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Abstract 

Multivariate statistical methods for the analysis, monitoring and diagnosis of process operating performance are 
becoming more important because of the availability of on-line process computers which routinely collect measurements on 
large numbers of process variables. Traditional univariate control charts have been extended to multivariate quality control 
situations using the Hotelling T2 statistic. Recent approaches to multivariate statistical process control which utilize not only 
product quality data (Y), but also all of the available process variable data (X) are based on multivariate statistical projection 
methods (principal component analysis, (PCA), partial least squares, (PLS), multi-block PLS and multi-way PCA). An 
overview of these methods and their use in the statistical process control of multivariate continuous and batch processes is 
presented. Applications are provided on the analysis of historical data from the catalytic cracking section of a large 
petroleum refinery, on the monitoring and diagnosis of a continuous polymerization process and on the monitoring of an 

industrial batch process. 
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1. Introduction 

The objective of statistical process control @PC) 
is to monitor the performance of a process over time 
to verify that it is remaining in a ‘state of statistical 
control’. Such a state of control is said to exist if 
certain process or product variables remain close to 
their desired values and the only source of variation 
is ‘common-cause’ variation, that is, variation which 
affects the process all the time and is essentially 
unavoidable within the current process. 

Traditionally, SPC charts (Shewhart, CUSUM and 
EWMA) are used to monitor a small number of key 
product variables (Y) in order to detect the occur- 
rence of any event having a ‘special’ or ‘assignable’ 

cause. By finding assignable causes, long term im- 
provements in the process and in product quality can 
be achieved by eliminating the causes or improving 
the process or its operating procedures. However, 
monitoring only a few quality variables is totally 
inadequate for most modern process industries. The 
traditional SPC approaches ignore the fact that with 
computers hooked up to nearly every industrial pro- 
cess, massive amounts of data are being collected 
routinely every few seconds on many process vari- 
ables (X), such as temperatures, pressure, flow rates, 
etc. Final product quality variables (Y), such as 
polymer properties, gasoline octane numbers, etc., 
are available on a much less frequency basis, usually 
from off-line laboratory analysis. All such data should 
be used to extract information in any effective scheme 
for monitoring and diagnosing operating perfor- 
mance. However, all these variables are not indepen- 
dent of one another. Only a few underlying events 
are driving a process at any time, and all these 
measurements are simply different reflections of these 
same underlying events. Therefore, examining them 
one variable at a time as though they were indepen- 
dent, makes interpretation and diagnosis extremely 
difficult. Such methods only look at the magnitude 
of the deviation in each variable independently of all 
others. Only multivariate methods that treat all the 

data simultaneously can also extract information on 
the directionality of the process variations, that is on 
how all the variables are behaving relative to one 
another. Furthermore, when important events occur 
in processes they are often difficult to detect because 
the signal to noise ratio is very low in each variable. 
But multivariate methods can extract confirming in- 

formation from observations on many variables and 
can reduce the noise levels through averaging. 

The application of multivariate projection meth- 
ods, such as principal component analysis (PCA), 
partial least squares (PLS), multi-block PLS and 
multi-way PCA to process monitoring and fault diag- 
nosis is reported here. Similarities and differences 
with the traditional methods are discussed. The use 
of the projection methods for analyzing and inter- 
preting historical plant operating records available in 
computer data bases is illustrated with an example 
from a large petroleum refinery. On-line monitoring 

and diagnosis of process operating performance in 
continuous processes (using PLS and multi-block 

-. 
) 

Time --) 

Fig. 1. Quality control of two variables - the misleading nature 
of univariate charts. 
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PLS) and batch processes (using multi-way PCA) is 
presented and illustrated with a continuous polymer- 
ization process and an industrial batch process. 

2. Multivariate methods for monitoring product 
quality 

Statistical process control charts such as the 
Shewhart chart [II, the CUSUM plot [2] and the 
EWMA chart [3], are well established statistical pro- 
cedures for monitoring stable univariate processes. A 
Shewhart chart consists of plotting the observations 
sequentially on a graph which also contains the 
target value and upper and lower control limits. If an 
observation exceeds the control limits a statistically 
significant deviation from normal operation is 
deemed to have occurred, which triggers the search 

for an assignable cause. The control limits are usu- 
ally determined by analyzing the variability in a 
reference set of process data collected when only 
normal or ‘common cause’ variability is present and 
acceptable operation is achieved. The limits are then 
usually set at plus and minus three standard devia- 
tions about the target. 

In most industries, traditional univariate control 
charts (Shewhart, CUSUM and EWMA) are used to 
separately monitor key measurements on the final 
product which in some way define the quality of that 
product. The difficulty with this approach is that 
these quality variables are not independent of one 
another, nor does any one of them adequately define 
product quality by itself. Product quality is only 
defined by the correct simultaneous values of all the 
measured properties, that is, it is a multivariate prop- 

erty. 
The difficulty with using independent univariate 

control charts can be illustrated by reference to Fig. 

1. Here only two quality variables ( yl, yZ) are 
considered for ease of illustration. Suppose that, 
when the process is in a state of statistical control 
where only common cause variation is present, y, 
and y2 follow a multivariate normal distribution and 

are correlated ( pY, y2 = 0.8) as illustrated in the joint 
plot of y, vs. yZ in Fig. 1. The ellipse represents a 
contour for the in-control process, and the dots repre- 
sent a set of observations from this distribution. The 
same observations are also plotted in Fig. 1 as 
individual Shewhart charts on y, and y, vs. time 

with their corresponding control limits. Note that by 
inspection of each of the individual Shewhart charts 
the process appears to be clearly in a state of statisti- 
cal control, and none of the individual observations 
give any indication of a problem. The only indication 
of any difficulty is that a customer has complained 
about the performance of the product corresponding 
to the 8 in Fig. 1. If only univariate charts were 
used, one would clearly be confused. The same 
customer apparently liked all the other lots of prod- 
uct sent to him, many of them with values of y, and 
y, much further from target. The true situation is 
only revealed in the multivariate y, vs. y, plot 
where it is seen that the lot of product indicated by 
the @J is clearly outside the joint confidence region, 
and is clearly different from the normal ‘in-control’ 
population of product. 

In spite of the misleading nature of univariate 
quality control charts they continue to be almost the 
only form of monitoring used by industry. However, 
several multivariate extensions of the Shewhart, 
CUSUM and EWMA based on Hotelling’s T2 statis- 
tic have been proposed in the literature (see review 
articles by Wierda [4] and Sparks 151). 

2.1. Traditional multivariare quality control charts 

Natural extensions of the Shewhart chart to situa- 
tions where one observes a vector of k variables 
y,, 1 at each time period are the multivariate x2 and 
T2 charts. The T2 chart has its origins in the work of 
Hotelling [6], and several references [7-121 discuss 
the charts in more detail. 

Given a (k x 1) vector of measurements y on k 

normally distributed variables with an in-control co- 
variance matrix 2 one can test whether the mean /.L 
of these variables is at its desired target 7 by 

computing the statistic 

(1) 
This statistic will be distributed as a central x2 

distribution with k degrees of freedom if I_L = 7. A 
multivariate x2 control chart can be constructed by 
plotting x 2 vs. time with an upper control limit 
(UCL) given by xi(k) where (Y is an appropriate 
level of significance for performing the test (e.g. 
ff = 0.01). 

Note that this multivariate test overcomes the 
difficulty illustrated in the example of Fig. 1, where 



6 T. Kourti, J.F. MacGregor/Chemometrics and Intelligent Laboratory Systems 28 (1995) 3-21 

univariate charts were incapable of detecting the 
special event denoted by @J The x2 statistic in Eq. 
(1) represents the directed or weighted distance 
(Mahalanobis distance) of any point from the target 
7. All points lying on the ellipse in Fig. 1 would 
have the same value of x2. (The ellipse is the 
solution to Eq. (1) for x * = x,(k), for two variables). 
Hence, a x2 chart would detect as a special event 
any point lying outside of the ellipse. 

When the in-control covariance matrix Z is not 
known, it must be estimated from a sample of n past 
multivariate observations as 

S=(n-1))’ 5 (yi-y)(y,-j)T (2) 
r=l 

When new multivariate observations (y) are ob- 
tained, then Hotelling’s T* statistic given by 

T*=(y-~)~S-‘(y-7) (3) 

can be plotted against time. An upper control limit 
(UCL) on this chart is given by: 

T&c (n-r)(n+l)kF,(+k) 
n(n-k) (4) 

where F,(k, n - k) is the upper 100~1% critical 
point of the F distribution with k and n - k degrees 
of freedom [13]. 

The above charts are for a single new multivariate 
observation vector at each time. If an average of m 

new multivariate observations are to be used at each 
time or if the estimate of the variance S is based on 
pooling estimates from rational subgroups, then the 
above definitions of the x2 and T’ charts and their 
UCLs must be correspondingly redefined [4]. Fur- 
thermore, if the charts are utilized to examine past 
data that are also used in computing S, then the 
distributional properties of T2 are different from the 
above [4,13]. 

Alternatively, other types of multivariate charts, 

such as multivariate CUSUM and multivariate 
EWMA charts may be used [4,5]. 

The above ideas are illustrated here by monitoring 
the properties of low-density polyethylene produced 
in a multi-zone tubular reactor (we consider here the 
first two zones>. Details on this simulated process 
can be found in MacGregor et al. [14]. The operating 
conditions in the reactor influence the molecular 
properties of the polymer produced (weight and 
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Fig. 2. T2 chart on five product properties of polyethylene. 
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number average molecular weights, MW, and MW,, 
and long and short chain branching, LCB and SCB) 
and these in turn affect the behaviour of the polymer 
in its final application. The productivity variable of 
interest is the conversion per pass, CONV. The five 
product variables (Y) of interest (MW,, MW,, LCB, 
SCB and CONV) are monitored with a T2 chart 
(Fig. 2). The unnumbered observations in this chart 
were obtained by simulating normal operating condi- 
tions; the numbered observations correspond to sim- 
ulated problematic operation caused by increasing 
levels of fouling in the first zone of the reactor. The 
dashed line (- - -> corresponds to a 99% limit and 
the dotted line (. . . ) indicates the 95% limit. Notice 
that the onset of fouling had an effect on the product, 

and that this effect could be detected in all cases, by 
following the T* calculated from the product quality 
properties. Had we used univariate charts, points 52 
and 53 would have been missed. This is because, for 
these points, the individual values for the five Y 
variables are within the expected limits of the corre- 
sponding univariate charts; however, the values of 
these five variables relative to each other are not 
justified by the correlation structure of the Y matrix 
(determined under normal operating conditions), and 
this was detected by the multivariate charts. 

2.2. Quality control charts based on principal com- 

ponents 

When the number of measured quality variables 
(k) is large, one often finds that they are highly 
correlated with one another and their covariance 
matrix 2 is nearly singular. A common procedure 
for reducing the dimensionality of the quality vari- 

able space is principal component analysis (PCA) 
[11,15,16]. The first principal component (PC) of y 
is defined as that linear combination t, =p:y that 

has maximum variance subject to 1 p1 I= 1. The sec- 
ond PC is that linear combination defined by t, = p: y 

which has next greatest variance subject to Ip21 = 1, 

and subject to the condition that it be uncorrelated 
with (orthogonal to) the first PC (t,). Additional PCs 
up to k are similarly defined. In effect PCA decom- 

poses the observation matrix Y as: 

Y = TPT = i tip: (5) 
i= 1 

PCA is scale dependent, and so the Y matrix must 

be scaled in some meaningful way. The most usual 
form of scaling is to scale all variables to unit 
variance and then perform PCA on the correlation 
matrix. Alternatively, in quality control situations, 
scaling the Ys inversely proportional to their specifi- 
cation limits or some other measure of relative im- 
portance is usually more meaningful. 

In practice, one rarely needs to compute all the k 

principal components, since most of the variability in 
the data is captured in the first few principle compo- 
nents. The NIPALS algorithm [16] is ideal for com- 
puting the principal components in a sequential man- 

ner when the number of variables is large. The 
number of PCs that provide an adequate description 
of the data can be assessed using a number of 
methods [11] with cross-validation [17] being per- 
haps the most reliable. By retaining only the first A 
PCs the Y matrix is approximated by: 

+= &$ (6) 
r=l 

In practice 2 or 3 PCs are often sufficient to explain 
most of the predictable variations in the process. 

Having established a PCA model based on histori- 
cal data collected when only common cause varia- 
tion was present, future behaviour can be referenced 
against this ‘in-control’ model. New multivariate 
observations can be projected onto the plane defined 
by the PCA loading vectors to obtain their scores 

(ti,new = pTynew >, and the residuals enew = y,,, - 

9”,,) where j,,, = PA tA,new, and tA,new is the (A X 1) 
vector of scores from the model and PA is the 
(k X A) matrix of loadings. Multivariate control 
charts based on Hotelling’s T2 can be plotted based 
on the first A PCs, where 

Ti= 5; 
(7) 

i=l I, 

and ~5 is the estimated variance of ti. If A = 2, a 
joint t, vs. t, plot can be used. 

Note that the traditional Hotelling T* in Eq. (3) is 
equivalent [15,18] to 

T+;+ 2 $ 
(8) 

i=l f, i=A+ 1 ‘t, 

By scaling each tf by the reciprocal of its vari- 
ance, each PC term plays an equal role in the 
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computation of T2 irrespective of the amount of 

variance it explains in the Y matrix. This illustrates 
some of the problems with using T2 when the 
variables are highly correlated and z is very ill- 
conditioned. When the number of variables (k) is 
large, 2 is often singular and cannot be inverted. 
Even if it can, the last PCs (i =A + 1, . . , k) in Eq. 
(8) explain very little of the variance of Y and 
generally represent random noise. By dividing these 
t,s by their very small variances, slight deviations in 
these tjs which have almost no effect on Y will lead 
to an out-of-control signal in T*. Therefore, T,” 

based on the first A (cross-validated) PCs provides a 
test for deviations in the product quality variables 
that are of greatest importance to the variance of Y. 

However, monitoring product quality via T,’ based 
on the first A PCs is not sufficient. This will only 
detect whether or not the variation in the quality 
variables in the plane of the first A PCs is greater 
than can be explained by common cause. If a totally 
new type of special event occurs which was not 
present in the reference data used to develop the 
in-control PCA model, then new PCs will appear and 
the new observation y,,, will move off the plane. 
Such new events can be detected by computing the 
squared prediction error (SPE,) of the residuals of a 
new observation [ 191. 

SE, = t (Y,,,,, -kv,r)2 (9) 
i=l 

This is also often referred to as the Q statistic [ll] or 
distance to the model. It represents the squared 
perpendicular distance of a new multivariate obser- 
vation from the projection space. When the process 
is ‘in-control’, this value of SPE, or Q should be 
small. Upper control limits for this statistic can be 
computed, from historical data, using approximate 
results for the distribution of quadratic forms [ 11,201. 
A very effective set of multivariate control charts is 
therefore a T2 chart on the A dominant orthogonal 
PCS (t,, . ..) tA) plus a SPE, chart. 

3. Multivariate methods for process monitoring 

SO far, statistical quality control (SQC) methods Certainly one could apply the previously dis- 
based only on product quality data (Y) have been cussed SQC charting methods directly to the process 

discussed. This use of only product quality data has 
been the common approach to quality control meth- 
ods developed throughout the statistical literature. 
However, in these approaches, all of the data on the 
process variables (X) are being ignored. If one truly 
wants to do statistical process control (SPC), one 
must look at all of these process data as well. There 
are often hundreds of process variables, and they are 
measured much more frequently and usually more 
accurately than the product quality data (Y). Further- 
more, any special events which occur will also have 
their fingerprints in the process data (X). Sometimes 
product quality is only determined by the perfor- 
mance of the product later, in another process (i.e., 
catalyst conditioning); it would be useful to know if 
the product is good before using it; monitoring the 
process would help detect problems during produc- 
tion that may lead to a questionable product. 

There are several other reasons why monitoring 
the process is advantageous. Sometimes, only a few 
properties of the product are measured, but these are 
not sufficient to define entirely the product quality. 
For example, only the relative viscosity (RV) is 

charted in nylon production, although there are other 
properties (amine end groups) that affect the dye 
properties of the product. If process problems that 
affect amine groups occur, they will not be detected 
by following the RV only. In these cases the process 
data may contain more information about events 
with special causes that may affect the product qual- 
ity (product performance). 

Finally, even if product quality measurements are 
frequently available, monitoring the process may 
help in diagnosing assignable causes for an event. 
When monitoring product quality, even if we deter- 

mine which quality variable caused the multivariate 
chart to go out of limits, it may still be difficult to 
determine what went wrong in the process. For 
example, in the LDPE process by following the 
product variables it was determined that for point 56, 
SCB is the major contributor to the out-of-control 
signal. However, there may be several reasons (com- 
binations of process conditions) that might have 
caused this property to change. Monitoring the pro- 
cess would bring us closer to the answer as will be 
demonstrated later. 
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variables (X) as well [18]. However, as discussed 
previously, with large numbers of highly correlated 
variables, these methods are impractical. Further- 

more, they offer no way of relating the X and Y 
data, and least squares regression analysis is also 
impractical in this situation. Another problem is that 

t1 

X-block scores 

t3 

. . . . . . . . . . . - 

-1OL 
-10 -5 0 5 10 15 20 2s 

4 

Fig. 3. PLS score plots for 15 days of operation of the catalytic cracking and fractionation section of a refinery (top: II vs. t,; bottom: t, VS. 

t,). 
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these methods cannot handle missing data; sensor 
failure is a common problem in the process indus- 
tries. The only practical approaches to multivariate 
SPC appear to be those based on multivariate statisti- 
cal projection methods such as PCA and PLS (pro- 
jection to latent structures or partial least squares). 
The methods are ideal for handling the large number 
of highly correlated and noisy process variable mea- 
surements that are being collected by process com- 
puters on a routine basis; these methods can also 
handle missing data. PCA has already been de- 
scribed, and a brief overview of PLS follows. 

3.1. PLS - partial least squares 

Given two matrices, an (n X ml process variable 
data matrix X, and an (n X k) matrix of correspond- 
ing product quality data Y, one would like to extract 
latent variables that not only explain the variation in 
the process data (X), but that variation in X which is 
most predictive of the product quality data (Y). PLS 
is a method (or really a class of methods) which 
accomplishes this by working on the sample covari- 
ante matrix (XTY)(Y TX). In the most common 
version of PLS [21,22], the first PLS latent variable 
t, = wTx is that linear combination of the x vari- 
ables that maximizes the covariance between it and 
the Y space. The first PLS loading vector w, is the 

first eigenvector of the sample covariance matrix 
XTYYTX. Once the scores t, = Xw, for the first 
component have been computed the columns of X 
are regressed on t, to give a regression vector 
p, = Xt,/tTt, and the X matrix is deflated to give 
residuals X2 = X - t, PT. The second latent variable 
is then computed as t, = wzx where w? is the first 
eigenvector of Xl YY TX 2 and so on. As in PCA the 
new latent vectors or scores (t,, t2, ) and the 
loading vectors (w,, w2, . . > are orthogonal. For 
large ill-conditioned data sets, it is usually conve- 
nient to calculate the PLS latent variables sequen- 
tially via the NIPALS algorithm [21] and to stop 
based on cross-validation criteria. 

3.2. Analysis of historical process data sets 

With process computers hooked up to most indus- 
trial processes, massive amounts of process data are 

being collected and stored in data bases. Very little 
analysis and interpretation of these data are being 
performed because of the overwhelming size of the 
data bases and because of the very ill-conditioned 
nature of the routine operating data being collected. 
Furthermore, the signal to noise ratio is often poor in 
these data, and there are often significant amounts of 
missing data. However, all these problems are well 
addressed by the multivariate statistical projection 
methods of PCA and PLS. By examining the be- 
haviour of the process data in the projection spaces 
defined by the small number of latent variables (t,, 

t 2, ..., t,), and interpreting process movements in 
this reduced space by examining the corresponding 
space defined by the loading vectors (p,, pz, . . . , 

p,), or (w,, w2, . . . . wA) in the case of PLS, it is 

often possible to extract very useful information 
from these data bases, and to use this information to 
improve the process. Some early notable attempts at 
using these approaches for the analysis and interpre- 
tation of data bases are the works of Denney et al. 
[23] on a sulphur recovery unit, and Moteki and Arai 

[24] on a low-density polyethylene process. The 
latter work is particularly notable in that the analysis 
was able to lead them quickly to process conditions 
that yielded desired new lamination grades and injec- 
tion grades of polyethylene. 

Slama [2.5] used PCA and PLS to analyze data on 
more than 300 process variables and 11 product 
grades from the fluidized bed catalytic cracking and 
fractionation section of a refinery. The difficulty 
with such massive data sets is first to find out where 
in the data there is useful information. The projec- 
tions of hourly average data from fifteen days of 
continuous operation into the planes t,-t, and t,-t, 
defined by the first three latent variables are shown 
in Fig. 3. The data appears to cluster into about five 
distinct regions, operating in a stable manner for 
several days at each condition before shifting to 
another region. There is very little information about 
the process within each stable data cluster. However, 
by focusing attention on the transitions between the 
regions at time periods 58-59, 76-77, 110, 197 and 
212-213 we can probably learn most of what there 
is to know about the 15day period of operation. To 
help diagnose the reasons for these shifts in process 
operation, one can interrogate the underlying multi- 
variate model (as discussed below in Section 3.4) 



T. Kourti, J.F. MacGregor/ Chrmometrics and Intelligent Laboratory Systems 28 (1995) 3-21 11 

and display the process variable contributions to these methods to analyze process data. Wise et al. 
these shifts. [26] applied PCA to analyze and diagnose systematic 

There are several interesting examples of using variations in the behaviour of a slurry-fed ceramic 

FOULING DETECTION IN LDPE REACTOR 

I61 
14- 

12- 
_ UCL, (99.0 %) 

--------------------------- 10 - j--- 

3 
8- 

6 

4 

2 

0 
0 10 20 30 40 50 60 

OBSERVATION NUMBER 

450 

0 
0 10 20 30 40 50 60 

OBSERVATION NUMBER 

Fig. 4. T’ chart on three PLS scores and squared prediction error (SPE,) chart for monitoring the LDPE process. Points 52-56 denote a 

period where fouling occurred in the first zone of the reactor. 
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melter process. Skagerberg et al. [27] applied PLS to 
predict polymer properties from measured tempera- 
ture profiles in a tubular low-density polyethylene 

reactor and to interpret the behaviour of this process. 
Hodouin et al. [28] used PCA and PLS to analyze 
and interpret the behaviour of mineral flotation and 
grinding circuits in a large mineral processing plant. 
Dayal et al. [29] used PLS to model the dynamic 
behaviour of a continuous Kamyr digester in a pulp 

mill, and diagnosed the reasons for poor control of 
Kappa number by examining the loading plots (w,, 

w*). 

3.3. Monitoring continuous processes 

Although the analysis of historical data bases is 

an important first step towards process improvement, 
establishing multivariate control charts to detect spe- 
cial events as they occur, and to diagnose possible 
causes for them while the information is fresh, is an 
essential part of SPC. The philosophy applied in 
developing multivariate SPC procedures based on 
projection methods is the same as that used for the 
univariate or multivariate Shewhart charts. An appro- 

; I.- 

c i- 

5 )- 

4 

3 

2 

1 

0 

-1 

-2.- 

priate reference set is chosen which defines the 
normal operating conditions for a particular process. 
In other words, a PCA or PLS model must be built 
based on data collected from various periods of plant 
operation when performance was good. Any periods 
containing variations arising from special events that 
one would like to detect in the future are omitted at 
this stage. The choice of the reference set is critical 
to the successful application of the procedure as 
discussed in Kresta et al. [19]. 

When the data are serially autocorrelated the X 
and Y matrices can be augmented with time-lagged 
values, in order to account for the dynamics of the 
process and the disturbances. Multivariate time series 
analysis is discussed for PCA by Jollife [30], and 
Jackson [l l] and for PLS by Wold et al. [xl] and 
MacGregor et al. [32]. Dead times between variables 
are accounted for by time shifting. An industrial 
example where plant data had been both time shifted 
to account for dead times between X and Y, and 
lagged to account for autocorrelations in Y, is de- 
scribed in Dayal et al. [29]. 

The multivariate control chart is now a T’ chart 

u 

T ut_l 

I 
- 
1 in-1 

u 2. 4 6 8 10 12 14 16 

PROCESS VARIABLES 

Fig. 5. Contribution plot showing the process variable contributions to the SPE,, for point 52 
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on the first A latent variables (Eq. (7)). Added to 
this, is a chart on SPE, where 

m 

SPE, = c (~“W,, --LJ (10) 
I= I 

where f,,, is computed from the reference PLS or 
PCA model. This latter plot will detect the occur- 
rence of any new events which cause the process to 
move away from the hyperplane defined by the 
reference model. Control limits for the T’ charts are 
chosen in the same manner as previously discussed, 
and the UCL on SPE., is based on the x2 approxi- 
mation (Q statistic [ 11 JO]). 

The main concepts behind the development and 
use of these multivariate SPC charts for monitoring 
continuous processes were laid out by Kresta et al. 
[19], Wise et al. [26], Wise and Ricker [33], and 
MacGregor et al. [34,35]. Several illustrations of the 
methods were also presented in those papers along 
with the algorithms and details on estimating control 

limits. 
To illustrate the basic approach, consider the 

monitoring of the simulated multi-section high-pres- 
sure tubular reactor process for the manufacture of 
low-density polyethylene (LDPE) [14]. The reaction 
kinetics and the fundamental modelling of this LDPE 
process can be found in a review by Kiparissides et 

al. [36]. Measurements are available on a frequent 
basis on all process variables (X) - reactor temper- 
ature profiles in each section, feed rates on all com- 
ponent streams, cooling system flows and tempera- 
tures, and pressures in each reactor section. Every 
hour or so, measurements are available on product 
quality and productivity (Y) - polymer molecular 
weights and branching properties, and conversion of 
monomer to polymer. Using data collected (X, Y) 
when the process was operating well, and no special 
events were present, a PLS model using only three 
latent variables (A = 3) was able to explain 90.0% 
of the variation in the Y data. Fig. 4 illustrates the 
use of a T’ chart (on three PLS scores) and an SPE, 
chart to monitor the behaviour of the reactor when 
there is an increasing level of fouling in the first 
section of the reactor. Unnumbered points indicate 
past conditions of normal operation. Fouling starts at 
point 52. Notice that the squared prediction error plot 
quickly detected the onset of this special event and 

alarmed an out-of-control situation, on-line, before 
laboratory data on product quality became available. 
The T’ plot signalled later. As already discussed, the 
two plots are complementary in detecting special 
events; both of them are required for proper monitor- 
ing. 

3.4. Diagnosing assignuhle causes 

Both univariate and multivariate SPC charts are 
based on statistical tests to detect any deviations 
from the in-control reference distribution upon which 
the models and charts have been built. In classical 
quality control approaches which chart only quality 
variables (Y), once an out-of-control signal has been 
given, it is then left up to the process operators and 
engineers to try to diagnose an assignable cause 
using their process knowledge and a one-at-a-time 
inspection of process variables. However, multivari- 
ate charts based on PLS or PCA provide a much 
greater capability for diagnosing assignable causes. 

By interrogating the underlying PLS or PCA model 
at the point where an event has been detected, one 
can extract diagnostic or contribution plots which 
reveal the group of process variables making the 
greatest contributions to the deviations in the SPE, 
and the scores [33,34,37]. Although these plots will 
not unequivocally diagnose the cause, they will pro- 
vide much greater insight into possible causes and 
thereby greatly narrow the search. 

Consider the out-of-control alarms shown in Fig. 
4 for the LDPE process. Diagnostic plots showing 
the contribution of the process variables to the SPE., 
at point 52 are shown in Fig. 5. These contribution 
plots point to the temperature of the reaction mixture 
at the exit from zone 1 and the temperature of the 
cooling agent into the jacket of the first zone as 
being the main process variables that are showing 
inconsistency (by contributing significantly to the 
large values of SPE i 1. This combination of variables 
would imply heat transfer problems and could lead 
the operator to suspect fouling. 

3.5. Multi-block PLS 

When a large number of variables is included in 
the X space, the monitoring and diagnosing charts 
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Fig. 6. Monitoring the LDPE process using multi-block PLS. The disturbance is fouling in zone 1. Monitoring of individual zones detects 
the problematic zone. (a) T’ chart on three MB-PLS scores and SPE, for the process variables of zone 1. (b) T’ chart on three MB-PLS 

scores and SPE I for the process variables of zone 2. 



T. Kourti, J.F. MacGregor / Chemomrtrics und Intelligent Laboratory Systems 28 (I 995) 3-21 15 

b) FOULING DETECTION: ZONE 2 
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Fig. 6 (continued). 

discussed in the previous sections may be difficult to task. In the MB-PLS approach, large sets of process 

interpret. The combined use of multi-block PLS variables (X) are broken into meaningful blocks; 
(MB-PLS) and contribution plots may facilitate this usually each block corresponds to a process unit or a 



section of a unit. Multivariate monitoring charts for 
important subsections of the plant as well as for the 
entire process can be constructed. The principles 
behind multi-block data analysis methods and their 
algorithms can be found in Wold [38] and Wangen 
and Kowalski [39]. MacGregor et al. [ 141 discuss an 
application of MB-PLS to process monitoring and 
diagnosing for the LDPE reactor. Each block corre- 
sponds to one zone. Plots of t, vs. t2 and SPE, 
obtained for each block of the process were utilized 
to detect an abnormal event in the zone it occurred; 
then contribution plots were successfully used to 
assign causes for it. When the number of latent 
variables used for modelling is more than two, one 
should combine the information of the scores in a 

statistic, rather than plotting scores pair-wise. The 
following example demonstrates a monitoring proce- 
dure utilizing a chart of T’ calculated from the 
scores used for the MB-PLS model and a SPE., 
chart. 

Fig. 6a gives the T’ chart on three scores (calcu- 
lated from scores t,, t, and t3 of block 1) and the 
SPE, chart for block 1 (corresponding to zone 1) for 
the same simulated process conditions of Fig. 4 
(fouling in zone 1). Notice that by monitoring block 
1 (zone 1, only) problems are detected for observa- 
tions 52-56. Fig. 6b gives the T’ chart on three 
scores and the SPE, chart for block 2 (zone 2), for 
the same simulated fouling case. Notice that no 

problems were detected in zone 2 for observations 
52-56. MB-PLS successfully detected that the proh- 
lem is in zone 1 and that zone 2 operates normally. 
Utilizing the contribution plots for fault diagnosis 
(on the scores and SPE, of zone 1) has revealed that 

process variables with unusual values were the tem- 
perature of the reacting mixture at the exit of zone 1 
and the temperature of the cooling agent in zone 1. 
Although the monitoring and diagnosis procedures 
based on MB-PLS and PLS gave comparable results 
for this system with only 14 process variables, MB- 
PLS offers an advantage when larger systems with 
tens or hundreds of variables are involved. 

3.6. Mmitorir~g batch proccwrs 

Recent trends in most industrialized countries have 
been towards the manufacture of higher value added 
specialty chemicals (specialty polymers, pharmaceu- 
ticals and biochemicals) that are produced mainly in 
batch reactors. There are also many other batch type 
operations, such as crystallization and injection 
molding, which are very important to the chemical 
and manufacturing industries. Monitoring these batch 
processes is very important to ensure their safe oper- 
ation and to assure that they produce consistent 
high-quality products. The use of the multivariate 
statistical projection methods has been extended to 
the analysis and the on-line monitoring and diagnosis 

mode space operational space quality space 

Y 

initial conditions On-line measurements quality measurements 

Fig. 7. Nature of batch data. The batch process is described by X, quality variables by Y and feed propcrtics by Z 
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of batch processes by MacGregor and Nomikos [40] 
and Nomikos and MacGregor [20,41,42]. Typical 
data from batch processes include time-varying tra- 
jectories of all the measured process variables 
throughout the duration of each batch (X), product 
quality measurements (Y) at the end of each batch, 
and batch recipe and charge conditions (Z) at the 
start of each batch. If such data are available in a 
historical data base on many past batches, multivari- 
ate PCA and PLS models can be developed for 
analyzing these historical batches and for establish- 
ing on-line SPC charts for monitoring the progress of 
each new batch. 

The nature of the data available in a batch moni- 
toring problem is illustrated in Fig. 7. The X matrix 
is a (I X J X K) array, where I is the number of 
batch runs, J is the number of variables and K is the 

time intervals throughout the batch. Each horizontal 
slice through this array is a (J X K) matrix contain- 

P 

ing the trajectories of all the variables from a single 
batch. Each of its vertical slices is a (I X .I) matrix 
representing the values of all the variables for all the 
batches at a common time interval (k). The final 

product quality measurements are taken at the end of 
each batch, for a few variables, L. These are summa- 
rized in the (I XL) matrix Y. For each batch, mea- 
sured feed-stock properties and other variable initial 
conditions may be available; these are summarized 
in a matrix Z. 

Since the process data (X) are now a three-dimen- 
sional array (batch run X variable X time), Nomikos 
and MacGregor used three-dimensional or multi-way 
PCA (MPCA) and PLS (MPLS) methods. Multi-way 
PCA and PLS methods have been discussed in a 
series of articles [43-461. Nomikos and MacGregor 
proposed approaches for handling the fact that one 
dimension (time) is evolving during the progress of a 
new batch, and for establishing control limits on the 

1 

Fig. 8. Plots of t,-t2 and f2-t, for 30 hatches. Batch No. 6 is abnormal. 
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multivariate SPE and score plots. They transformed 
the three-dimensional array X to a two-dimensional 
array by unfolding X in such a way as to put each of 
its vertical slices (I X J) side by side to the right, 
starting with the one corresponding to the first time 
interval. The resulting two-dimensional matrix has 
size (I X JK ). This unfolding allows for analyzing 
the variability among the batches in X by summariz- 
ing the information in the data with respect both to 
variables and their time variation. With this particu- 
lar unfolding, by subtracting the mean of each col- 
umn prior to performing the MPCA, one is decom- 
posing the variation about the mean trajectories of all 
the variables. 

The MPCA approach classifies batches as good or 
bad based on their similarity to a group of previous 
batches that produced an acceptable product. Infor- 
mation from quality measurements is not utilized 
directly. MPLS may be used to utilize information 
from the product quality. Once the X matrix has 
been unfolded into a two-dimensional matrix, PLS 
can be performed between Y and this new matrix, to 
relate the quality characteristics to the process condi- 
tions. By utilizing the quality measurements the 
batches may be classified in a way that they are 
more predictive of Y - in this case variables that 

exhibit high variability but do not affect the quality 
of the product are weighted less heavily; as a result, 
disturbances in these variables will be flagged but 
not cause unnecessary alarms [42]. When extra infor- 
mation relevant to the batch process is available (in 
the form of matrix Z in Fig. 7) this information may 
also be utilized, by performing multi-way multi-block 
PLS. Matrix Z and the unfolded X matrix may be 
treated as two blocks, weighted appropriately. 

The use of MPCA to monitoring batch processes 
is illustrated here with an example. Data from 30 
batches from an industrial process were provided. 
There were no product quality measurements; the 
quality of the batch (‘good’ or ‘bad’) was assessed 
from the performance of the batch product in another 
process, later. For each batch, the trajectories of 4 
variables for 375 time intervals were provided. One 
of the batches was characterized as ‘bad’ by the 
company. In a preliminary analysis, MPCA was 
performed on all the batches (i.e., on the three-way 
array X with dimensions 30 X 4 X 375), to test if the 
method would be able to discriminate between ‘good’ 

Fig. 9 Monitoring a good batch. SPE, and D statistic 

and ‘bad’ batches with the available process data; in 

TlME 

other words to assess if the system was obserllable. 

Fig. 8 shows the projections of these 30 batches on 
the score planes (t,-t2 and tz-t,> defined by the 
three first principal components. It can be seen that 
batch No. 6 (the one characterized by the company 
as ‘bad’) is out of the main cluster (normal operating 
region) formed by the rest of the batches. 

Having established the observability of faults with 
the analysis of past data, a model was built to 
summarize the information contained in the 29 good 
batches about the normal operating region of the 
process. This model was then used as statistical 
reference to classify new batches as normal (‘good’) 
or abnormal (‘bad’). The model was used for the 
classification of new batches in the way described in 
Nomikos and MacGregor [41]. New batches are clas- 
sified by monitoring a statistic, D (essentially a 
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Fig. 10. Monitoring batch No. 6 (a bad batch). (a) SPE, and D statistic. (b) Plots of f,-/? and f?-t, for the duration of the batch. 

Hotteling T2 calculated from the A latent variables 
at each time interval k), and by monitoring SPE at 
each time interval k. 

Fig. 9 shows the SPE response as a function of 
time, and the D statistic of a batch that was eventu- 
ally classified as ‘good’. Notice that both of these 
quantities remain well within the control limits 
throughout the batch. (The solid line corresponds to 
a 99% limit and the dashed line to a 95% limit for 
SPE; at the top of the figure it is indicated that for 
the current batch, 15 points, out of 375, were out the 
95% limit and one point out the 99% limit.) Fig. 10 
shows how batch No. 6 would have behaved, had the 
model been in use on-line, when the data for this 
batch were becoming available. Fig. 10a shows the 
SPE behaviour and the D statistic. Notice that 215 

points out of 375 are out of the 95% limit in the 
SPE, while the D statistic goes out of limits around 
100 min into the batch run. Plots of t, vs. t2 and t, 
vs. t, (Fig. 1Ob) reveal that mainly t, and t, scores 
show abnormalities. Indeed, individual plots of t3 
and t, (not shown here) revealed that these latent 
variables were out of limits after 100 min into the 
run. 

The proposed monitoring charts are in accordance 
with the SPC requirements in that they can be easily 
displayed and interpreted, and they can quickly de- 
tect a fault. Furthermore, it is also possible to pro- 
vide the operators with diagnostic information by 
interrogating the underlying MPCA, MPLS or multi- 
way multi-block PLS model. Other industrial appli- 
cations of these methods have been reported for the 
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analysis of historical batch data bases by Kosanovich 
et al. [47], and for the monitoring of a batch poly- 
merization by Nomikos and MacGregor [20]. 

4. Summary 

This paper has provided an overview of the con- 
cepts behind multivariate statistical process control. 
Justifications for treating the data in a truly multi- 
variate manner are given. To genuinely do multivari- 
ate statistical process control (SPC) one must utilize 
not just the final product quality data (Y), but all the 
data on process variables (X) being collected rou- 
tinely by process computers. SPC approaches based 
on multivariate statistical projection methods (PCA 
and PLS) have been developed for this purpose. The 
ideas behind these new approaches and the literature 
on them is reviewed. Multivariate control charts in 
the projection spaces provide powerful methods for 
both detecting out-of-control situations, and for diag- 
nosing assignable causes, and they are applicable 

both to continuous and batch processes. The only 
requirement for applying these methods is the exis- 
tence of a good data base on past operations. For this 
reason, they have attracted wide interest, and are 
rapidly being applied in many industries. Recent 
advances in the traditional multivariate SPC methods 
for monitoring and diagnosing process operating per- 
formance are reported and compared to projection 
method approaches in Kourti and MacGregor [48]. 
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