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Multimode covariance matrices, such as multitrait-multimethod matrices, contain the
covariances of subject scores on variables for different occasions or conditions. This
paper presents a comparison of three-mode component analysis and three-mode
factor analysis applied to such covariance matrices. The differences and similarities
between the non-stochastic and stochastic approaches are demonstrated by two
examples, one of which has a longitudinal design. The empirical comparison is facilitated
by deriving, as a heuristic device, a statistic based on the maximum likelihood function
for three-mode factor analysis and its associated degrees of freedom for the three-
mode component models. Furthermore, within the present context a case is made for
interpreting the core array as second-order components.

1. Introduction
Tucker (1966) introduced three-mode analysis to handle three-way data arrays. Best
known is his work on three-mode component models for raw data matrices, but he also

proposed a common factor variant to be used on multivariable-multioccasion (or

multimode) covariance matrices. In this paper, we discuss and review the major

three-mode developments for such matrices, compare component and factor models

and present two extended examples. Recent overviews of other methods for multimode

covariance matrices can be found in Wothke (1996), and Bagozzi, Yi, and Nassen (1999).
The major aim is to show that these models can be fruitfully applied in realistic

situations, especially because very few applications exist in the literature. C. W.

Snyder and colleagues seem to have been the only authors seriously interested in

305

British Journal of Mathematical and Statistical Psychology (2003), 56, 305–335
© 2003 The British Psychological Society

www.bps.org.uk

* Request for reprints should be addressed to Pieter M. Kroonenberg, Department of Education, Leiden University,
Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands (e-mail: kroonenb@fsw.leidenuniv.nl).

http://www.bps.org.uk


applying Tucker’s model for multimode covariance matrices (especially Snyder, 1976;

Snyder, Bridgman, & Law, 1981), and they also presented (non-least-squares) programs

to perform the basic analysis (e.g. Snyder & Law, 1979). To facilitate the comparison of

component and factor models, we present and discuss measures of ®t, especially for the

component case, and propose to employ LohmoÈller and Wold’s (1982) interpretation of

the core array as a second-order component matrix.

2. Component models
In order to appreciate the form the three-mode covariance model for multimode

covariance matrices takes, we will ®rst reiterate the basic three-mode model for the
observed scores and develop the covariance model from this formulation. Moreover, this

section serves to introduce the terminology and some preliminaries that are necessary

for understanding several details of the covariance form of the three-mode component

model.

2.1. Tucker3 model for observed scores

2.1.1. Model description
The best-known three-mode component model is the Tucker3 model (Tucker, 1966).

The basic assumption in the model is that each mode of the data has its own
components and that the relationships between the components are described by the

core array. The standard interpretation of the elements of the core array is that they are

weights which indicate how much each of the combinations of components of the

three different modes contributes to the (implied) data, or alternatively as scores of

idealized subjects on latent variables under prototype conditions (see Tucker, 1966;
Kroonenberg, 1983, pp. 157ff.). The observed score form of the model in matrix form,

using combination-mode matrices (Tucker, 1966, p. 281), is

X = AG(C 0 Ä B 0 ) + E, (1)

where the I ´ J ´ K three-data array X, the I ´ J ´ K three-way array with residuals E,

and the P ´ Q ´ R three-way core array G are written as combination-mode two-way
matrices X, E, G of order I ´ JK, I ´ JK , and P ´ QR, respectively. The three-way arrays

are underlined and bold to distinguish them from their corresponding (two-way)

matrices in which within each of the matrices the frontal slices have been placed

next to each other, so that, for instance, j denotes the inner index moving fastest and k

the outer index moving slowest. A is the I ´ P matrix with the coef®cients of the

subjects of the ®rst mode on the subject components. B is the J ´ Q matrix with
coef®cients of the variables on the variable components, and C the K ´ R matrix with

the coef®cients of the conditions on the condition components. In the original X

every element of the matrix, xi jk, represents the value of a speci®c combination of

levels of the original modes. In a similar manner, each element gpqr of the core array
G represents the value, (mutual) weight, or interaction of a speci®c combination of
the components of the modes. In contrast with Oort (1999), we will not explicitly

model a mean structure but assume that the columns of the combination mode of X

are centred across the subjects. All values in X are divided by 1/
p

N, so that X 0 X is a

covariance matrix.
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2.1.2. Identi� cation
The model in (1) uniquely identi®es the subspaces of the speci®ed dimensionality (given

unequal eigenvalues for the last components and the ®rst one not included) as they are

the maximum variance projections (X̂ = AA0 X(CC 0 Ä BB 0 )), but the coordinate axes of

the component spaces are arbitrary and thus in that respect the model is under-

identi®ed. Any component matrix can be postmultiplied by a non-singular matrix
without changing the ®t of the model provided the inverse transformation is applied

to the core array. Thus, as an example, any P ´ P non-singular matrix U may be applied

to A , A = AU, provided G = U ê 1G. This also means that the columnwise ortho-

normal A does not have IP independent parameters, but only IP ê P 2. During the

alternating least-squares estimation procedure, the identi®ability is realized by imposing
orthonormality restrictions on the component matrices which leads automatically to

three-way orthogonality of the core array (see Weesie and Van Houwelingen, 1983).

Note that the P 2 undetermined parameters may be split into P 2 = 1
2
P(P + 1) +

1
2

P(P ê 1), where the number of parameters of the ®rst term can be used to ortho-

normally transform A, and the number of parameters in the second term to transform
the core orthogonally along one of its dimensions.

2.1.3. Estimation
The parameters for the Tucker3 model are estimated using the least-squares discrepancy

function

min
v

i X ê X̂(v) i 2 (2)

where v is the vector of parameters consisting of the elements of A, B, C, and G. Details

can be found in Kroonenberg and De Leeuw (1980).

2.2. Covariance form

2.2.1. Model description
Given the column centring of the combination mode of X, the multimode covariance

form of the Tucker3 model is

S = X 0 X = (C Ä B)G 0A0AG(C 0 Ä B 0 ) + E 0 E (3)

or, using F = A0A and Q = E 0 E,

S = X 0 X = (C Ä B)G 0FG(C 0 Ä B 0 ) + Q, (4)

with Q the unstructured covariance matrix of the residuals E, and F the covariance
matrix of the subject components. To simplify the model, we may use the transforma-

tional freedom for A and assume that the subject components are (columnwise)

orthonormal, so that (4) can be simpli®ed to

S = X 0 X = (C Ä B)G 0G(C 0 Ä B 0 ) + Q, (5)

which shows that the covariance matrix does not explicitly depend on A but only on the

parameters B, C, and G. Equation (5) can be simpli®ed even further to

S = X 0 X = (C Ä B)W(C 0 Ä B 0 ) + Q, (6)

where W = G 0G = G 0FG = G 0A0AG is the cross-product array of A = AG. However,
in the Kiers, Kroonenberg, and ten Berge (1992) approach (see below) G is estimated

and not W. W has been called the core covariance matrix by LohmoÈller (1979), but it
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may also be called the component covariance matrix as it is the matrix with

covariances between the QR combination components.

As pointed out by LohmoÈller (1979; see also Tucker, 1966; Bentler & Lee, 1978;

Browne, 1984), when W is a diagonal matrix, all combination components are

uncorrelated, and S = CC 0 Ä BB 0
. In the full-dimensional model, S = RC Ä RB,

which can be considered a null three-mode model for the multimode covariance
matrix. This model is referred to by Browne (1984) as Swain’s direct-product model. The

implication is that, on the one hand, the covariances between the combination variables

can be modelled in a multiplicative fashion by covariances between (components of )

the variables, RB, which are constant across occasions, and, on the other hand, the

covariances between (components of ) occasions, RC, which are constant across
variables. Any deviation from the diagonal structure of W is an indication of non-

constant correlation between either the variables or the occasions, or both. LohmoÈller

and Wold (1982) present a Monte Carlo study in which they examine how deviations

from this constant situation affect the core array (for a summary, see Kroonenberg,

1983, chap. 13).

2.2.2. Estimation
The parameters of the covariance form of the Tucker3 model are estimated by

rearranging calculations within (2), and not by minimizing the least-squares difference
i S ê Ŝ i 2. In particular, Kiers et al. (1992) noted, after examining the estimation of the

least-squares discrepancy function (2), that the component matrix A is only involved in

the minimizing process in combination with X, via L = X 0A, and that X only occurs via
X 0 X. Thus instead of using raw data directly, the iterations can be based on the
covariances X 0 X and the matrix L. Because of this, the algorithm for the Tucker3

model can be redesigned so that it only uses the multimode covariance matrix rather

than the original observed scores (Kiers et al., 1992; see also Murakami, 1983, for the

Tucker2 model). The only drawback from the point of view of observed score modelling

is that the subject scores A are not available but only the covariances of the original
variables with the subject components in L = X 0A. However, if the observed scores are

available, A can be recovered from L and X after convergence (for details see Kiers et al.,

1992). Because the revised algorithm operates directly on multimode covariance

matrices, three-mode component analysis becomes a useful alternative for covariance

structure analysis via structural equation modelling in very dif®cult circumstances, such
as few observations, very large numbers of variables, or inadequate ful®lment of

distributional assumptions.

2.3. Interpretation of the core array: Second-order component loadings
The core array can be interpreted in several ways (see Kroonenberg, 1983, pp. 157ff.),

but here we will concentrate on the interpretation as second-order components.

Starting from (1), we obtain X = A F 0 + E with A = AG and F = (C Ä B). The

covariance form is X 0 X = FA 0A F 0 + Q = FWF 0 + Q, where F is the ®rst-order

component loading matrix and A the ®rst-order component score matrix, with W as
the ®rst-order component covariance matrix. Now W = G 0A0AG = G 0FG, G being the

(transposed) second-order loading matrix and A the second-order component score

matrix, with F the second-order covariance matrix (see LohmoÈller, 1979, for an earlier

exposition of this point).
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2.4. Software
The component models have been ®tted by a program (T3Covar) based on the Kiers
et al. (1992) algorithm which will be included in the next release of the 3WayPack

(Kroonenberg, 1996) package for three-mode data analysis. For further information, see

http://three-mode.leidenuniv.nl.

3. Factor models

3.1. Tucker–Bloxom models
Tucker (1966, pp. 301ff.) also described a three-mode common-factor model with

unique variances for combination variables. Snyder (1968) produced an unpublished
master’s thesis under the direction of Tucker in which unique variances were also

de®ned for the measures and the conditions. Bloxom (1968) ®rst formulated a truly

stochastic three-mode data model,

x 0 = y 0G(C 0 Ä B 0) + «0, (7)

where x and « are JK ´ 1 random vectors of the observed scores and the unobserved

residuals respectively, and y the P ´ 1 random vector of unobserved scores with their

covariance matrices given by S, Q, and F respectively, so that the multimode covariance

matrix is modelled as

S = (C Ä B)G 0 FG(C 0 Ä B 0 ) + Q, (8)

where Q contains the residual variances on the diagonal and non-zero off-diagonal
elements in case of correlated residuals. Note that we have two ®xed modes and one

random mode. In general, the ®rst (random) mode is associated with the subjects and

the second and third (®xed) modes with variables and occasions, respectively. The latter

modes are characterized by the terms slow and fast, where slow and fast refer to the

index of the mode. This distinction corresponds to Tucker’s (1966) usage of outer mode

and inner mode, respectively. In (7), B is the fast mode and C is the slow mode because

of the way the data are organized, with the B mode nested within the C mode. The three-
mode factor model (8) can be written as a special case of the ordinary common factor

model,

S = LFL0 + Q, (9)

with the matrix of factor loadings L restricted to

L = (C Ä B)G0, (10)

so that standard programs for structural equation modelling can be used to estimate the

parameters of the three-mode factor model. Contributions to three-mode modelling of

multimode covariance matrices can be found in Bentler and Lee (1978, 1979), Bentler,

Poon, and Lee (1988), Bloxom (1968), McDonald (1980; especially p. 165), Lee and Fong

(1983), Verhees and Wansbeek (1990), and Oort (1999, 2001).

3.2. Restrictions
The basic three-mode common factor model (3MFM) is generally underidenti®ed, so

that restrictions need to be imposed. Moreover, models with speci®c restrictions can be

more easily interpreted, such as those with simple structures for B and C. Another way

to restrict the three-mode factor model (8) is to specify not only a Kronecker (or direct-

product) structure for the factor loadings via (B Ä C), but also similar structures for the
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covariance matrix F and the residual covariance matrix Q (see Oort, 1999)Ðfor

example,

Q = QC Ä QB, (11)

where QC and QB are K ´ K and J ´ J . Such a restriction, employed by Browne (1984)

for direct-product models, saves a considerable number of degrees of freedom.

On the other hand, sometimes it is necessary to increase the number of model
parameters due to covarying residual factors. That is, residual factors of the same

variables may be correlated across occasions, and one or more lags for the auto-

correlation may be included. This could also be accomplished with the Kronecker

product restriction, for example, QC symmetric and QB diagonal.

Another way to model the covariance matrix of residual factors Q, especially in
the case of repeated measurements, as in our second example, is to impose an

autoregressive (AR) structure, that is,

Q = (IQ ê BQ) ê 1WQ(IQ ê B 0
Q) ê 1, (12)

where IQ is an identity matrix, BQ is a subdiagonal matrix containing parameters for the

autoregressive effects, and WQ is a diagonal matrix of residual variances, also called

variances of the innovation factors. Matrices IQ, BQ, and WQ are of the same order as Q,
that is, JK ´ JK . In some applications, one might even combine the structures of (11)

and (12) by specifying the autoregressive structure for QB or QC rather than for Q itself.

3.3. Identi� cation
A necessary condition for achieving the identi®cation of a three-mode factor model is
that all common factors y have a scale. Assuming that the core array G does not contain

free parameters, the factors y can be given scales either by ®xing Q + R factor loadings

at a non-zero value, one element in each column of B and C, or by ®xing P factor

variances, that is, the diagonal elements of the F matrix. In the latter case, there is an

indeterminacy in the constraint of (10) that must be removed by ®xing one of the

elements of either matrix B or matrix C at a non-zero value. The same goes for other
Kronecker product constraints, such as the Q restriction of (11)Ðfor details, see Oort

(1999, Table 1).

When three-mode factor models are used in an exploratory context, that is, without

explicitly imposing an hypothesized structure, the number of components has to be
determined through a series of trials, and (subject) factors are generally speci®ed as

orthogonal so that their covariance matrix F is diagonal. The B and C matrices can be

chosen to be of echelon form, while the core array G can then be chosen to be either

diagonal or of echelon form as well. For interpretation, however, the matrices often have

to be transformedÐsee Bentler and Lee (1978, 1979) or Oort’s (1999) summary.

3.4. Estimation
Assuming a multivariate normal distribution for the observed variables x, and assuming

that the model is identi®ed, maximum likelihood estimates for all parameters can be

obtained by minimizing the maximum likelihood function

F(S, Ŝ) = ln jŜj ê ln(S) + tr(SŜê 1) ê JK , (13)

where Ŝ is the implied covariance matrix, S the observed covariance matrix and JK the

number of variables. Minimization of the maximum likelihood function gives estimates
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for all model parameters. The estimation procedure also provides estimates for the

asymptotic standard errors of the model parameters, and a chi-square test of overall

goodness of ®t. Even if the assumption of normality is not met, we still estimate the

three-mode factor model parameters through the maximum likelihood function (13).

However, the standard errors should not be interpreted and the chi-square distribution

should not be used rigorously when evaluating the goodness of ®t index. But there is no
reason to believe that point estimates of the model parameters are seriously biased

(Bollen, 1989, pp. 415ff.), and we can still use the root mean square error of

approximation and Akaike’s information criterion (see below) to compare the ®t of

different models to the same data.

3.5. Fit statistics
We will report the chi-square measure of overall goodness of ®t (x2), the root mean

square error of approximation, RMSEA =
p

{(x2/df ê 1)/(N ê 1)}, and Akaike’s informa-

tion criterion, AIC = x2

ê 2df = df {(x2/df ) ê 2}. The RMSEA and the AIC can be used
to compare the ®t of different models to the same data. As a rule of thumb, RMSEA values

smaller than 0.05 are indicative of close ®t but values smaller than 0.08 are still

considered reasonable (Browne & Cudeck, 1992). Simulation studies suggest that

under non-normality x2 will be overestimated (Curran, West & Finch, 1996), so that

the RMSEA and AIC values will turn out too high. We will therefore apply the RMSEA

rule of thumb conservatively.

3.6. Software
Three-mode factor models can be ®tted with standard software. McDonald (1980) and

Bentler et al. (1988) have shown that their three-mode factor models can reparameter-
ized in such a way that the model parameters can be estimated with commercial

computer programs such as LISREL ( JoÈreskog & SoÈrbom, 1996; JoÈreskog, SoÈrbom, du

Toit, & du Toit, 1999; http://www.ssicentral.com/lisrel/mainlis.htm) and EQS (Bentler,

1995; http://www.mvsoft.com). However, neither program is as versatile as Mx (Neale,

1997; http://grif®n.vcu.edu/mx), which is freely available through the internet. In fact,
the ®tting of three-mode factor models with Mx can be done in a straightforward fashion

without reparameterization. We have used Mx throughout for all of the three-mode

factor models of interest.

4. Component versus factor models
The choice between component and factor models depends on several aspects of a

study, such as the type of research questions, the assumptions one is willing to make

about the data, the number of subjects, variables and conditions in the data set, the

amount of prior knowledge, etc. It is not uncommon that not all aspects will favour one
particular approach and that one has to make do with a component model when a factor

model was intended.

4.1. Sample versus population
In factor analysis, it is explicitly assumed that the subjects at hand are a (random) sample
from a speci®c population, and the parameters of the model are estimated on the basis
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of this sample. If the model is valid, then the parameter estimates approximate the

population values. In principal components analysis (PCA), the analysis of the sample is

carried out without explicitly assuming that the sample is a random one. The

component model is not considered to be an explicit model for reality, but a

parsimonious description of the relationships in the sample. However, the researcher

will expect to ®nd similar results in similar samples.

4.2. Estimation and distributional assumptions
The parameters of three-mode component models are estimated through a least-squares

discrepancy function (2). With three-mode factor models, it is also possible to use the
maximum likelihood function (13) through which standard errors and a chi-square

measure of overall goodness of ®t can be obtained. However, the use of the maximum

likelihood estimation method requires distributional assumptions not required by the

least-squares method. If these distributional assumptions are not met, we must revert to

least-squares estimates for the factor model parameters as well.

4.3. Interpretation and poor � t
One important difference is that factor models are commonly only interpreted when a

good or reasonable ®t is achieved. Lack of ®t is seen as far less a problem in component

models because a maximum variance projection onto a lower-dimensional space is
always possible and valid. In both models high values of ®t are obviously preferred, but

when the data are very noisy, that is, contain a large amount of error, a component

solution may still describe the majority of the systematic information even when the ®t

of the model is relatively modest.

4.4. Exploratory and description versus con� rmatory and testing
The choice between three-mode component and factor models also depends upon on

whether one wants to reduce the dimensionality of the data in order to describe and

explore the patterns present or whether one aims to con®rm and test explicitly

restricted models for the data. Given that one wants to build models and has a theory

for them, one could use the component approach as a preliminary check on the

dimensionality and to ®nd adequate starting values. One could also use the component
models to form an idea of what the structure in the data is like and use the con®rmatory

factor analysis approach to test the adequacy of the model `gleaned’ from the

component model. However, three-mode factor analysis can also be used as an

exploratory technique (Bentler & Lee, 1978, 1979; Bentler, Poon, & Lee, 1988; Lee &

Fong, 1983).

4.5. Restricting the numbers of parameters
Component analysis, with its search for low-dimensional subspaces, typically favour

fewer components than factor models while by limiting the number of coef®cients per

factor, the latter increase the number of factors without drastically increasing the

number of parameters. Parsimony is thus achieved in component models by limiting

the number of components, and in factor models by using larger numbers of sparse
factors. Recently, there have been developments to introduce restrictions into the

model part of component models that blur some of these differencesÐsee, for
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instance, for two-mode PCA, Takane, Kiers, and De Leeuw (1995) and Kiers, Takane, and

ten Berge (1996).

4.6. Fitting residuals and (co)variances
Irrespective of the imposition of restrictions, a fundamental difference remains that in
factor analysis the residuals are explicitly modelled, while this is not the case in

component analysis, and that the former aims to model the covariances as well as

possible while the latter only aims to explain as much variance as possible.

5. Model comparison
Component and factor models are based on conceptually different points of view.

However, the model part of the covariance form of the Tucker3 model is equal to the

three-mode factor model, so that it is possible to use it as an alternative in particular

dif®cult cases, such as (i) covariance matrices with relatively small numbers of subjects

or large number of variables, (ii) covariance matrices for which no clear a priori

structure is known or hypothesized, (iii) when the implied covariance matrix does not
®t the observed covariance matrix very well, or (iv) when the distributional assumptions

are clearly untenable.

5.1. Measures of � t
In order to evaluate the relative performance of different models on the same data, the

root mean square residual (RMR) for the off-diagonal elements of the covariance matrix

can be used. For comparisons across data sets the correlation matrix is more appro-

priate. The advantage of the RMR is that, in either model, the covariances are estimated

on the basis of the model used and differences between the estimates and the observed
values can be assessed in both cases irrespective of the method by which the estimates

were derived. Another measure which can be computed for both models is the

proportion of variance explained, V = tr(LFL0 )/tr S, which is equal to the proportion

of explained variance from the alternating least-squares procedure for the Tucker3

model, albeit that this is the criterion explicitly optimized in the component case.

Further, purely heuristically, comparisons between component and factor models

can also be based on statistics calculated from the maximum likelihood discrepancy
function F in (13). Generally in maximum likelihood ®tting, the diagonals of the

observed and the implied covariance matrices are equal and therefore this equality is

employed for the component case as well. This also solves the problem that the implied

covariance matrix Ŝ is rank-de®cient due to the reduced rank of the component
matrices in the model. Thus for component models we also used F to obtain the

common measures of ®t of the stochastic approach such as the RMSEA and the AIC. Of

course, no distributional assumptions are made in the component case. The values for

the `maximum likelihood’ statistic for the component models will probably be compara-

tively higher, as the maximum likelihood discrepancy function was not used for
minimization. On the other hand, the residual covariances are unstructured, which

might lead to lower ®t compared to factor models.

The number of degrees of freedom to be used for the covariance form of the Tucker3

model is determined as the difference between the number of independent values in the

sample covariance matrix, JK /(JK + 1)/2, and the number of estimated parameters. In
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the observed score algorithm, not only are B, C, and G estimated but also L = X 0A.

However, L is not involved in calculating Ŝ; moreover, because of the orthonormality

of A,

L = X 0A = (C Ä B)G 0A0A = (C Ä B)G 0, (14)

and thus L does not include independent parameters. Therefore, the number of

parameters (®rst discussed by Weesie & Van Houwelingen, 1983, for the observed

score Tucker3 model) becomes ( JQ ê Q2) + (KR ê R2) + (PQR ê
1
2

P(P ê 1)). The ®rst
two terms need corrections because B and C are determined up to non-singular

transformations; the correction for the third term referring to G is introduced because

we may transform G orthogonally along its ®rst mode without affecting the ®t of the

model. The other 1
2
P(P + 1) restrictions on A were used for the orthonormality of A

when we went from (3) to (4).

Timmerman and Kiers (2000; see also Kiers & der Kinderen, 2003) suggested a
model-selection procedure analogous to Cattell’s scree plot for two-mode component

analysis. In particular, they based the selection on choosing the model with the highest

proportion of ®tted sums of squares, VS , within the class of models with the same sum of

numbers of components (S = P + Q + R). To compare classes with different S, they

computed difS = VS ê VS ê 1 . Due to the non-nestedness of three-mode component
models, difS cannot always be compared for successive values of S. Only those difS were

considered which were sequentially highest. Timmerman and Kiers de®ned a salience

value, bs = difS/difS , where difS has the highest value after difS. They proposed to

select the model for which bS has the highest value, and they call this the DIFFIT

criterion. Finally, the authors de®ned a lower bound for difS to be taken into account.
The difS should be greater than the average proportion of explained variability taken

over all feasible values of S (smax = min(I , JK ) + min( J , IK ) + min(K , IJ ) ê 3: in Tim-

merman & Kiers, 2000 `max’ is inadvertently printed instead of `min’). Note, by the way,

that smax has to be corrected in case a mode has been centred. For instance, in the ®rst

example, J should be replaced by J ê 1. The Timmerman and Kiers approach cannot be

used for con®rmatory factor models, because there is no provision for restrictions on
con®gurations as S is only based on the number of components. It would probably be

worthwhile to supplement their study using the degrees of freedom rather than S. (In

our two examples the correlation between df and S was ê .85 and ê .92, respectively.)

5.2. Model selection
It does not always make sense to search for the true or best model. Often several models

are acceptable from the ®tting point of view, and, especially in component models, the
choice of a model is often determined by the amount of detail one wants to consider.

Generally, substantive considerations may guide the selection as well. Our model search

will primarily be one of exclusion, in the sense of excluding models from further

consideration because other models ®t better with fewer or equal numbers of

parameters. Three types of plots can be used to evaluate both the models and the
measures themselves, as they allow insight into the behaviour of both of them: ®tted

sums of squares V versus RMR (V ±RMR plot), ®tted sums of squares V versus sums of

numbers of components S (three-mode scree plot), and deviance plots with x2 versus

degrees of freedom df (deviance plot). In these plots, curves are drawn by connecting

component models with the same (Q, R) combinations and increasing P. Such models
are nested with respect to both their ®tted sums of squares and df (or S ). Furthermore,

for the last two plots, a convex hull can be drawn to connect favoured models. The
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general idea is that models within the hull are disfavoured compared to the `hull models’

that have similar or better ®t and equal df (or S), equal ®t with more df (or smaller S), or

a combination of both.

The least controversial measures are V and RMR, because they can be calculated

straightforwardly for both ®tting methods. A plot of these two quantities gives insight in

how both the differences in variances and covariances are reduced in increasingly
complex models. Moreover, it can be discerned which of the two measures gains more

and whether the gain of one is at the expense of the other. The plot of V versus S gives

insight in the behaviour of Timmerman and Kiers’ proposal for model selection. In the

deviance plots of x2 versus df , model evaluation is aided by drawing straight lines

between the loci of models with equal x2/df = k. If the origin is included in such a plot,
these lines can be seen to fan out from the origin with slope k. These lines also

represent models with same RMSEA, as, for constant k, RMSEA =
p

{(k ê 1)/(N ê 1)}.

The loci of models with equal AIC can be drawn in such plots as AIC = x2

ê 2 ´ df or
x2 = AIC + 2 ´ df , so that they are straight lines with a constant slope of 2 and a

different intercept for each AIC. Thus in a single plot the relative performance of (non-
nested) models can be assessed with respect to x2/df , RMSEA, and AIC. Verbeek (1983)

gives a statistical discussion of deviance plots; Fowlkes, Freeny, and Landwehr (1988)

give some practical considerations for its use.

6. Example: Economic activities data

6.1. Data
The ®rst example is based on a study on similarities and differences in perceptions of

economic activities in Hungary, the Netherlands, Poland, and the United Kingdom. The

original three-mode data set consists of 390 individuals (mode 1) scoring 20 economic

activities (mode 3) on 12 bipolar seven-point rating scales (mode 2); for details, see

Antonides, Farago, Ranyard, and Tyszka (1997) and Veldscholte, Kroonenberg, and

Antonides (1998). Here we use the same subset Oort (1999) selected to illustrate his

stochastic three-mode models. In particular, he selected seven of the rating scales (see
Table 2) and nine of the economic activities (see Table 3) on the basis of context and

earlier analyses such that the rating-scale mode and the economic activity mode had a

clear structure and interpretation. In particular, the scales were chosen to represent

social values, economic value, and expected risk (see Table 2), while the activities were
chosen to represent being employed, being an owner, uncontroversial ®nancial

activities, and controversial ®nancial activities (see Table 3). A selection was necessary

because analysing the covariance structure of 240 variables with structural equation

models is not feasible with present-day personal computers.

The nature of the data and the way the subset was selected clearly call for an analysis
with factor models rather than component models. We are dealing with random

variables and we are looking for the con®rmation of a speci®c structure in the loadings.

6.2. Three-mode factor analysis
Two types of models were ®tted, exploratory factor models and con®rmatory ones. The

former followed Bentler and Lee (1978, 1979) by specifying echelon forms for the 7 ´ 3

factor matrix B and the 9 ´ 4 factor matrix C (taking care that not all the zeros are
associated with the variables of one factor) and with either an echelon form for the
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7 ´ 12 core array (P = 7; P = Q + R) or a 12 ´ 12 diagonal matrix (P = 12; P = QR). In

the latter case, there is a one-to-one relationship between all Q ´ R combinations of the

®rst-order factors and the second-order factors as their numbers are equal and the core

array is diagonal. The con®rmatory models had simple structures for the two ®xed

models B and C (see Tables 2 and 3, respectively). Two more restricted con®rmatory
models were derived from the P = 12 case: one with a Kronecker (or direct-product)
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Table 1. Economic activities data: Fit measures for three-mode factor and component models
(390 subjects´ 7 scales ´ 9 economic activities)

SS (Fit)
Model S = P + Q + R V difS bS x2 df a x2/df RMSEAb AICc RMRd

Exploratory factor models
E7.3.4 14 .25 5522 1858 2.97 .071 1806 .25
E12.3.4 19 .30 5496 1906 2.88 .069 1684 .27
Con� rmatory factor models
C7.3.4 14 .25 5964 1911 3.12 .074 2142 .26
C12.3.4e 19 .29 5678 1866 3.04 .072 1946 .25
C12.3.4af 19 .29 5985 1929 3.05 .073 2127 .28
C12.3.4bg 19 .27 6660 1977 3.37 .078 2706 .29
Component models
1 ´ 1 ´ 1 3 .0936 .0936 1.45 8852 2001 4.42 .094 4850 .34
2 ´ 2 ´ 1 5 .1582 .0646 1.08 7989 2016 4.00 .088 3999 .31
2 ´ 2 ´ 2 6 .1630 .0048 – 7957 1985 4.01 .088 3987 .31
3 ´ 2 ´ 2 7 .2226 .0596 2.14 7030 1983 3.55 .081 3064 .28
4 ´ 2 ´ 2 8 .2404 .0278 1.03 7107 1982 3.59 .082 3143 .28
4 ´ 3 ´ 2 9 .2675 .0271 1.11 6539 1972 3.32 .077 2595 .27
5 ´ 3 ´ 2 10 .2864 .0189 – 6644 1970 3.37 .078 2704 .27
5 ´ 3 ´ 3 11 .3101 .0237 – 6298 1951 3.23 .076 2396 .25
6 ´ 3 ´ 3 12 .3344 .0243 – 6192 1947 3.18 .075 2298 .25
7 ´ 3 ´ 3 13 .3532 .0188 – 6279 1944 3.23 .076 2391 .25
7 ´ 4 ´ 3 14 .3776 .0244 1.21 5857 1923 3.05 .073 2011 .23
8 ´ 4 ´ 3 15 .3978 .0202 – 5909 1918 3.08 .073 2072 .23
9 ´ 4 ´ 3 16 .4151 .0173 – 6025 1914 3.15 .074 2197 .23
9 ´ 4 ´ 4 17 .4333 .0182 – 5581 1876 2.98 .071 1829 .22

Additional component models
7 ´ 3 ´ 4 14 .37 6059 1921 3.15 .074 2217 .24

12 ´ 3 ´ 4 19 .44 6649 1906 3.49 .080 2837 .25
13 ´ 5 ´ 4 22 .52 5514 1804 3.06 .073 1906 .20
13 ´ 6 ´ 8 27 .56 4167 1456 2.86 .069 1255 .14
48 ´ 6 ´ 8 62 .90 4487 826 5.43 .107 2835 .10
63 ´ 7 ´ 9 79 1.00 0 0 0.00 .000 0 .00

a df = JK( JK + 1)/2 ê [( J ´ Q ê Q2) + (K ´ R ê R2) + (P ´ Q ´ R ê
1
2 P(P ê 1))].

b RMSEA =
p

{(x2/df ê 1)/(N ê 1)}.
c AIC = x2

ê 2df .
d RMR = root mean square residual (off-diagonal elements); RMR of the original covariance matrix
is 0.40.
e G diagonal.
f Additional F restriction.
g Additional Q restriction.



structure imposed on the subject-factor covariance matrix F (C12.3.4a) (similar to (11)),

and the other with an additional Kronecker structure on the residual covariance matrix
Q (C12.3.4b) (see (9)). In terms of measures of ®t, the `best’ exploratory model is
E12.3.4. With respect to the con®rmatory models, the C12.3.4a model, with the factor

covariance matrix having a Kronecker form, is the favoured candidate because of

its attractive interpretational characteristics, albeit that C12.3.4 has a better ®t (see

Table 1).

Neither V ±RMR plots nor three-mode scree plots seem helpful in model selection for
factor models. The V -RMR plot is based on the RMR and the ®tted sum of squares, and

no attention is paid to the number of parameters that need to be estimated for a model.
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Figure 1. Economic activities data: Deviance plot. Component models with a constant number of
components in the second mode (Q) and in the third mode (R) are connected for increasing number of
second-order components (P). The 7 ´ 4 ´ 3 model is the one selected for interpretation. The dashed
line represents the convex hull of models which pair lowest chi-squares with highest degrees of
freedom. Examples of lines of both constant x2/df and constant RMSEA are also indicated, as well as
lines of constant AIC. The boxed models are the ones selected for interpretation.



In the three-mode scree plot only the numbers of factors are counted and thus it is

irrelevant how many of the elements in a factor are constraints and how many are free to

be estimated. The deviance plot (Fig. 1) shows the relative positions of the three-mode

factor models; it illustrates the superiority of the C12.3.4a and C12.3.4b factor models as

both lie more or less on the convex hull, while the other factor models lie well within

it. The exploratory factor models fare very well, but their interpretation appears
dif®cult.

The interpretations of the factors in the con®rmatory factor model, both for the

rating scales (Table 2) and for the economic activities (Table 3) were already clear from

the outset, but it is satisfying to see that all variables have high loadings on their

designated factors.

6.3. Three-mode PCA: Model selection
Because of the differences in factor and component models, it is not a priori self-evident

that the number of factors and the number of components are the same. Therefore, a full
model search for small to medium numbers of components was carried out. Using

standard scree plots, a ®rst indication of the number of components followed from two-

mode PCAs on the original multimode covariance matrix without regard to its structure

(7 components), the average scales covariance matrix (3 components) and the average

activities covariance matrix (2±3 components). Table 1 lists the ®t measures of selected

component and factor models for the economic activities data. The RMSEA measures
suggest a more or less reasonable ®t is possible (0.07±0.08), but the proportion of

variance explained is low for reasonable numbers of components (between 0.09
(1 ´ 1 ´ 1) and 0.44 (12 ´ 3 ´ 4)). Veldscholte et al. (1998) noticed that there was a

large amount of noise in the raw data. However, this does not mean that there is no

recoverable structure in the data, and in the covariances in particular.
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Table 2. Economic activities data: Factors from the 12 ´ 3 ´ 4 factor model (C12.4.3a) and varimax-
rotated rating scale components from the 7 ´ 4 ´ 3 component model

Component analysis
Factor analysis factors rotated components

Social Economic Expected Social Economic Well- Non-
Rating scales values values risk values values known risky

1 Moral .89 – – .86 ê .09 ê .06 ê .06
2 Bene� cial for society .61 – – .49 .12 .06 .06
3 Requires great effort – .79 – .00 .62 ê .03 ê .05
4 Requires much knowledge – .78 – ê .05 .67 .02 .17
5 Requires a lot of � nancial – .48 – .12 .38 .00 ê .14

resources
6 Well-known – – 1.00 .02 ê .01 1.00 ê .01
7 Non-risky – – .31 .05 ê .05 ê .01 .97

Proportion of explained variance .10 .13 .10 .06

Note: Factor correlations are r (Social Values, Economic Values) = .40; r (Social Values, Expected
Risk) = .36; r (Economic Values, Expected Risk) = .20.
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The plot of the ®tted sums of squares versus RMR (Fig. 2) shows that the major gains

in ®t depend on the number of second-order components P, and given P, increasing

numbers of components for Q and R lead to decreases in RMR. Given models with equal
(Q, R), the gains in ®tted sums of squares are at the expense of increasing RMR when P

keeps on increasing beyond a certain value. As one would expect in PCA, ®t in variances

is given preference over ®t in covariances. Given that we are looking at covariance
matrices, models above the turning point are less attractive. For choosing a particular

model the plot is less suitable, because there is no control over the number of

parameters. The only thing that can clearly be seen is that the gain for increasing P

gradually diminishes. The gains between maxima for a given P are 7.1% (1 ! 2), 6.5%
(2 ! 3), 4.7% (3 ! 4), 4.1% (4 ! 5), 3.6% (5 ! 6), so that no more than ®ve second-
order components seems indicated given the models examined.

According to Timmerman and Kiers’ (2000) DIFFIT proposal (see Table 1), a 3
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Figure 2. Economic activities data: V–RMR plot. Component models with a constant number of
components in the second mode (Q) and in the third mode (R) are connected for increasing number of
second-order components (P). Also all con� rmatory common factor models are connected, as well as
their exploratory versions. The boxed models are the ones selected for interpretation.



(second order) ´ 2 (scales) ´ 2 (activities) solution is indicated, which, however, only

explains 22% of the variation. The lower bound (1/smax) after correction for cen-

tring = 0.0145, and this bound is still not reached for S = 19. More insight into in the

working of the DIFFIT criterion is obtained by examining the three-mode scree plot (Fig.

3). The strong dependence of the ®t on the number of second-order components is

again very clear. Further inspection of the ®t shows that for models with the same S, the
Q > R models always show better ®t. The curvature in V versus S for models with equal
(Q, R) is indicative of the diminishing contribution to the ®t of additional second-order

components. The dashed curve connects all points with maximal value of S within their

class provided the curve remains convex. The Timmerman±Kiers criterion thus comes
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Figure 3. Economic activities data: Three-mode scree plot. Component models with a constant
number of components in the second mode (Q) and in the third mode (R) are connected for increasing
number of second-order components (P). The 7 ´ 4 ´ 3 model is the one selected for interpretation.
The dashed line represents the convex hull of models with highest � tted sums of squares given S. Factor
models with equal numbers of factors are located on vertical lines irrespective of restrictions on the
factors; they have comparatively low � tted sums of squares. The boxed models are the ones selected
for interpretation.



down to selection of models which lie on the (dashed) convex hull. From Fig. 3, one

might decide to select the 4 ´ 3 ´ 2 model (V = .2675) or 7 ´ 4 ´ 3 model (V = .3776) as

alternative models to adopt if one prefers more detail than the 3 ´ 2 ´ 2 model.

The deviance plot of x2 versus df (Fig. 1) shows U-shaped curves for models with the

same (Q, R) and increasing P. The reason for the curvature is that, for increasing P,

models with the same (Q, R) have increasing ®t in their variances, which is not
represented in the x2, coupled with decreasing ®t of the covariances on which the x2

is based. Thus models at the lower end of the curve are the preferred ones in any curve.

On the convex hull we ®nd several of the previous favourably mentioned models (such

as 3 ´ 2 ´ 2, 4 ´ 3 ´ 2, 7 ´ 4 ´ 3), but not all of them. The primary cause for this is that S

does not take the number of levels in a mode into account. One component of a mode
with 390 levels has the same weight as one with only 7 levels. The effect in this example

seems to be mitigated by the fact that for the mode with a large number of levels, the

contribution to the ®t of components beyond the ®rst few is small.

From a data reduction point of view, balancing ®t with interpretability, we prefer the

7 ´ 4 ´ 3 solution (38% explained variability). The basis for this decision is that the
model has an acceptable RMSEA, lies on two convex hulls, is the best in its S-class, has a

decent x2/df ratio, and allows for a comprehensible substantive interpretation without

being too general or too detailed. Based on the deviance plot, one could also choose the

4 ´ 3 ´ 2 or 5 ´ 4 ´ 2 model because both are in a region where there is a change from

large gains in x2 for a few df to small gains in x2 for large df .

6.4. Three-mode PCA: Interpretation
Table 2 also presents four varimax-rotated rating-scale components; all varimax rotations
were performed on the orthonormal component matrices, making it in fact an oblique

cluster rotation (see Harris & Kaiser, 1964). The components can be characterized as

social values, economic values, well-known, and non-risky. Table 3 presents three

varimax-rotated activity components, which can be characterized as workÐ(earning

money), uncontroversial ®nancial activities, and controversial ®nancial activities.
During the selection separate components were foreseen for being employed and

being an owner, but they did not emerge here.

The core array (Table 4) indicates how the components of the activities and rating

components modes go together for each subject component. The results of the analysis

will be interpreted with the second-order component interpretation of the core array.
From Table 4 we see that the (rotated) second-order components explain more or less

the comparable amounts of the variability (between .039 (4th) and .081 (5th)) of the

combination components. By only paying attention to the high (above 1.3) and medium

values (above 1.0) of the core array (a value of 1.3 corresponds roughly to 1% explained

variability for a combination of components) the following statements can be made.

The ®rst four second-order components are primarily based on the rating scale
components, which can be seen from the diagonal structure in each of the activity

sections, albeit that this is rather weak for controversial ®nancial activities. The ®rst

second-order component is primarily determined by the well-known scale, the second

second-order component is primarily in¯uenced by economic values, the third second-

order component is concerned with social values, and the fourth second-order
component relates to the lack of risk of various activities. On the other hand, the ®fth

second-order component is related to one type of activity, i.e. uncontroversial ®nancial

activities, rather than on speci®c scales. The sixth second-order component is again
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determined by economic values, but in a reversed pattern from the second second-order

component with respect to importance of type of activities. Finally the seventh second-

order component is only determined by attention to controversial ®nancial activities

and stresses their unfamiliarity and their risk.

6.5. Conclusion
When comparing the interpretations of the component and factor solutions, the
similarities between the components and factors of both the ratings and the economic

activities are obvious, their different numbers notwithstanding. The most striking

difference between the two solutions is the way in which the relationships between

scores are portrayed: via correlations in the factor model and via the core array with the
second-order subject components in the component model.

The correlations between the ®rst and second factors of the economic activities are

in accordance with their joint loading in the component solution. The values for the

rating scales are also fairly similar to those of the component solution.

7. Example: Complex tracking behaviour data

7.1. Data
The complex tracking behaviour experiment by Parker and Fleishman (1960) was a
forerunner of today’s complex ¯ight simulators. A tracking device was constructed `to

simulate roughly the display characteristics and control requirements of an airborne

radar intercept mission’ (Tucker, 1967, pp. 140±141). A control system involving a

control stick and rudder pedals as in a standard aircraft control system was manipulated

by the subject to control a target dot in the centre of a cathode ray oscillograph, and the
needle of a potentiometer was used as a side-slip indicator. The subject’s task was to

defeat an induced movement of the dot so as to keep the dot in the centre of the

oscillograph. Side-slip error occurred when the subject did not co-ordinate the move-

ment of the stick and the rudder pedals. Measures of horizontal error, vertical error, side-

slip error and time on target were obtained. The component error measures were

summed to give absolute displacements of the target dot in the two dimensions and of
the side-slip indicator from the central position of the potentiometer needle. The

time-on-target measure was the time the dot and side-slip indicator needle were

simultaneously within the tolerance limits.

Ten segments of the learning curve were selected by Parker and Fleishman (1960,

Fig. 9) to represent successive stages in learning, and scores of the 203 subjects on each
measure on each stage of practice were converted to stanine form for the correlations

presented as Appendix F in Parker and Fleishman (1960). The error scores were

reversed to produce accuracy measures. There were four measurements for each of

ten stages of practice. The correlations in Parker and Fleishman’s Appendix F were only

given to two decimal places, causing the correlation matrix to be negative de®nite with
one small negative eigenvalue. This value was arbitrarily set at .01, and the correlation

matrix was recomputed with the original positive eigenvalues and the amended one so

that it became positive de®nite and therefore amenable to treatment with structural

equation models. With three-mode PCA, which is not in¯uenced by the negative

de®niteness, it could be checked that the results for limited numbers of components

were not in¯uenced by the procedure. Subsequently, the correlation matrix was
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transformed to a covariance matrix using the variances supplied by Parker and

Fleishman, although the effect was relatively minor as nearly all variances were equal

to 2.

The purpose of the analysis of these data was to investigate the usefulness of the two

techniques vis-aÁ-vis a well-structured longitudinal data set. Interestingly, this was in fact

the ®rst multimode data set analysed with three-mode models (Tucker, 1967). As
indicated and worked out in Section 8.2 below, longitudinal data should in general be

modelled taking the longitudinal character of the data into account. However, for the

main analyses of the tracking data, we followed the approach taken by Tucker (1967),

as we wanted to redo his analysis and evaluate it with present-day improvements in

three-mode component analysis.
For this data set, there was no clear a priori structure other than that from Tucker’s

(1967) analysis. Therefore, a model search with three-mode component analysis was

carried out ®rst, before attempting a three-mode factor analysis.

7.2. Three-mode PCA: Model selection
A full model search for small to medium numbers of components was carried out. Using

standard scree plots, a ®rst indication of the number of components followed from two-
mode PCAs on the original multimode covariance matrix (7 components), the average

stages covariance matrix (3 components) and the average measurement covariance

matrix (2 components). Substantive considerations suggest that no more than two

components should be chosen for the measures as there are measures for direction

control and one for side-slip control, and the time on target is clearly dependent on both.

Table 5 lists the ®t measures of selected component and factor models for the tracking
data. For the models under consideration an (inadequate) RMSEA of 0.127 for the

4 ´ 3 ´ 2 model was the best value possible given a maximum of two measures

components, but the proportion of variance explained is high for reasonable numbers

of components (between (0.51 (3 ´ 2 ´ 2) and 0.67 (8 ´ 4 ´ 2)).

The plot of the ®tted sums of squares versus RMR (not shown here) shows again that
major gains in ®t depend on the number of second-order components, P, and given P,

increasing numbers of components for Q and R lead to decreases in RMR.

According to Timmerman and Kiers’ (2000) DIFFIT proposal (see Table 5), a 2

(second order) ´ 2 (stages of practice) ´ 1 (measurement) solution is indicated, which

explains 40% of the variation. The lower bound (1/smax) is 0.0196, which implies that no
inspected model after 7 ´ 4 ´ 2 should be taken into consideration. From Table 5, one

might decide to select the 3 ´ 2 ´ 2 model (V = .51) or Tucker’s 7 ´ 4 ´ 2 model
(V = .66) as alternative models to adopt if one prefers more detail than the 2 ´ 2 ´ 1

model, which provides a too simplistic explanation of the data. The single measurement

component, for instance, does not ®t the side-slip data.

The deviance plot of x2 versus df (Fig. 4) again shows U-shaped curves. On the
convex hull we ®nd for larger numbers of components a somewhat different set of

models (such as 2 ´ 2 ´ 1, 3 ´ 2 ´ 2, 4 ´ 2 ´ 3, 6 ´ 4 ´ 3, 7 ´ 4 ´ 3, 7 ´ 4 ´ 4) compared to

previously mentioned models; however, the number of components for the third mode

is generally too large for sensible interpretation. Tucker’s 7 ´ 4 ´ 2 model does not stand

out on any of the measures.
From a data reduction point of view, balancing ®t with interpretability, we decided to

report the 4 ´ 3 ´ 2 model. This model has the best RMSEA of all models with no more

than two measure components (0.127 compared to 0.136 for Tucker’s model) and the
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best AIC (2973 versus 3470 for Tucker’s model). The RMSEA is very high, but no

component model has a conventionally acceptable RMSEA. It is also the best in its S-class
(S = 9), but it misses the convex hull in Fig. 4, albeit only just. It allows for a

comprehensible substantive interpretation without being too general or too detailed.

7.3. Three-mode PCA: Interpretation
Table 6 shows the stages-of-practice components for the 4 ´ 3 ´ 2 solution after a

varimax rotation on the unit-length components. The ®rst component (early) is

determined by the ®rst two stages, the second component (middle) by stages 3±6,
and the third by stages 7±10. The two components for the measurements (Table 7) can

be labelled `direction control’ and `side-slip control’, and total time on target is

in¯uenced especially by direction control and much less by side-slip control.

The patterns in the second-order components can be deduced from the core array
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Table 5. Complex tracking behaviour data: Fit of three-mode component and factor models (203
subjects´ 10 stages of practice ´ 4 measurements)

Model Sum SS (Fit) difS bS x2 df a x2/df RMSEAb AICc RMRd

Component models
1 ´ 1 ´ 1 3 .2728 .2728 2.13 7634 807 9.46 .168 6020 .79
2 ´ 2 ´ 1 5 .4007 .1279 2.16 5816 798 7.29 .145 4220 .66
2 ´ 2 ´ 2 6 .4598 .0591 1.08 4988 793 6.29 .133 3402 .37
3 ´ 2 ´ 2 7 .5143 .0545 1.49 4790 791 6.06 .130 3208 .34
4 ´ 2 ´ 2 8 .5509 .0366 1.05 4750 790 6.01 .129 3170 .35
4 ´ 3 ´ 2 9 .5635 .0126 – 4527 777 5.83 .127 2973 .31
5 ´ 3 ´ 2 10 .5983 .0348 1.38 4586 775 5.92 .128 3036 .31
6 ´ 3 ´ 2 11 .6235 .0252 1.01 4687 774 6.06 .130 3139 .31
6 ´ 4 ´ 2e 12 .6355 .0120 – 7559 759 9.96 .173 6041 .28
7 ´ 4 ´ 2f 13 .6604 .0249 1.67 4984 757 6.58 .136 3470 .28
8 ´ 4 ´ 2 14 .6753 .0149 – 5229 756 6.92 .140 3717 .29
8 ´ 4 ´ 3 15 .6839 .0086 – 4101 725 5.66 .124 2651 .26
9 ´ 4 ´ 3 16 .6978 .0139 – 4392 721 6.09 .130 2950 .26
9 ´ 4 ´ 4 17 .7062 .0084 – 3729 688 5.42 .121 2353 .23
Factor models (6 ´ 3 ´ 2)

C-diag 12 .54 2792 749 3.73 .116 1299 .40
C-block 12 .57 2303 569 4.05 .123 1165 .37
C-lag3 12 .57 2400 653 3.68 .115 1094 .39
C-ar2 12 .51 2507 681 3.68 .115 1145 .42
CR-block 12 .52 2675 731 3.66 .114 1213 .38
CR-lag3 12 .53 2699 752 3.59 .113 1195 .39
CR-ar2 12 .52 2728 759 3.59 .113 1210 .40

a df = ( J ´ Q ê Q2) + (K ´ R ê R2) + (P ´ Q ´ R ê
1
2 P(P ê 1)).

b RMSEA =
p

{(x2/df ê 1)/(N ê 1)}.
c AIC = x2

ê 2df .
d RMR = root mean square residual (off-diagonal elements); RMR of the original covariance matrix
is 1.26.
e This model has an unexpected and unexplained extremely high value for x2 of 7559.
f Tucker’s original solution.



(Table 8) which portrays the relationships in a very succinct way. One of the dif®culties

in interpreting core arrays is that one has to take into account the nature of the

components of both the stages and the measurements. To support the interpretation of

the core array, we can look at the structured loading matrices (see (14)) which combine

the component and core information (Fig. 5). The ®rst second-order component (Fig.

5(a)) shows positive weights for direction control and zero and negative weights for

side-slip control. In the middle period very good direction control is achieved to the
detriment of side-slip control, and achieving control in both is only possible via an
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Figure 4. Complex tracking behaviour data: Deviance plot. Component models with a constant
number of components in the second mode (Q) and in the third mode (R) are connected for
increasing number of second-order components (P). The 4 ´ 3 ´ 2 model is the one selected for
interpretation. The 6 ´ 4 ´ 2 model has an unexplained disproportionately high x2. From its
location in the plot it can be seen that the 4 ´ 3 ´ 2 model has the best RMSEA and AIC given
two measurement components. The con� rmatory common factor models have very much better
RMSEA and AIC values than the component models. The boxed models are the ones selected for
interpretation.
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Table 6. Complex tracking behaviour data: stages-of-practice components for 4 ´ 3 ´ 2 solution of
Tucker3 model after varimax transformation (of orthonormal B)

Components
Stages of
practice Early Middle Late

1 .70 ê .04 ê .02
2 .67 .08 ê .03
3 .15 .45 ê .11
4 ê .04 .55 ê .03
5 ê .02 .52 .03
6 ê .03 .39 .19
7 ê .05 .18 .38
8 ê .05 .06 .46
9 ê .03 ê .05 .55

10 .21 ê .17 .54

Proportion of .25 .22 .09
explained variance

Table 7. Complex tracking behaviour data: Measurement components for 4 ´ 3 ´ 2 solution of Tucker3
model after varimax transformation

Direction Side-slip
Measurements control control

Horizontal accuracy .56 ê .12
Vertical accuracy .56 ê .05
Side-slip accuracy ê .03 .97
Total time on target .61 .21

Proportion of .40 .12
explained variance

Table 8. Complex tracking behaviour data: Core array after transformation of component matrices B
and C

Direction control Side-slip control

Second-order
components Early Middle Late Early Middle Late

1 1.41 5.21 1.26 .01 ê .88 .02
2 .14 .94 4.80 .16 .51 2.63
3 .24 ê .76 .23 1.88 2.62 .89
4 2.75 1.21 ê .47 ê .89 .38 1.24



average performance on both (i.e. a zero score). The second second-order compo-

nent (Fig. 5(b)) shows, after an initial average grappling of the tasks, a gradual

increase in all measures with clear mastery in the end in both types of control, thus

achieving a high time on target. The third and fourth second-order components

(Fig. 5(c) and 5(d)) show good control for one aspect at the expense of the other in

the beginning, ending up somewhere near the average. Interestingly enough, the
fourth component shows initial good direction control at the cost of side-slip control,

then in the middle a reversal takes place, and in the end both types of control are

reasonably balanced.
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Figure 5. Complex tracking behaviour data: Structured loading matrix for each second-order (subject)
component: (a) � rst component; (b) second component; (c) third component; (d) fourth component.
Time on target is represented by solid dots (F), side-slip control by diamonds (u), vertical accuracy by
up-pointing triangles (Œ), and horizontal accuracy by left-pointing triangles (Š).



7.4. Three-mode factor analysis
On the basis of Tucker’s original analysis, we chose six subject factors (P = 6), three

stages-of-practice factors (Q = 3) and two measurement factors (R = 2). An additional

consideration was that we wanted a not too large P = QR model because of its

straightforward interpretability without second-order factors. We ®rst used Bentler

and Lee’s (1978, 1979) identi®cation constraints including echelon-form factor matrices,
but the resulting models were uninterpretable. Therefore, we will only report con-

®rmatory models in which we specify a simple structure for both component matrices B
and C, even though their ®t is worse than that of the exploratory models. With the

simple-structure B and C matrices, setting the 6 ´ 6 core array G diagonal, and the 6 ´ 6

factor correlation matrix F symmetric, we get the con®rmatory model C-diag, where
`diag’ refers to the diagonal matrix of residual covariances Q. The ®t of the con®rmatory

model is poor (second part of Table 5), probably due to covarying residual factors. That

is, residual factors of the same variables are probably correlated across occasions. The

C-diag model may thus also be seen as a zero-lagged residual covariance matrix. With

4 variables and 10 occasions, there are 4 ´ 45 parameters representing residual
covariances. Setting these Q parameters free to be estimated, which is equivalent to

considering all nine lags (C-lag9), one obtains a block-diagonal Q matrix. The C-lag9

model (= C-block) gives a worse RMSEA but a better AIC than the C-diag model (Table

5). However, the ®t is still poor. We need to ®nd better ®tting models that (i) take into

account the covariances of residual factors of the same variables on different occasions,

and (ii) are more parsimonious than the C-block model.
In the C-lag1 model only 4 ´ 9 parameters in Q, representing covariances between

residual factors of adjacent trials, are set free to be estimated. This does improve the ®t

somewhat. Adding correlated residuals for longer lags than the third lag does not

improve the ®t any further. Although the ®t of these latter models is considerably better

than the ®t of the models C-diag, the ®t is still poor.
Another way to satisfy requirements (i) and (ii) is to impose an autoregressive (AR)

structure on the covariance matrix of residual factors Q (see (12)). The ®t of such a

model with only ®rst-order autoregressive effects is still poor (C-ar1). Addition of

second-order autoregressive effects does improve the ®t a little (C-ar2; Table 5), but

not suf®ciently. Yet another way of saving degrees of freedom is to impose a Kronecker
structure on the residual covariances (11). In the CR-block model, the Q restriction of

(9) is imposed with QC diagonal and QB symmetric, so that the resulting Q matrix has

the same block diagonal structure as the C-block model. To gain some more degrees of

freedom we imposed autoregressive structures on the QB matrix (e.g. CR-ar2; Table 5).

According to the AIC, the ®t of these restricted models is worse than the ®t of the same

models without the Q restriction, but according to the RMSEA the restricted models ®t
relatively better. This is also true for models with lagged structures for the QB matrix

(e.g. CR-lag3; Table 5). We imposed a Kronecker structure on the factor correlation

matrix F, but this gave worse ®t in all cases.

Figure 4 summarizes the ®t of all series of models discussed. Overall there is little

difference between the lagged and autoregressive models of one type of series as the
convex hulls more or less coincide. The major decision would be whether or not to

impose the Kronecker structure on Q. If one decides to model it, the CR-lag3 model

(x2(752) = 2699; RMSEA = 0.113; AIC = 1195) seems to be the best to choose, as is

also indicated by the AIC (see Table 5).

We have to conclude that none of the three-mode factor models provides a
satisfactory ®t. In view of this, one should not try to interpret the parameter estimates.
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That said, with the simple structure of the component matrices B and C, the diagonal

core array G, and the standardized F, the interpretation would have been straight-

forward and in fact would have led largely to the same conclusions as those reached

from the component models. In addition, it would have provided information about the

dependence of the variables via the lag information in the residual covariance matrix Q.

Figure 4 and Table 5 show that in terms of x2, RMSEA, and AIC the factor models
perform better than the component models, but, as we have seen, this is still not good

enough to allow interpretation of the factor models. This is partly due to the restriction

to two measurement components, but with reasonable numbers of components, the ®t

to the covariances for the component models is never as good as for the factor models.

7.5. Conclusions
The complex tracking behaviour data clearly show that an adequate explained variance

is not necessarily indicative of a good ®t to the covariances, emphasizing that

component models and factor models are fundamentally different in their orientation.
The example also illustrates that even though no well-®tting model could be found for

the factor models, a very interpretable component model existed. The irony is that the

poorly ®tting factor model (CR-lag3) has a similar and clear interpretation to the

component model. From a methodological point of view, it was shown that the core

array can be seen as a succinct summary of the major relations in the data, especially via

a comparison with the structured loadings.

8. Discussion
In this paper, we have shown that multimode covariance matrices can be fruitfully

analysed with three-model models. Within the context of covariance structure analysis,

three-mode factor analysis can be seen as a combination of two good ideas. The ®rst is
that interpretation can be facilitated by using a Kronecker or direct-product structure to

handle the multimode aspectÐsee also Browne’s (1984) direct-product model. The

second idea is that a larger number of variables can be described with a small number of

factors. Both ideas lead to a reduction in the number of parameters, and their

combination can yield spectacular gains of degrees of freedom in accordance with

the desire for parsimonious models. Of course, these reductions increase the likelihood
of inadequate ®tting models, as the complex tracking behaviour example showed.

In terms of interpretation, the great difference between the factor and component

techniques lies in the assumptions made about the underlying models, in the same way

as for two-mode analysis. For model selection, the various plots served to provide an

overview of the relative performance of the various models; however, model selection is
only partially guided by `objective’ methods. All model selection procedures used here

rather served to exclude models, rather than select the `true’ one.

8.1. Numerical issues
The actual choice between component and factor models is further complicated by

numerical considerations. Component models are solved by linear algebra and projec-

tion using alternating least squares, so that values can always be computed for the

parameters. In addition, alternating least squares does not use inversion of the (implied)

covariance matrix so that numerical instability and initialization are not problematic.
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Moreover, very large covariance matrices can be handled in a relatively short time, in

contrast with factor models for which, at least with Mx, the estimation often requires

several hours. When there are relatively few subjects and many variables, covariance

structure modelling gets easily into numerical dif®culty, but this is not so much the case

for the component models.

A case in point is the economic activities data. As mentioned in Section 6.1, the
original data consisted of a 390 ´ 12 ´ 20 data block, which was impossible to estimate

with covariance structure models. For component models, such data sets can be

tackled, even within reasonable time. In fact, the largest amount of time goes into the

eigenanalysis of the 240 ´ 240 sample covariance matrix and the inversion of the

implied covariance matrix at the end to compute the maximum likelihood discrepancy
function, both of which are not necessary for the analyses themselves. As an example, a

7 ´ 4 ´ 3 analysis of the full data set took a little under 3 minutes for the central iterations

and gave the following results: x2 = 70 462 with df = 28 774; RMSEA = 0.061 and a

proportion of explained variance of .13. This is most likely not the optimal solution but

serves to indicate that a solution of the entire data set can be computed for the
component approach (see also Veldscholte et al., 1998).

8.2. Other factor models
There are several other models related to the three-mode factor models discussed here.

Oort (1999) gives a general description of stochastic three-mode models for mean and
covariance structures. The three-mode factor models of Bloxom (1968) and Bentler and

Lee (1978, 1979), and the composite direct-product models of Browne (1984) are

mentioned as special cases, but these models are for the covariance structure only. Oort

also mentions stochastic three-mode models especially suited for the analysis of multi-

variate longitudinal data. The covariance structure of such models for the tracking data
is given by

S = (C Ä I)F(C 0 Ä I) + Q. (15)

This model yielded a better ®t: x2(447) = 906, RMSEA = 0.071, AIC = 11.5 (with Q
containing covariances for the ®rst four lags). Many further restrictions are possible, and

the mean structure can be included as well. Special cases of these longitudinal three-

mode models are latent (growth) curve models, and autoregressive models (Oort, 2001).

However, longitudinal three-mode models fall outside the scope of the true three-mode
models discussed here, as can be seen from (15) which contains neither a (stages-of-

practice) component matrix B nor a core array G (cf. (8)). Another three-mode factor

analysis model presented in the literature is McDonald’s (1984, 1985) invariant factors

model. Oort (2001) shows how this model can be written as a special case of his

stochastic three-mode models. For the tracking data, where the occasions are the

second mode and the variables the third mode, matrix B in (8) and (10) is substituted by
an identity matrix, and G is a R ´ JR matrix (as P = R and Q = J ) transforming the JR

®rst-order factors into R invariant second-order factors. The invariant factors model

is very restrictive, and its ®t to the tracking data turns out to be very poor

(x2(747) = 3865, RMSEA = 0.144).

8.3. Conclusion
We have presented ways to use non-stochastic three-mode component models and

stochastic three-mode factor models for the analysis of multimode covariance matrices;
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through two examples we have illustrated how they can be used, and we have discussed

their advantages and limitations. The ®rst example illustrated that a low proportion of

explained variance can go together with acceptable values for measures such as the

RMSEA, while the second example showed the reverse. Even though the proportion of

explained variance typically belongs to component models and the RMSEA to factor

models, this does not necessarily mean that in the ®rst example only factor models can
be interpreted and in the second example only component models.
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