batch and semibatch processes play an important role

in the chemical industry, mainly because of their
flexibility to produce low-volume, high-value products.
Examples include reactors, crystallization, distillation,
injection-molding processes, and the manufacture of
polymers. Batch processing typically involves charging
the vessel, processing under controlled conditions, and
finally discharging the product. Successful operation
means tracking a prescribed recipe and the process
variables’ trajectories with a high degree of reproduc-
ibility from batch to batch. Temperature and pressure
profiles are implemented with servocontrollers, and
precise sequencing operations are carried out by tools
such as programmable logic controllers.
The main characteristics of batch processes, flex-

ibility, finite duration, and nonlinear behavior, also
make process control difficult. Control problems are
complicated further by a lack of sufficient on-line
instrumentation. While feedback control in the con-
tinuous process sense may not be possible, statistical
quality control in some form is an option that is often
used. Currently, CUSUM techniques are used to adjust
the rate and duration of heating or cooling and the

duration of the specific stages of the batch. CUSUM,
or cumulative sum, calculates the sum of the errors over
a time window and statistically charts the result.
Statistical techniques such as Shewhart charts may be
applied to characterize information about a single
important variable, and still others such as MPCA may
be used to analyze the multivariate variations.
The primary goal of this study is to demonstrate how

MPCA can be used to improve process understanding.
This is achieved by analyzing data taken from an
industrial batch polymer reactor. It is shown that
MPCA can be used effectively to identify the major
sources of variability in these data and that these
variations are related to product quality properties. To
wit, recommendations are made on how to reduce or
eliminate the variability.
Reducing the variability in the process will permit the

production of a uniform, high-quality product. The
economic stake for achieving this is potentially large
with further ramifications in plant operations such as
(a) lower energy costs, (b) lower raw material costs, (c)
reduced time to transition between different products,
(d) reduced off-line product testing, and (e) reduced
downtime, to name a few. These opportunities exist in
the batch process studied here, and since more than one
manufacturing location produces either the same or
analogous products, any modifications that reduce or
eliminate the variability at one location will be ap-
plicable to others.
The paper is organized as follows. First, a process

description is provided. Second, the MPCA method is
outlined, starting with a review of conventional PCA.
Third, the results obtained, from applying MPCA to
data taken from two reactors producing the same
polymer recipe, are presented and discussed. Finally,
suggestions are made for process improvements.

2. Process Description

The charge to the reactor is an aqueous solution that
is first boiled in an evaporator until the water content
is reduced to approximately 20% by weight. The
evaporator’s contents are then discharged into a reactor

* Author to whom correspondence should be addressed.
Phone: (803) 777-0143. Fax: (803) 777-8265. E-mail:
kosanoka@sun.che.sc.edu.

138 Ind. Eng. Chem. Res. 1996, 35, 138-146

0888-5885/96/2635-0138$12.00/0 © 1996 American Chemical Society



in which 10-20 lbs. of polymer residue may be present
from the processing of the previous batch.
This batch reactor is operated according to a combi-

nation of prespecified reactor and heat source pressure
profiles and timed stages. Example profiles are shown
in Figure 1 (see Table 1 for nomenclature). The time
to complete a batch is approximately 120 min. Key
process checkpoints (e.g., attaining a specific tempera-
ture within a given time) determine when one process-
ing stage ends and the next one begins.
In the first step of the recipe, heat is applied to the

reactor to further concentrate the reactants and to
supply the activation energy to start the polymerization
reactions. At the outset, the reactor temperature and
the pressure rise rapidly (see Figure 1). Sensor mea-
surements indicate the existence of a temperature
gradient having as much as 40 °C difference between
the material at the top and at the bottom of the reactor.
Shortly after the pressure reaches its setpoint, the entire
mixture is boiling and the temperature gradient disap-
pears. The solution is postulated to be well-mixed at
this time. Measurements such as the cumulative
amount of water removed are also used as an indication
of the extent of polymerization.
In the second step, the reactor pressure is reduced

(ramped down) to 0 psig to flash off any remaining water
after a desired temperature is reached. Simultaneous
ramping of the heat source to a new setpoint is also
carried out. The duration spent at this second setpoint
is monitored by a CUSUM loop so that the batch reaches
a desired final reactor temperature within the pre-
scribed batch time. In the third step, the heat source
is removed and the material is allowed to continue
reacting until the final desired temperature is reached.
The last step involves the removal of the finished
polymer as evidenced by the rise in the reactor pressure.
Each reactor is equipped with sensors that measure

the relevant temperature, pressure, and the heat source
variable values. These sensors are interfaced to a
distributed control system that monitors and controls
the processing steps. The locations of the sensors used
in this study are shown in Figure 2.

2.1. Processing Steps. Some comments on the
general operations are necessary to further clarify the
purpose of this study.
1. One evaporator may be used to prepare the charge

to several reactors. If a reactor is unavailable (e.g., a
longer processing time than usual), the contents of the
evaporator are kept above its freezing point by a blanket
of steam. A longer holdup time translates to a composi-
tion disturbance (more water) to the reactor which may
increase both the overall batch time and energy costs.
2. The evaporator temperature is not under closed-

loop control. Small deviations (1-2 °C) translate to a
composition disturbance to the reactor.
3. The critical desired temperatures are monitored

by CUSUM loops. Adjustment of the heat source, to
compensate for failure to reach a desired temperature
within a prescribed time, may occur during or at the
start of a batch. It will be shown that this practice
contributes to batch-to-batch process variability.
4. The product quality properties (e.g., molecular

weight) are determined by off-line laboratory analysis
for a selected number of batches. The analyses are
usually reported 8 h or more after a batch is manufac-
tured. This delay increases the difficulty in identifying
and correcting the causes for deviations of subsequent
batches.
5. The ultimate use of the product from each batch

is determined by process performance and by product
properties. Polymer from a batch that is not within the
prespecified limits requires special processing.

3. Multiway Principal Component Analysis

The primary purpose of this work is not to demon-
strate how multiway principal component analysis
(MPCA) might be used for process monitoring but rather
how it can be used to improve process understanding.
With this focus, only a brief overview of the technique
and its underlying statistical basis is presented. For a
detailed discussion of MPCA including the selection of
the number of principal components, development of
control charts, and computation of control limits for
statistical process control, the interested reader is

Figure 1. Example reactor profiles. Phs is the heat source supply
pressure, Tpc is the polymer center temperature, and Prb is the
reactor body pressure.

Table 1. Reactor Process Measurements

variable description

Tpc polymer center temperature
Tva vapor temperature
Tps reactor center temperature
Prb reactor body pressure
Vrv reactor vent valve position
Ths heat source supply temperature
Thj heat source jacket vent temperature
Thc heat source coil vent temperature
Phs heat source supply pressure
Vhs heat source supply valve position
Phs,sp heat source pressure control setpoint

Figure 2. Schematic diagram of batch reactor showing process
measurement locations. Table 1 contains a description of the
process variables.
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referred to the work by Nomikos (1995) and Nomikos
and MacGregor (1994a, 1995).
Multiway principal component analysis (MPCA) is an

extension of principal component analysis (PCA) for
three-dimensional data. Relative to continuous pro-
cesses, batch processes have an added dimension of the
batch number in addition to the measured variables and
sample times. To understand MPCA, it is necessary to
review conventional PCA first.
3.1. Principal Component Analysis. PCA decom-

poses a single, dependent set of data into a transformed
space defined by the eigenvectors of the covariance of
the data. Steady-state conditions and linearity of the
data are assumed to apply when PCA is used to analyze
data from continuous processes. If the data are cor-
related, their information content can be captured by a
smaller set of variables. For example, a typical process
may be instrumented to collect and store hundreds of
process measurements. Physicochemical relationships
tell us that there are not hundreds of independent
events occurring; therefore, the data are correlated. Any
technique that can capture the important events based
on the variability in the data will provide both a
reduction in the data size and a summary of the
information contained in the original data set (Kasper
and Ray, 1992). PCA is one such method. It generates
a set of pseudomeasurements (scores) that are linearly
independent, each of which captures the maximum
amount of variability in the data in descending order.
Hence, the reduced data set requires fewer numbers to
represent the same information found in the original
data set (Wold, 1978).
As an example, consider data consisting of observa-

tions taken from three sensors. A plot of these data is
shown in Figure 3a. Notice that the data are not
randomly scattered in the variable space; rather they
lie primarily along the dotted line drawn through the
data (Figure 3b). This line, p(1), is defined by the first
eigenvector or loading and represents that linear com-
bination of the data that captures the direction of
maximum variability. The projections of the data onto
p(1), as defined by their distances along it, constitute
the scores. If this approximation is not accurate enough
as determined by large residuals, a second eigenvector,
p(2), can be found as a function of the residual data
(Figure 3c). The residuals are obtained by subtracting
the previous projections from the original data. The two
eigenvectors define a plane in the original variable space
(Figure 3d). This process can be repeated systematically
until the size of the eigenvalue associated with each new

eigenvector is of such a small magnitude that it repre-
sents noise associated with the observations. In the
limit where the number of significant eigenvectors
equals the number of variables, there is no reduction
in the dimension of the variable space, but, more
importantly, it would suggest that the variables are
linearly independent. This is the special case of singu-
lar value decomposition.
3.2. Background on MPCA. Analogous to continu-

ous processes, batch data contain the time history of
each measured variable. Unlike continuous processes,
however, batch data must reflect the batch number from
which the time histories are taken. Multiway PCA is
PCA extended to deal with this extra dimension.
Batch processes are nonstationary and of finite dura-

tion. The generic processing steps are charging the
batch, processing the contents according to prescribed
profiles, and discharging the finished material. The
degree to which the product from each batch meets
quality specifications is determined, after the batch is
completed, by laboratory analysis. Feedback control of
the quality variables, in the same sense as that of a
continuous process, is not possible; however, feedback
control of other indirect measures of quality is some-
times possible (Garcia, 1984; Peterson et al., 1992).
While time histories of the process variables are re-
corded at high frequencies, the final quality measure-
ments are sampled at low frequencies. Statistical
process control (SPC) charts based on univariate analy-
sis usually are used to control product quality. This
must not be confused with the servo-regulatory control
layer that exists to keep the process variables tracking
their prescribed profiles.
Batch processes may exhibit batch-to-batch variability

for many reasons. A few are composition disturbances,
deviations from specified profiles, equipment defects,
and heat-transfer limitations. Quite often, these fluc-
tuations do not alter the product sufficiently to cause a
quality problem. However, large variations can lead to
the production of many off-aim batches if the problem
goes undetected. A monitoring model, developed using
MPCA, can be used to detect and to correct problems
early in the batch cycle (MacGregor and Nomikos, 1992;
Nomikos and MacGregor, 1994b).
Monitoring ideas for batch processes are plentiful.

Marsh and Tucker (1991) used the notion that the
trajectoriers ought to follow a certain dynamic pattern
and applied a simple SPC technique for a single-variable
monitoring scheme. Konstantinov and Yoshida (1992)
applied temporal shapes of time profiles, while Holloway
and Krogh (1990) used trajectory encoding to apply
qualitative reasoning to monitor the dynamics of the
batch.
Multivariate techniques can be used to identify

process variability and to develop monitoring models
and multivariate SPC charts for on-line process moni-
toring and control. Kresta et al. (1990) and MacGregor
et al. (1994) use PCA and projections to latent structures
(PLS) to analyze a large number of highly correlated
variables that defines a continuous chemical process.
By comparing new observations with a model that
describes normal variability, simple control charts can
be generated to detect data inconsistencies and process-
ing problems.
Piovoso et al. (1992a) developed an on-line monitoring

model and a control strategy based on a PLS/PCAmodel
and implemented it on an industrial, continuous chemi-
cal process. They demonstrated the effectiveness of the
on-line monitoring model to detect process upsets. In
a related work, Piovoso et al. (1992b) demonstrate and

Figure 3. Geometric explanation of PCA: (a) scatter plot of the
data; (b) dotted line labeled p(1) indicates the first eigenvector;
(c) dotted line labeled p(2) indicates a second eigenvector that is
orthogonal to the first; (d) the plane defined by p(1) and p(2) where
the data are projected.
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discuss the importance of prefiltering the data (outlier
and data validation) prior to model development.
MacGregor and Nomikos (1992) and Nomikos and
MacGregor (1994a,b, 1995) have proposed using MPCA
to monitor a commercial batch process. Kosanovich et
al. (1994) presented a preliminary report on the use of
MPCA for improving process understanding of an
industrial batch reactor.
3.3. MPCA Method. Batch data can be character-

ized by three parameters: batch number, process vari-
able, and sample time. Figure 4a illustrates a typical
three-dimensional data array, X, where the axes i ) 1,
2, ..., I, j ) 1, 2, ..., J, and k ) 1, 2, ..., K correspond to
the batch number, variables, and time, respectively.
MPCA is implemented by performing a PCA analysis
on an unfolded form of the three-dimensional data
array. There are three ways of unfolding the array to
form a two-dimensional matrix; transposing each matrix
when unfolding the array produces three different two-
dimensional matrices, yielding a total of six possibilities.
Analysis of PCA on each of the six matrices will explain
a different type of variability. The unfolding used in
this work is obtained by taking vertical slices along the
time axis and laying the slices side-by-side to produce
a two-dimensional matrix X of size (I × JK), as shown
in Figure 4b. Thus, the first J columns correspond to
all the variables over all the batches sampled at time k
) 1; the next J columns represent the same set of
variables at the next sample time, and so on. For more
details regarding multiway methods and their unfolding
for analysis, the reader is referred to Smilde (1992) and
Henrion (1994).
Analogous to PCA, MPCA performs a decomposition

on the data by finding the directions of maximum
variability (loadings) over all time and variables. The
scores are found by projecting all the data onto the
loadings. The scores, T, based on the entire history for
all the batches are orthogonal, and the loading matrix,
P ()PK), is orthonormal. Since P has information that
is a function of time, the scores can be computed prior
to obtaining the entire batch history. These projections
would be the scores at the present time, k. The
intermediate scores, t1, t2, ..., tk, and loadings, P1, P2,
..., Pk, are, in general, not orthogonal. The intermediate
scores provide information as to the degree to which the
variability is being explained by the model. The corre-
sponding loading matrix contains the correlations among
the variables up to that time, k. The number of loading
matrices and score vectors needed is generally small
when there is a high degree of correlation among the
data.
The data are normalized using the mean and stan-

dard deviation of each variable at each time in the batch
cycle over all batches. Subtracting the average batch
trajectory generally eliminates the major nonlinear and
nonstationary behavior of the process (MacGregor et al.,

1994). Hence, a linear, static technique such as MPCA
can be used to analyze perturbations about each mean
trajectory.
3.4. Statistical Measures of MPCA Analysis.

There are several ways of interpreting the MPCA
results. The ones used here are a combination of
statistical measures and graphical analysis (Martens
and Naes, 1989; Nomikos andMacGregor, 1994a). They
are (a) Q-statistic, a measure of the model mismatch
relative to new observations; (b) D-statistic, a measure
of the fit of new observations to the model space; (c)
variance plots, a measure of the batch profiles’ vari-
abilities; and (d) score plots, qualitative representations
of the batch-to-batch performance, relative to the cali-
bration model in the model space defined by the MPCA
analysis. Taken together, they provide an assessment
of the statistical significance of the MPCA analysis.
The Q-statistic is the sum of squares of the errors

between the data and the estimates. The latter are
calculated from a fixed number of principal components.
The error for the ith batch is defined as:

where x̂ is the estimate based on the MPCA model.
Q-statistics can also be computed for each variable (the
sum in eq 1 is taken over batches and time) and at each
point in time (the sum in eq 1 is taken over variables
and batches). In the first case, the sum yields the
amount of residual variability associated with a given
variable and, in the second, the amount of residual
variation at each point in time.
The D-statistic, or Hotelling statistic (Jackson, 1992),

measures the degree to which data fit the calibration
model. It is defined as:

where S is the estimated covariance matrix of the
scores, I represents the total number of batches, R is
the total number of principal components, and tr is a
vector of R scores. If the calibration model data
represent process operation at one setpoint and the
process has shifted to a new setpoint, then the D-
statistic most likely will show that data collected at this
new operating condition cannot be classified with the
calibration data.
Statistical limits on the Q-statistic and D-statistic are

computed based on assuming the data are normally
distributed in the multivariate sense (Jackson, 1980,
1992). When these assumptions are valid, the diagnos-
tic limits are useful to establish when a statistically
significant shift has occurred. Charts based on these
statistics and used in this manner are analogous to
conventional SPC charts.
The assumption of normality is rarely satisfied in

practice. Non-normal data tend to inflate the variance,
which, in turn, tends to reduce the D-statistic in eq 2.
Typically, this increases the probability of failing to
detect an outlier. In this work, since process monitoring
and model development are not the objectives, this
assumption of normality is not a major concern.
The explained variance (the total variance minus the

residual variance) is calculated by comparing the true
process data with the estimates computed from the
calibration model. This measure can be computed as a
function of the batch number, time, or variable number.
A large explained variance indicates that the variability

Figure 4. (a) Representation of batch data indicating the three-
dimensional structure; (b) a particular unfolding where the rows
are the batches and the columns are the variables, vj, sampled at
each time, τk.

Qi ) ∑
j

J

∑
k

K

(xi,j,k - x̂i,j,k)
2 (1)

D ) t′rS
-1trI(I - R)/(R(I2 - 1)) (2)
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in the data is captured by the model and that correla-
tions exist among the variables. The explained variance
as a function of time can be very useful to differentiate
among phenomena that occur in different stages of the
process operations.
The score plots provide a summary of process perfor-

mance from one batch to the next. All batches exhibit-
ing similar time histories will have scores which cluster
in the same region of the principal component space.
Thus, from a visual point of view, batch-to-batch process
variability is readily identified.

4. Data Analyses

Process data for the same polymer recipe are analyzed
for 50 nonconsecutive, sequential batches from a given
reactor, reactor A, and 31 consecutive batches from
another reactor, reactor B. The data are sampled at 1
min intervals during production of each batch. Nor-
malization of the data, as discussed in section 3.3., is
done prior to analysis. The final product quality
property data are obtained from laboratory measure-
ments of molecular weight and end groups, with one
reading for each batch.
Figure 5 is a score plot for a two principal component

(PC) calibration model developed using data taken from
reactor A. The numbers in the figure indicate the batch
number. Since our objective is process understanding
and not monitoring, only the first two PCs are selected
for analysis. Beyond two, the ability to explain the
results of MPCA in terms of the physical process is
extremely difficult if not impossible. Note that for
monitoring purposes, two PCs are probably insufficient
to capture all the process variability adequately. Also,
from a monitoring perspective, some of the batches (e.g.,
batch 12) may be classified as outliers. However, all of
the batches used for calibration have a classification of
first pass quality product. Thus, from a process per-
spective, there is no justification for removing any data.
Observe that, among the considerable scatter, there is
the sequence of indexed batches, 45-50, and several
others on the far right. A closer inspection of the
operating conditions for these batches indicates that
they were processed at a different heat-transfer rate
than the others.
Figure 6 shows the variance explained by the two-

PC model, as a percentage, for each of the three
indices: batch number, time, and process variable. The
lower set of bars in Figure 6a,c are the explained
variances for the first PC, while the upper set of bars
are the additional contribution from the second PC. The
solid line in Figure 6b is the explained variance over
time for the first PC, and the thicker line is the sum of
PC 1 and 2. This format of bars and lines will be used
throughout. The unexplained variance is not only noise.

More than two principal components are needed to
capture all the significant variations, but only two are
selected for process understanding purposes. Figure 6a
indicates, for example, that batch numbers 13 and 30
have a small explained variance, while batch numbers
12 and 33 have a greater amount of their variance
captured by the calibration model after two PCs. One
cannot conclude from this plot alone, however, that
batches 13 and 30 are poorly modeled by the calibration
model. Batches 13 and 30 may, in fact, have just small
random variations about the average batch trajectory.
If so, the scores for these will be nearly zero; hence, the
explained variations about the mean will also be neg-
ligible. Thus, we may conclude that batches 13 and 30
are modeled adequately by the average batch trajectory.
In Figure 6b, the magnitude of the explained variance

accounted for by PC 2 has noticeably increased after
minute 70. This second PC also exhibits large explained
variances in the heat source variables, Ths and Thc
(Figure 6c). From process knowledge, it is known that
the removal of water is the primary event in the first
part of the batch recipe, while polymerization dominates
in the later parts. This knowledge and these statistical
results led to the conclusion that better insights into
the variations may be obtained by separating the data
into two time histories. The first covers time k ) 1-53
min, while the second covers time k ) 54-113 min to
better match the physical phenomena.
Score plots developed from separately calibrated PC

models for each reactor are shown in Figure 7. Observe
the presence of clusters in Figure 7a,c for data from time
k ) 1-53 min and the scatter in Figure 7b,d for k )
54-113 min. Figure 7a exhibits three clusters: in the
upper right-hand corner, labeled by the symbol x; in
the lower center, labeled by the symbol X; and a nearly
linear one labeled by the symbol O. Figure 7c has three
clusters as well: batches 13, 15, and 22 (symbol x); a
linear cluster (symbol X); and another linear cluster
(symbol O). Three batches, 49, 23, and 26, are under-
scored in Figure 7a. These batches, will be referred to
subsequently to explain certain phenomena occurring
within the batch operation (also see Figure 11). Ad-
ditionally, the symbols X and x are used to define those

Figure 5. A two-PC score plot of reactor A’s data. The numbers
indicate the batch number.

Figure 6. Explained variance (%) (a) by batches, (b) over time,
and (c) over all variables for reactor A’s data.
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batches in the clusters that have high residuals in the
process variables.
One conclusion that can be drawn from the clustering

that is found during k ) 1-53 min but not in the later
processing time is that the later stage is not influenced
by the same factors which led to the formation of
clusters in the earlier stage, and conversely, that the
processing steps in the later stage remove whatever led
to the differentiation in the earlier stage.
The Q- and D-statistics for reactor A, as a function of

batch number, are shown in Figure 8 for time k ) 1-53
min. The Q-statistic for batches 30 and 37, for example,
exceeds the 95% limit for both PCs, indicating that the
calibration model does not capture well the variations
in these batches. In the D-statistics plot, batch 48
exceeds the 95% limit for both PCs. The conclusion that
can be reached is that the magnitudes of the variations
in this batch are larger than those captured in the
calibration model. The Q-statistic for 50 batches pro-
duced in reactor A as a function of time, depicted in
Figure 9, shows that deviations from the model subspace
occur primarily in the first 35 min.
Recall that batches 13 and 30 had small explained

variances. Observe, that the Q- and D-statistics for

batch 13 indicate that it is within the 95% limit for both
PCs. In contrast, the Q-statistic of batch 30 is not, while
its D-statistic is below the 95% limit. The conclusion
that can be drawn is that the variations in batch 13 are
small random deviations about the average batch. In
the case of batch 30, a small component of the data fit
the calibration model, but the majority do not. These
variations are either large random fluctuations or
variations that are orthogonal to the model subspace.
The sum of squares of the errors (SSE) for each

variable is shown in Figure 10. Observe that nearly all
batches in the clusters, labeled by X and x in Figure
7a, have at least 30% of the total error (Figure 10a).
Many of the same batches have significantly higher SSE
values for the individual variables as well. Closer
inspection of the three clusters in Figure 7a reveals that
a different value of the heat source pressure setpoint,
Phs,sp (Figure 10j), was used for each of the three
clusters. Thus, heat source pressure setpoint differ-
ences are the origin for the clusters. Figure 11 confirms
this finding. Figure 11a shows a representative batch
from each cluster (marked by the underscore) in Figure
7a. There is a different value of Phs,sp for prolonged
periods during the first 53 min. Parts b and c of Figure
11 show that the effects of Phs,sp are evident as well in
the variables Phs and Thj.
4.1. Data Analyses of Reactors A and B. Data

from both reactors (each producing the same recipe) are
analyzed using MPCA. Figure 12 shows a score plot
for a two-PC model. Each reactor forms a distinct
cluster. Possible reasons for this segregation are biases
in instrument calibration and time in service for each
reactor, but there may be other reasons as well. The
heat source pressure setpoint-induced clusters, visible
when each reactor’s data are modeled separately (cf.

Figure 7. (a and b) A two-PC score plot for reactor A’s data. (c
and d) Reactor B. Symbol x is used to indicate a cluster in the
upper right-hand corner, symbol X, the cluster in the lower center,
and symbol O, the third and nearly linear cluster.

Figure 8. Q- and D-statistics by batch number for k ) 1-53 min
for reactor A’s data: (a) Q-statistic for PC 1; (b) Q-statistic for PC
2; (c) D-statistic for PC 1; and (d) D-statistic for PC 2. The solid
horizontal line indicates the 99% confidence limit, and the dashed
horizontal line, the 95% confidence limit in all the plots. Observe
that batches 30 and 37 exceed both the 99% and 95% confidence
limits in both PC 1 and 2 of the Q-statistic but not the D-statistic;
batch 13 is within the 95% confidence limit of both the Q- and
D-statistics.

Figure 9. Q-statistic for k ) 1-53 min for reactor A’s data
illustrating larger deviations in both principal components during
the first 20 min of the operation.

Figure 10. (a) Fraction of the total error over all variables; (b-j)
sum of the squares of the errors by variable, for Reactor A’s data.
See Table 1 for a description of each variable and Figure 2 for
their sensor location.
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parts a and c of Figure 7), are not evident in Figure 12a.
Kosanovich et al. (1994) report similar findings.
Based on the previous discussion, the heat source

pressure setpoint variable is removed from the data set.
Two other variables, valve positions Vhs and Vrv, are also
excluded, as they provide no additional insights into the
data analysis. Because they are manipulated variables,
they did not correlate well with other variables and
hence are not well explained by a two-PC MCA model.
To remove individual instrument or setpoint-derived
biases, the remaining data for each reactor are mean-
centered by their individual variables’ mean trajectories
over all batches in each of the six clusters in Figures
7a,c. The results are then combined and analyzed using
MPCA.
Figure 13a is a two-PC score plot from k ) 1-53 min

for both reactors. The ellipses show control limits at
95% (- -) and 99% (-) confidence levels for the calibra-
tion model, assuming an approximate normal distribu-
tion. The two separate clusters (cf. Figure 12) no longer
appear in the score plot nor do clusters associated with
different setpoints (cf. Figures 7a,c). Hence, scaling by
the individual variables’ mean trajectories over all
batches is effective. Figure 13b indicates that the
dominant variations are associated with the reactor
temperature variables (magnitude of the explained
variance by PC 1). The use of the value of the amount
of explained variance to determine important variables
is considerably easier than analyzing the loadings. This

is because, in MPCA, the loadings are functions of time;
hence, the analysis is more involved. Contrast that to
the evaluation of a single number, the explained vari-
ance value. A high value of this quantity, for a given
variable, provides a reliable indication of its contribution
to a particular score.
From the score plot for a model of reactor A alone from

k ) 1-53 min (Figure 14a), batches 5, 40, and 7 have
constant values in the direction of PC 2, while they cover
much of the range of values associated with PC 1. The
labeling is as before to indicate the clustering that was

Figure 11. Temporal history of selected batches to demonstrate
the differences among the clusters depicted in Figure 7a: (a) heat
source pressure setpoint, Phs,sp; (b) heat source supply pressure,
Phs; (c) heat source jacket vent temperature, Thj, for reactor A’s
data.

Figure 12. Two-PC score plot for reactors A and B’s data
partitioned to match the approximate time of the physicochemical
phenomena. The separation is due primarily to biases in instru-
ment calibration.

Figure 13. (a) Score plot of reactors A and B’s data corrected for
heat source pressure setpoint differences for k ) 1-53 min. The
solid ellipse represents the 99% confidence limit and the dotted
ellipse the 95% confidence limit. (b) Explained variance (%) of
each variable over all batches and time. Observe the large
explained variance contributed by variable Ths, the heat source
supply temperature, to PC 2.

Figure 14. (a) Two-PC score plot for k ) 1-53 min for reactor
A’s data corrected for heat source pressure setpoint differences.
The solid ellipse represents the 99% confidence limit and the
dotted ellipse the 95% confidence limit. (b) Temporal history of
selected batches, delineated in plot a, of the reactor center
temperature, Tpc. (c) Temporal history of selected batches,
delineated in plot a, of the heat source supply temperature, Ths.
Plots b and c illustrate that the primary difference among these
batches is contributed by variations in temperature.
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found in Figure 7. By comparing the reactor temper-
ature values for these batches, it is found that a negative
value of PC 1 is associated with low temperatures, and
positive values correspond to high temperatures (Figure
14b). Analogous analyses of batches 23, 38, and 28
indicate that a negative value of PC 2 is associated with
low heat source temperatures, and positive values are
associated with higher heat source temperatures (Figure
13c).
Results of the MPCA analysis on data from k ) 54-

113 min are shown in Figure 15 for both reactors. The
score plot shows a single cluster (Figure 15a), while the
explained variance as a function of time shows a
dramatic rise in the first principal component around
the 70 min mark (Figure 15b). This increase is found
to be associated with variations in the heat source
variables (Figure 15c). From process knowledge it is
known that, at or near k ) 70 min, the external heat
source is abruptly turned off to both the jacket and coil
(cutoff point). This cutoff is a required step in the
current process recipe. This affects the rate at which
the residual vapors, in the jacket and coil, leave the
system. The residual vapor variations are a function
of the cutoff time and the state (energy) of the reactor
proper contents. The majority of the explained variance
by PC 2 occurs between 54 and 70 min (Figure 15c). A
cumulative rise of 40% in the explained variance of the
reactor pressure, Prb, is the greatest increase associated
with this principal component.
Since the principal components are determined in an

ordered fashion, reducing the variability in the reactor
temperature which is found to be the major source of
variability, will reduce batch-to-batch variability in the
processing steps and, possibly, final product quality
properties. Currently, the reactor temperature is not
controlled; a study by Kosanovich and Schnelle (1995),

investigating different control schemes to reduce tem-
perature variations, indicates that significant reduction
in batch-to-batch variability can be achieved but that
no one scheme can compensate for all the known,
measurable disturbances. Nevertheless, this operability
change is being pursued aggressively at one manufac-
turing site.
4.2. Quality Data Analysis. The final polymer

quality is determined by laboratory analysis of molec-
ular weight and end groups. The results are available
usually 8 h or more after the batch is completed. The
size of the production volume and laboratory costs make
quality measurements for every batch impossible. How-
ever, for this study, final product quality properties are
available, one for each batch; thus, analyses of the
correlations between the quality properties and process
variables are possible. Parts a and b of Figure 16 show
the relationship between the molecular weight and end
groups for data taken from both reactors. The expected
inverse relationship between these two polymer proper-
ties is evident; that is, a high molecular weight implies
a low number of end groups and vice versa.
Two MPCA calibration models are developed for each

time history, using process data from both reactors,
uncorrected for setpoint changes. This was done to
determine if setpoint changes correlated to quality
variations. The variations in the molecular weight and
end groups are correlated to the process variables by
regressing them onto the scores of the MPCA model.
This is effectively multiway principal component regres-
sion (MPCR). A similar analysis can be performed using
multiway partial least squares (MPLS). However, since
the primary objective of this work is to demonstrate that
MPCA can identify variations related to product quality
variations, there is no reason to compare one method
to another.
Figure 17 shows the predicted versus measured

values of the molecular weight and end groups. The
r-squared number (r2) represents the fraction of the
variance explained in the measurements by the model.
A substantial fraction of the variations in the quality
measurements is correlated to the variations captured
by the calibration model: 48-58% for molecular weight
and 36-49% for end groups. These results show that
product quality variations are correlated to the varia-
tions in the process measurements used in the model
and also imply that product quality can be improved
by reducing the variability in the process data.

5. Summary

This study demonstrates that MPCA can be used to
analyze historical data from a commercial batch reactor,

Figure 15. (a) Two-PC score plot for k ) 54-113 min for both
reactors’ data corrected for heat source pressure setpoint differ-
ences. The solid ellipse represents the 99% confidence limit and
the dotted ellipse the 95% confidence limit. (b) Explained variance
(%) over time shows that the contribution to PC 2 occurs in the
first 15 min. The solid line represents PC 1 and the dotted line
the cumulative effect of PC 1 and 2. (c) Explained variance (%)
over the variables (see Table 1 for a description of each variable).
Observe that the large contributions to PC 1 come from the
variables that describe the state of the heat source.

Figure 16. Laboratory results for end groups versus molecular
weight. The inverse relationship between the two is apparent.
Symbols x, X, and O are used to represent the clusters found in
Figure 7. Some of the batches marked by x have high molecular
weight and low end groups, while most of those marked by the
symbol X have low molecular weight and high end groups.
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leading to improved process understanding. Addition-
ally, the analysis shows a correlation between the
variations (∼50%) in the process variables and those of
the quality measurements. By using specific process
knowledge with the data analysis results, a more useful
interpretation of the analyses can be obtained.
Major sources of process variability are identified as

(1) differences in instrument calibration and/or reactor
age, (2) betweem reactors, varying heat rate (variable
pressure setpoint) during and from batch to batch, and
(3) the uncontrolled residual vapor decay rate of the heat
source after 70 min of processing (cutoff point). The
major change, that of direct control of the reactor
temperature to a prescribed trajectory, is recommended;
plans to achieve this are underway at at least one
manufacturing site.
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Figure 17. Predicted versus laboratory results for end groups
and molecular weight as determined by MPCR. The r2, fraction
of the variations explained by the model, is approximately 50%.
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