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The quality of the attachment relationship between mother and infant is typically
determined in the Strange Situation. The assignments of infants to the A (avoidant),
B (secure), and C (resistant) attachment classes are largely but not exclusively based
on measurements during the reunion episodes. In this paper, the measurements in
the reunion episodes are used to derive a clustering of the infants via three-way
mixture method of clustering, a technique especially designed for clustering three-
way data (here: infants, variables and episodes). The results are compared with the
A-B—C classification, and the relevance of the outcomes for attachment research are
discussed. At the same time, the paper aims to demonstrate the use and usefulness
of the three-way clustering procedure for data from the social and behavioural
sciences.

In developmental psychology there always has been a strong interest in the
attachment relationship between mother and child. One of the main instruments to
assess the quality of attachment has been the Strange Situation (see Ainsworth,
Blehar, Waters & Wall, 1978). Measurements are made in several episodes of this
laboratory-based procedure, and the final assessment is a classification of each infant
(or better, infant—mother relationship) into one of three categories, usually indicated
with the letter A, B, and C (see Ainsworth ez a/., especially pp. 334-335, 343-362).
The classification is established via detailed scoring rules using the above-mentioned
measurements.

The major evaluation of the classification procedure as outlined in Ainsworth e? a/.
(1978, chapter 6) was to perform a post hoc discriminant analysis using the
classification as the criterion and the measurements as predictors. A disadvantage of
such a procedure is its circularity. First the measurements are used to create the
classifications, which in turn are evaluated by using the measurements. This was
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recognized by the originators, but at the time no clear alternative seemed to be
available. In the present paper we will attempt to provide an assessment of the
classification results without using the same data twice by using a clustering
procedure. Clustering procedures attempt to find groupings of subjects (objects, etc.;
here: infants) on the basis of the measurements available. The resulting grouping (or
statistical) classification can be compared with the usual c/inical or A-B-C
classification to assess the latter (see Sawyer, 1966 for a relevant discussion of clinical
versus statistical prediction; the term ‘clinical’ is seldomly used in this context, but
was inspired by the paper by Richters, Waters & Vaughn, 1988). If the groups in the
A-B-C classification adequately portray the individual differences in the Strange
Situation, then the classes found by the clustering procedure should correspond
reasonably with A-B—C classification, especially if the Ainsworth groups are natural
clusters. If there is little or no correspondence, the empirically derived clusters will
contain mixtures of the Ainsworth groups (see also Lamb, Thompson, Gardner &
Charnov, 1985, p. 214).

As we are dealing with three-way data, our prime clustering tool will be the
mixture method of clustering for three-way data (Basford & McLachlan, 19855;
McLachlan & Basford, 1988). As there are to our knowledge no applications of the
three-way mixture method of clustering outside the field of agriculture and biological
sciences (see e.g. Basford, Kroonenberg & DeLacy, 1991), we have included an
appendix with some of the technical details, while a more conceptual introduction
including some remarks about interpretation is given in the main body of the paper.
Unique to the three-way cluster method is that it can handle explicitly data which
arise from the type of three-way designs that form the basis of the present data set.
In particular, during the two so-called reanion episodes of the Strange Situation, five
variables measuring the intensity of the infants’ behaviours were scored from
videotapes for 326 Dutch infants. Thus, the data set can be seen as a2 326 by 5 by 2
three-way data array.

In this paper we will first provide an exposé of the three-way mixture method
clustering, and add a short discussion of an ordination technique to present some of
the results graphically, i.e. three-way replicated principal component analysis. Then
the substantive background to the data will be presented. To appreciate the results
of the three-way method on these data, we will dwell also on the results for two-way
data, especially because several aspects of the mixture method of clustering can
be more easily demonstrated on two-way data. In particular, we start with analysing
the two episodes separately, and only then continue with the data set as a whole. The
results of the last analyses will be compared with the clinical classification to evaluate
the characteristics of both the clinical and statistical classifications.

Method

There has been a long history of ‘grouping’ approaches when analysing three-way data, probably
starting with Tucker & Messick (1963) devising a ‘ points-of-view’ approach where the aim was to seek
to partition two-way proximity matrices from several sources into relatively homogeneous subgroups,
aggregate within, and then run an analysis for each subgroup. Carroll & Arabie (1983) devised a method
for non-hierarchical overlapping clustering called INDcLUS for the case of three-way proximity data with
either directly measured or derived proximities. Carroll, Clark & DeSarbo (1984) developed a
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methodology called INDTREES for fitting a hierarchical tree structure to obtain a discrete network
representation of proximity data. De Soete & Carroll (1989) have made further extensions to this
approach using ultrametric trees (for an overview see Arabie, Carroll & DeSarbo, 1987). As far as we
are aware, the mixture method of clustering is the only clustering technique which handles three-way
profile data (i.e. subjects by variables by conditions data) directly.

The more usual clustering approaches (to clustering individuals, say) are the hierarchical ones in
which by successive fusion the number of individuals (and subsequently individuals and clusters) is
reduced by one, until one large cluster remains. As there is no explicit model underlying such clustering
procedures, it is extremely difficult to evaluate the optimal number of clusters and the adequacy of the
cluster solution for the data. Moreover, once two individuals are allocated to the same cluster in an
hierarchical clustering, they will never be separated again. This is in contrast with the mixture method
of clustering where for each number of clusters a new solution is sought independent of the solution
with fewer ot more clusters.

Under the mixture approach to clustering (Everitt, 1980; Wolfe, 1970), it is assumed that the data at
hand can be considered as a sample from a mixture of several populations in various proportions.
Estimates of the parameters of the underlying distributions can be obtained using the likelihood
principle, and the elements can be allocated to these populations on the basis of their estimated posterior
probabilities of group membership. In this way, individual observations can be pattitioned into a
number of discrete, relatively homogeneous groups. However, if the posterior probability is less than
a specified value the individuals concerned can remain unallocated but with known probabilities of
belonging to the various groups. The three-way mixture method of clustering to be presented is a direct
generalization of the two-way variant developed by Wolfe (1970), and the two methods are equivalent
for a single sample. Even though the estimation of the two-way case can be solved with the three-way
program, special software exists for the two-way case (see below).

Three-way mixture method of clustering: Theory

In this section we will give an outline of the three-way mixture method of clustering. We will skip some
details and present a primarily intuitive and simplified introduction. A more detailed and general
exposition is contained in the appendix. The clustering method is based on the assumption that each
of the 326 (= N) infants belongs to one of g possible groups, but it is unknown to which one. Therefore,
all one can do is assign it to that group to which it has the highest probability of belonging. In order
to be able to do so, it is necessary to establish the characteristics of each group and the probability of
each infant to belong to each group. Observations are available on 5 (= p) variables at 2 (= r) separate
times or episodes. Thus the data comptise two vectors of multivariate observations on each infant, one
for each episode. For infantj (j = 1, ..., ) these will be denoted by x;, and x,, respectively. The vector
of all observations for infant ; has 10 elements, and will be denoted by x;.

Let us first assume that there exists only one group, then the data would have come from two
multivatiate normal distributions, one for each episode. When there are more groups, then the normal
distributions of the variables in each group are allowed to have different means in each episode, thus
there are pXrxg (=5%2xg) means to be estimated. Furthermore, it will be assumed that the
multivariate distribution for each group will not change between episodes, but groups may ot may not
have different covariances, i.e. the groups may have a common (within-group) covariance matrix, or each
group may have an arbitrary (within-group) covariance matrix. Thus there is either one covariance
matrix or there are g covariance matrices to be estimated. Under the normal mixture model proposed
by Basford & McLachlan (19855) for three-way data, it is assumed that the relative sizes of the g groups
G,,...,G,, are given by the mixing proportions m,,..., 7, respectively, which are also unknown, so that
they, too, have to be estimated.

The estimation is carried with maximum likelihood procedures, and once a solution has been
obtained, one can derive the so-called posterior probabilities that an infant j, (=1,...,#), with
observation vector x;, belongs to group G, (/ = 1,...,g) (see equation 5 in the Appendix). Each infant
is then assigned to the group to which it has the highest estimated posterior probability of belonging.
In this way, the individual infants are pattitioned into a number of discrete, relatively homogeneous
groups.
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A tendency has been observed for the derived clusters to be of roughly equal size when the covariance
matrices are specified to be equal (see e.g. Gordon, 1981, p. 52). Clearly, if the model is incorrect, for
instance, if the parent populations are decidely non-normal, the method might be far from optimal (see
e.g. Everitt, 1980, section 5.2). Whether in real life this is a problem depends on the aim of the
clustering, i.e. whether one is seeking for natural clusters, or wants to dissect continuous observations.
In the latter case, the multinormality assumption seems a reasonable one to make, in the former case
it is very much an empirical matter whether the method is appropriate.

Testing for the number of components g in a mixture is an important but very difficult problem which
has not been completely resolved (McLachlan & Basford, 1988). An obvious way of approaching the
problem is to use the likelihood ratio statistic A, as discussed by Wolfe (1970, 1971), to test for the
smallest value of g compatible with the data. Many authors, including Wolfe, have noted that
unfortunately with mixture models, regularity conditions do not hold for —2InA to have its usual
asymptotic null distribution of chi squared with degrees of freedom equal to the difference in the
number of parameters in the two hypotheses.

McLachlan & Basford (1988) recommended that in general the outcome of Wolfe’s likelihood ratio
test should not be rigidly interpreted, but rather used as a guide to the possible number of underlying
groups. They suggested that use also be made of the estimates of posterior probabilities of group
membership in the choice of g. They can be examined for values of g near to the value accepted according
to the likelihood ratio test, and may therefore be of assistance in leading to a final decision as to the
number of underlying groups.

When the number of components in the mixture is known (as may be the case here with g = 3, i.e.
equal to the number of clinical classification groups), Everitt (1981) stated that the parameters in the
model ‘may be estimated by maximum likelihood methods although problems may arise due to
singularities in the likelihood function unless some constraint is placed on the variance—covariance
matrices, the most natural being that these are the same for all components’ (p. 172). Note, however,
that although it may be natural to assume equal covariance matrices, in many applied cases (including
here) the data do not really conform with that assumption. A detailed discussion of the problem is given
in Duda & Hart (1973, pp. 198-201).

The mixture model used here assumes that the measurements taken on infants during the separate
episodes are independent of each other, in that the likelihood was obtained by multiplying together the
probability density function for each infant in each episode. There is no concern about the infants being
independent of each other, but the same infants were measured during both episodes. Therefore, we are
really assuming independence of measurements on the same infants over time. Independence was a valid
assumption for the agricultural data to which the model had been previously applied (the same
genotypes, but separate plants, were grown in each location), but may be open to criticism with social
science data of this type. Treating the separate episodes as independent measurements is a compromise
which enables some of the structure of the design of the experiment to be accommodated, i.e. the same
five variables are measured each time.

Note that the exploratory nature of the clustering methodology is being stressed here. Although we
probably have as much experience as anyone in the application of the three-way mixture method of
clustering, we do not know about the robustness of the method to the violation of this independence
assumption. It is hoped that by application to repeated observation data, such insight will be gained.
Other clustering techniques simply stack the observations for the two episodes together and consider
the data array to be two-way (infants by variables). If the outcome of the three-way mixture approach
is supported by the outcome of the complementary ordination procedure discussed below, then the
independence assumption cannot be too rigid. We are using an alternative methodology on a particular
data set to look at a substantive problem, rather than choosing a data set to best demonstrate the
methodology.

Ordination as a complement to clustering

In the cluster analysis the variables and episodes are jointly used to find an optimal separation of the
infants into groups. The mean values of the groups on the variables can be used to evaluate the
characteristics of the groups with respect to each other in either episode. The differences between the
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infants are only described through the clusters, but not on an individual level other than their a posterior:
probabilities of belonging to the groups. By using ordination techniques in conjunction with cluster
analysis, a more detailed analysis of the individuals and of the clusters can be obtained. Within social
and behavioural sciences, principal component analysis is probably the most common, ordination
technique for two-way data. For three-way data, such as we have here, several variants of principal
component analysis exist, such as three-mode principal component analysis (see e.g. Kroonenberg,
1983), and parallel factor analysis (see Harshman & Lundy, 1984). As in the present case we only have
two episodes, we will use a very simple model for the three-way data, sometimes called replicated (or
weighted) principal component model. This model is a special case of both three-mode principal component
and parallel factor analysis models (see Ten Berge, De Leeuw & Kroonenberg, 1987).

In replicated principal component analysis, the data from two or more occasions or episodes are
assumed to have the same configuration for the variables and for the infants for each occasion, but the
relative size or importance is allowed to vary from one occasion to the next. Note that this assumption
fits very nicely with the assumption of the mixture method of clustering that per group the covariance
matrix is the same for each occasion. The cluster technique allows interaction between the variables and
the occasions by modelling a different mean for each variable in each group at each occasion. In the
replicated component model as used here, the overall means of the variables for each occasion are
modelled separately, and do not form an integral part of the three-way model. As we will see the
differences across occasions between the means of the groups are not extremely large, so that a
reasonable concordance between the results of the cluster analysis and the component analysis should
be possible.

The replicated principal component model for three-way data can be written as

S
X =G D abte (=1, 0=1,...,pik=1,...7), (11)
s=1
where ¢, is the weight ot relative contribution for episode £, the a,, are called component scores and
b,, the component loadings, and j is the index of the infants, / the index for the variables, and § the
number of components; ¢, is the error of approximation. Generally, one is only interested in a small
number of components, say two or three. This partially depends on the dimensionality of the space in
which the clusters can be shown to their greatest advantage. The components from this technique will
be used to make a simultaneous plot of the component scores, the component loadings, and the clusters.
In this way, insight can be acquired about the distinctness and tightness of the clusters in relation to
the variables and the individual infants.

Computer programs

The three-way mixture method of clustering is implemented in the computer program called mixcrus3,
and can be obtained from the second author (as can the two-way version of the program, MIXCLUS2).
An earlier version of this program was published as an appendix in McLachlan & Basford (1988).
The replicated principal component analyses have been cartied out with a program for three-mode
principal component analysis (TuckaLs3) developed by the first author (Kroonenberg, 1994;
Kroonenberg & Brouwer, 1993).

Substantive background

Strange Situation procedure

The Strange Situation procedure was designed to assess the quality of infant—mother attachment, and
is considered appropriate for infants between 12 and 18 months (for details, see Ainsworth e a/., 1978).
This laboratory-based procedure consists of seven three-minute episodes arranged to continuously
increase the stress on the infant, so that its attachment system with respect to the mother is activated.
To be specific, mother and infant are taken through a series of episodes each lasting three minutes in
a (to the infant unfamiliar) room at a laboratory or institute. The crucial episodes, the reanion episodes (R1
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and R2), are those in which the mother returns after having been away, and the infant was left alone
with a stranger. On the basis of the infant’s behaviour during the procedure, the quality of the
infant-mother attachment relationship is categorized as insecare—avoidant (A), secure (B), or insecare—
resistant (C). It should be noted that a fourth category has recently been added, the D or disorganized
classification (see Main & Solomon, 1990). However, this classification category will not be considered
here as it has not yet been coded for our data.

Three important claims have been made with respect to the reliability and validity of the A—B—C
typology, i.e. the clinical classification. First, different patterns of behaviour in the Strange Situation arise
from different previous patterns of infant-mother interaction. In particular, it is the mother’s sensitivity
to the behaviour of their infants that leads to secure attachment. Second, infants seen more than once
in the Strange Situation tend to behave in the same fashion each time they are measured. It should be
mentioned that attachment classifications remain stable over a period of one to six months provided
family circumstances are stable. Third, individual differences in Strange Situation behaviour predict
behavioural differences in other contexts up to several years later, again provided there has been stability
in the family circumstances (see among others, Lamb e# /., 1985; and Van Dam, 1993, for further
references). The above suggests that the clinical classification has both a certain amount of reliability and
validity.

According to the classification instructions (see Ainsworth e a/., 1978, pp. 59—63) the scores on five
seven-point scales in the two reunion episodes play a crucial role in the clinical classification, i.e.
proximity seeking (PS), contact maintaining (CM), resistance (RS), avoidance (AV), and distance
interaction (DI), where high scores on avoidance are especially indicative for an A classification, and
high scores on resistance for a C classification. Therefore, we will also restrict ourselves to these
variables (see also Lamb ez a/., 1985, pp. 209, and Richters ez a/., 1988).

The only other clustering of strange situation measurements known to us (Lamb e# al., 1985, pp.
214-221) was also restricted to these same 10 variables, but Lamb e# 4/. used hierarchical two-way cluster
methods on a sample consisting of Swedish and American infants. Connell (1977) also claims to have
carried out a cluster analysis, but closer inspection shows that in fact he used an ordination technique.

Data

A total of 326 infants, or rather infant-mother pairs, are included in our analyses. They originate from
five different studies conducted at the Centre for Child and Family Studies of the Department of
Education, Leiden University. The primary references for these studies, which also contain the detailed
information on procedural questions, are Goossens (1986; see also Van 1Jzendoorn, Goossens,
Kroonenberg & Tavecchio, 1985), Goossens & Van IJzendoorn (1990), Hubbard & Van IJzendoorn
(1991), Lambermon & Van IJzendoorn (1989), and Van Dam & Van Ijzendoorn (1988); a
comprehensive description can be found in Van Dam (1993).

As the data originate from several samples, which were collected for different purposes, the reliability
information is not entirely complete for all of the scales in all studies. A report containing all available
details can be obtained from the first author. A typical example of the reliability of the scoring of the
five variables can be found in Van IJzendoorn e# a/. (1985, p. 441). The inter-coder reliabilities varied
from .73-.97, and similar values have been found in the other subsamples. With respect to the A~-B—C
classification, a subset of the same study was independently reclassified which gave a correct
classification rate of .96, and again similar values were found in other subsamples. In as far as was
feasible, the classifications were done by other persons than the scorers of the five variables. Correlations
between the same variables across episodes for the whole sample are given in Table 6, and these values
range from .35 (avoidance) to .71 (distance interaction).

Attachment: A continuous or discrete construct?

Ainsworth intended the Strange Situation to be primarily a classification procedure, with which
individual differences in attachment could be assessed in terms of organized patterns of behaviour (see
e.g. Ainsworth, 1990). The A-B-C typology wass originally empirically developed, and there seems to
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be little theoretical reason to expect that individual differences in Strange Situation are discrete rather
than continuous. Working with the protocols of 23 infants, Ainsworth ef a/. (1978) developed the
classification system by grouping infants in clusters on the basis of perceived behavioural similarities in
the strange situation. Similarities between the resulting (seven) clusters were then used to achieve a
further condensation to three main groups, i.e. the A, B and C classifications. After the classification of
infants, Ainsworth ef a/. (1978) identified aspects of behaviour that seemed crucial in distinguishing the
various groups and subgroups in the classification. These aspects are primarily those which are included
in our analyses. Thus, the classification instructions were the result of a purely informal empirical
exercise without strong a priori theoretical reasons for a typology. As Connell & Goldsmith (1982)
noted “unless typologies are derived by appropriate empirical means (e.g. cluster analytic techniques),
they are unlikely to exhibit the same predictive capacity and internal structure in subsequent
applications’ (p. 219). Several researchers question whether individual behavioural differences in the
Strange Situation are adequately represented by the discrete categorization, and they consequently
recommend the consideration of continuous measures (Connell & Goldsmith, 1982; Kroonenberg &
Van [Jzendoorn, 1987; Lamb e 4/., 1985).

Irrespective of the discreteness of the attachment construct, cluster methods will produce clusters,
either by dissecting continuous dimensions or by secking for natural clusters. Only afterwards, can
one discern the nature of the clusters, for instance by using ordination methods. Results of the cluster
analyses therefore will not provide a definite answer to the (still unresolved) question whether
attachment is a discrete or a continuous construct. However, if the groupings derived by the cluster
method correspond to the clinical classifications, this will at least give further support to the A-B-C
typology. If not, we will at least gain further insight into the individual differences in the Strange
Situation.

Results

Overview of analyses

Even though from a substantive view our main aim is to compare a statistical
classification with the clinical classification, we will present several more in-depth
analyses to show how we atrived at the final statistical classification. This is done with
an eye to our secondary objective, i.e. demonstrating how mixture methods of
clustering work. First, we will illustrate the kind of decisions that have to be
considered in using the mixture method of clustering, such as the optimal number
of clusters and whether arbitrary or common covariance matrices should be specified.
The measurements of the first reunion episode will be used for this purpose.
Secondly, for each of the episodes the infants will be clustered on the basis of the five
variables using the two-way mixture method of clustering with arbitrary covariance
matrices. This will provide both an insight into the information content of the
episodes and starting values for the three-way clustering. Thirdly, the three-way
mixture method of clustering will be applied to the complete 326 X 2 X 5 data set with
arbitrary covariance matrices. Fourthly, the evaluation of the statistically derived
optimal classification from the three-way clustering procedure with respect to the
original clinical classification based on the Ainsworth coding scheme will be
addressed. One may cross-classify the different groupings, assess the percentage
agreement between the partitionings, and compute the concordance with measures
like Cohen’s kappa (Cohen, 1960). Such a procedure, however, needs to be
supplemented by information on how the clustering technique partitioned the
subjects. To do this, we will depict the groupings in the space defined by the first two
components derived from the replicated principal component analysis. Some
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additional information about the basis for the clustering can be gleaned from two-
way discriminant analyses based on all 10 variables.

Analysis decisions

Number of clusters. To demonstrate the considerations that go into choosing an
optimal number of clusters, consider the first reunion episode under the common
covariance matrix model. One can take some guidance from values of the likelihood
ratio test for comparing a cluster solution with g groups with the solution g-1
groups (see McLachlan & Basford, 1988, p. 23; Wolfe, 1971). Although the log
likelihood increases monotonically with the number of clusters (Table 1), much
smaller gains are made with the addition of more than three clusters (the —21n A
values were 66, 102, and 42 for g=5 to 7, respectively). In this subsection,
information on five to seven groups is discussed, although not presented.

Table 1. Results of two-way mixture method of clustering first reunion episode—R1
(common covariance matrix model)

Log likelihoods with hierarchical starts

No. of  Log likelihood of

groups best solution H1 H2 H3 H4 H5 —2lnA
1 —2987
2 —2831 —2831 —2831 —2831 —2831 —2831 312
3 — 2743 —2769 —2817 —2795 2743 —2743 176
4 — 2685 —2745 —2808 —2708 —2685 —2685 116

Notes. Lambda is the ratio for g groups and g—1 groups. The degrees of freedom for the approximate
chi-squared test is twice the difference in number of parameters in the two models. This is 2*5 for the
additional mean vector for the common covariance matrix model and would be 2*(5 means +4*5*6) for
the additional mean vector and covariance matrix for the arbitrary covariance model. Bold type
indicates the best solutions. H1 to H5 are the hierarchical clustering techniques using group average,
median, centroid, flexible sorting, and incremental sum of squares, respectively, as the classification
strategy.

Basford & McLachlan (19854; McLachlan & Basford, 1988, chapter 5) also look
at the overall correct allocation rate and the correct allocation rate for each cluster, where
allocation rates are defined as weighted sums of the @ posteriori allocation probabilities
of entities (here infants) to clusters. In the present case they do not seem to be very
informative with respect to the number of clusters, as the overall values are already
very high for each solution from two to seven clusters (.998, .979, .974, .964, .929,
and .987, respectively). A further possibility might be to look at the average absolute
within-group correlations to evaluate how well we have succeeded in creating
homogeneous groups. These values for one to seven clusters are .41, .19, 21, .14, .14,
.13, and .08, respectively. It seems that the big gains in diminishing the heterogeneity
are obtained up to four groups, but little is gained afterwards.
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Further information on the stability of the division of the infants into groups can
be gained by cross-tabulation of the various partitionings. To this end, we show the
cross-tabulation of the three-cluster solution against the other solutions (Table 2). A

Table 2. Cross-tabulations of cluster solutions against the three-cluster solution first
reunion episode (common covariance matrix model)

2 3 4

Group 1 2 1 2 3 1 2 3 4

1 140 0 140 0 0 139 1 0 O
2 109 0 0 109 0 0 & 25 O
3 0 77 0 0 77 0 1 6 70
T 259 77 140 709 77 139 85 31 70

Note. T = Totals.

fair amount of nesting of solutions occurs and this continues even when a larger
number of clusters is examined. Apparently there exist fairly definite and stable
boundaries between the groups. This illustrates one of the strengths of the mixture
cluster method, i.e. with increasing (decreasing) numbers of groups, solutions are not
necessarily a hierarchy, and it is an empirical, rather than a method-dependent, issue
whether nesting takes place.

Assembling all the information on the various cluster solutions and using the
stability argument presented below, it seems that either a two-group or three-group
solution (given common covariance matrices) is optimal for the first reunion episode.
As there are three groups in the clinical typology, it was decided to restrict
subsequent cluster analyses to three groups.

Arbitrary versus common covariance matrices. As explained above, the mixture method is
an iterative procedure which uses maximum likelihood estimation. Because such a
procedure is only assured to converge to a local maximum, one has to use several
different starting allocations to (hopefully) find the global maximum. In the present
case, these were obtained by using the grouping at the appropriate level from each
of several different hierachical clustering methods from the statistical package SAS
CLUSTER (SAS Institute, 1985), in particular, group average (H1), median (H2),
centroid clustering (H3), flexible sorting with beta equal to —0.25 (H4), and Ward’s
method (Ward, 1963) or incremental sums of squares (H5). The starting allocations
for the division of infants into groups presented in Table 1 were obtained without
standardizing the variables.

For all solutions with more than two clusters, the likelihood function has indeed
multiple maxima under the common covariance model for clustering the data from
the first reunion episode. There is no guarantee that the best maximum is also the
global maximum, be it that in general more confidence is inspired by a solution when
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the iterative procedure produces the same solution from different starting allocations.
A starting allocation obtained via Ward’s method very often leads to a solution with
the highest log likelihood. This is not completely surprising as there exist close links
between Ward’s method and the mixture method of clustering (see e.g. Gordon,
1981, p. 50). It seems that for the common covariance case only the two-cluster
solution has good stability (see Table 1).

For this data set, the three-cluster solution with arbitrary covariance matrices is
very stable as all starts converged to the same solution. Even when using the clinical
classification as a starting allocation, the algorithm converged to the same maximum.
This indicates that the clinical classification is suboptimal for the mixture modelling
of this data.

At the three-cluster level (as at other levels), the log likelihood of the arbitrary
covariance solution by far outstrips that of the common covariance one (6517 versus
—2743), in other words the assumption of a common covariance matrix is not
appropriate here. Both models produced a solution with generally unambiguous
allocations of infants to groups although the partitions were quite different (Table 3).

Table 3. Cross-tabulations of three-cluster solutions

R1 R1 R2
Arbitrary Common covariances Arbitrary covariances
covariances
Group 1 2 3 1 2 3 T
1 1 74 0 112 36 37 185
2 29 10 6 10 23 12 45
3 0 25 71 2 6 88 96
T 140 109 77 124 65 137 326

Note. T = Totals.

Given the more consistent convergence of the arbitrary covariance matrix model
to a particular solution and the above information on more definite allocation into
groups, it was decided to continue with the arbitrary covariance model for all other
analyses.

Separate analyses for the reunion episodes (arbitrary covariance matrices)

Given that the same number of infants and the same variables were available, the
smaller size of the log likelihood for the second reunion episode (5864 versus 6517)
could suggest that the cluster structure might be less clear for this episode. The
comparison between the clusterings of the first and second reunion episodes (Table
3) trevealed, to our surprise, that the clusterings hardly agree. The petrcentage
agreement is .68 while the chance corrected agreement measured by Cohen’s kappa
(Cohen, 1960) is .50, with .60 considered to be an absolute minimum for reasonable
agreement. While the different distributions of the infants over groups suggest that
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the clusters are rather different, superficial inspection of the means for each group
indicates that the groups are not unalike (Table 4). We have used the two mixture
solutions from the separate episodes as additional starting allocations for the three-
way clustering to see whether they give rise to different solutions in the combined
analysis.

Table 4. Estimated means for three-cluster solutions for first and second reunion
episodes (arbitrary covariance matrix model)

Group PS CM RS AV DI N
First reunion episode
1 22 1.0 1.7 3.7 4.9 185
2 4.0 2.8 1.8 2.8 5.3 45
3 5.6 4.8 2.8 1.7 1.0 96
Second reunion episode
1 1.9 1.0 1.9 3.6 5.3 124
2 4.2 3.6 24 2.8 4.5 65
3 5.5 5.4 3.1 1.8 1.0 137

Note. All means greater than 3.5 are indicated in bold. PS = proximity seeking; CM = contact
maintaining ; RS = resistance; AV = avoidance; DI = distance interaction.

First and second reunion episodes jointly

For the single episode analyses we had no obvious starting values for group
membership, so had to make do with those from several hierarchical clustering
procedures. For the combined analysis, we can supplement the starting allocations
obtained from hierarchical clustering procedures with the groupings obtained as
solutions from the mixture analysis of the separate episodes. As it turned out, a//
starting allocations (for which the program converged to a solution) converged to
the same three-way cluster solution with arbitrary covariance matrices. Given the log
likelihood value for one group was — 6041, the best two-cluster solution had a log

Table 5. Cross-tabulations of cluster solutions against joint solution for first + second
reunion episodes (arbitrary covariance matrices model)

R1 R2

114 0
69 45

o

112 0 2 114
12 65 45 122

Qo

185 45 96 124 65 137 326

Note. T = Totals.
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likelihood of 336, while the log likelihood for the three-cluster solution was 5811.
Solutions with a larger number of clusters only produced marginal increases in the
likelihood. In comparison, the three-cluster solution for the common covariance
matrix model had a likelihood of —5733. Thus, the three-cluster solution with
arbitrary covariance matrices is clearly the preferred solution. This solution was also
satisfactory from the point of view of correct allocation rates as these were all equal to
1.00, indicating that all infants were allocated to groups with an a posteriori
probability of 1.00.

The cross-tabulation of the R1 4 R2 three-cluster solution with that of the first and
second reunion episodes (Table 5) gave a percentage agreement and Cohen’s kappa
of 76 per cent and k = .64 with R1, and 82 per cent and k = .73 with R2. This
mediocre level of agreement might be disconcerting for natural clusters, but not
necessarily so when the clusters are the result of dissections of continuous
dimensions. In that case, it is easy to imagine that even small shifts in the variables
could lead to different optimal solutions for the clustering algorithm. As the three-
way solution had virtually perfect allocation of the infants to clusters, we are
prepared to put more trust in that solution than in each of the separate ones.

The correlation matrices for the R1 and R2 episodes and the three-group mixture
solution are listed (Table 6) to provide an indication of the relationships between

Table 6. Correlation matrices

PS CM RS AV DI PS CM RS AV DI

Original correlation matrices

Reunion Episode 1 Reunion Episode 2

Proximity (PS) 1.00 1.00
Contact (CM) .71 1.00 .71 1.00
Resistance (RS) 27 41 1.00 .28 .35 1.00
Avoidance (AV) —.53 —.49 —.07 1.00 —.59 —.48 .01 1.00
Distance (DI) —49 —.62 —-.32 19 100 —.60 —.69 —.38 31 1.00
Correlations between the same variables across

episodes .52 .67 .40 .35 71
Three-group solution for R1+ R2 arbitrary covariance matrices model

Group 1 Group 2
Proximity 1.00 1.00
Contact .00 .00 51 1.00
Resistance —.08 .00 1.00 .10 A3 1.00
Avoidance —.23 .00 33 1.00 —41 =25 A1 1.00
Distance 21 00 —11 —45 100 —.28 —.44 —.28 .01 1.00
Group 3

Proximity 1.00
Contact A7 1.00
Resistance .03 .27  1.00
Avoidance .37 -7 10 1.00
Distance .00 .00 .00 .00 .00
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variables in the different episodes and clusters. In both the first and the third group;
all infants had the same score of 1.00 (the lowest possible) for one of the variables
(contact maintaining and distance interaction, respectively).

The mean differences of proximity seeking (PS), contact maintaining (CM), and
distance interaction (DI) contribute most to the distinction between groups (Table
7). Resistance (RS) and avoidance (AV) are less important, be it that they follow the
pattern of PS and CM, and that of DI, respectively. These means (Table 7) show that
the first cluster is characterized by high values in both episodes for avoidance and
distance interaction, and low to no proximity, resistance, and contact maintaining.
The second cluster shows a stable low RS, but increasing PS and CM coupled with
decreasing AV and DI. Finally, the #hird cluster has consistently high PS and CM
scores with low to no AV and DI coupled with a comparatively high level of RS.
Opverall, there seems to be a single (proximity + contact) versus (avoidance + distance)
dimension which the cluster method uses to define groups.

Table 7. Estimated means for three-cluster solution for first+ second reunion
episodes (arbitrary covariance matrices model)

Group PS CM RS AV DI N

1 R1 2.1 1.0 1.5 3.6 5.1 114
R2 1.9 1.0 2.0 3.6 5.2

2 R1 3.0 1.8 2.0 33 4.7 122
R2 4.4 39 2.5 2.6 33

3 R1 5.5 4.8 2.8 1.8 1.0 90
R2 5.7 5.7 33 1.7 1.0

Note. PS = proximity seeking; CM = contact maintaining; RS = resistance; AV = avoidance;
DI = distance interaction.

To gain another perspective on the differences between the infants a replicated
principal component analysis was performed on the two times five variables. Given
that we intended to use this analysis as a support for the cluster analysis, it was
decided to limit the solution to a faitly easily presentable one with two components.
In this way, we could easily provide a graphical display of the results. The two-
component solution accounted for 63 per cent of the variability with a first
component accounting for 47 per cent and the second for 15 per cent. The relative
weights of the two reunion episodes were .66 and .75, indicating that the second
episode carried a bit more weight in the solution. A discriminant analysis with the
groups from the three-way cluster analysis as the dependent variable and the first
component as predictor yielded a canonical correlation coefficient of .89. The first
component provides for a 83 per cent correct allocation of the infants to the groups
found by the cluster analysis. The loadings for the five variables on the first
component are .84 (CM), 0.77 (PS), 0.47 (RS), —0.55 (AV), and —0.74 (DI). This
confirms the above statement about the importance of the PS and CM versus AV and

Copyright (¢) 2005 ProQuest Information and Learning Company
Copyright (c) British Psychological Society



410 Pieter M. Kroonenberg, Kaye E. Basford and Marion van Dam

0.2

0.15

o

[

v
I

Second component

-0.05 |-

-0.1

-0.15 1 1
-0.15 -0.1 -0.05 0 0.05 0.1

First component

Figure 1. Joint representation of the infants and variables on the components of the replicated
component analysis. Infants are labelled according to their statistically derived cluster membership from
the three-way mixture method of clustering with the arbitrary covariances model (@ = cluster 1;
— = cluster 2; M = cluster 3; AV = avoidance; CM = contact maintaining; DI = distance inter-
action; PS = proximity seeking; RS = resistance).

DI contrast in the cluster analysis. In Fig. 1 the two components are presented, and
each of the infants is labelled according to its cluster membership. In the figure, we
have also drawn the vectors of component loadings for the five variables.

Comparison with clinical classification

As mentioned in the introduction, the main object of the paper is to evaluate clinical
classification which was constructed using the guidelines set out by Ainsworth ez a/.
(1978). To do so, we have crossed the clinical classification with the clusters from the
three-way mixture method for the case of arbitrary covariance matrices (Table 8). It
is apparent that the clustering method and the clinical classification procedures work
differently as they create entirely different clusters. Whichever way one wants to
arrange the table, the highest percentage agreement one can get is 51 per cent, a very
low figure indeed. Neither the cluster sizes, nor the allocation of individuals to
clusters show much agreement. From the point of view of the cluster analysis, the
clinical classification is clearly suboptimal. Even with the clinical classification as a
starting allocation for the clustering, the algorithm will converge to the solution
already presented.
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‘Table 8. Clinical classification versus cluster classification first and second reunion
episodes combined (arbitrary covariance matrices model)

Group 1 2 3 T
A 58 19 3 80
B 66 41 102 209
C 0 5 32 37
T 124 65 137 326

Note. T = Totals.

To evaluate why the clusterings are so different, one may look at the means for the
A, B, and C groups (Table 9). The means of avoidance and resistance are notable
when compared with their role in the cluster classification (Table 7) where they were
less disparate. Further insight can be gained by performing discriminant analyses
on all 10 variables with the clinical classification and the mixture classification as
dependent variables, respectively. The concordance between the mixture cluster
analysis and the discriminant analysis need not be exact. The cluster method treats
the data as multivariate measurements on the same infants at two separate
(independent) times, whereas the discriminant analysis assumes (a larger set of)
multivariate observations on the infants (at one time) only. A further point is that
discriminant analysis assumes equal covariance matrices in the three groups, while we
have shown that the groups found by the cluster analysis have quite different
covariance matrices. In principle, one would need a quadratic discriminant analysis
to do the arbitrary covariance matrices solution justice. However, in the present case
this option is not available as the covariance matrices of both group 1 and 3 are
singular, which prohibits such an analysis.

Table 9. Estimated means for clinical classification

Group PS CM RS AV DI N

A R1 2.3 1.3 1.9 4.3 44 80
R2 2.2 1.7 2.6 4.7 4.2

B R1 3.6 2.6 1.8 2.5 3.8 209
R2 4.3 3.7 21 2.0 33

C R1 4.5 3.6 4.0 2.9 2.6 37

R2 54 53 49 2.1 1.4

Note. PS = proximity seeking; CM = contact maintaining; RS = resistance; AV = avoidance;
DI = distance interaction.

From the standardized coefficients in the discriminant analyses (Table 10), it is
evident that the two groupings weigh the variables quite differently. The clinical
classification rests virtually exclusively on avoidance and resistance, and the
additional analyses show that avoidance and resistance in the second reunion episode
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are able to discriminate as well as all variables together, 82.5 and 83.7 per cent,
respectively. The clustering solution, however, is based on the information in all
variables with the least weighting on resistance. Note that while the clustering
method indicates all subjects have a posteriori probabilities of 1.00 of belonging to a
particular cluster, the discriminant analysis casts doubt about the proper allocation
of 12 per cent, i.e. 39 infants. This discrepancy is probably due to the different
assumptions about the covariance matrices, as mentioned above.

A final point about the clinical classification can be best illustrated by presenting
again the first two components of the replicated component analysis, but now
labelling the infants in the plot with their clinical classifications. Again the vectors
of the five variables are displayed as well. In the section on the substantive
background we mentioned the problem of continuity versus discreteness of the
attachment construct, which corresponds to the question of natural clusters or
dissecting continuous dimensions. Inspecting both Fig. 1 and Fig. 2, we see that in
neither case is it easy to maintain that the partitions correspond to natural clusters.
Both the partitioning by the cluster method and that by the clinical classification
appear to dissect the continuous dimensions.

0.2

0.15

0.l- 9o @

0.05

Second component

-0.05 |-

-0.15 ' ' ' L
-0.15 -0.1 -0.05 0 0.05 0.1

First component

Figure 2. Joint representation of the infants and variables on the components of the replicated
component analysis. Infants are labelled according to their clinical classifications (@ = A; — = B;
@ = C; AV = avoidance; CM = contact maintaining; DI = distance interaction; PS = proximity
seeking; RS = resistance).
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Conclusions

Given the results presented, we have to conclude that three-way clustering does not
correspond to the A-B-C typology (see also Lamb e# /., 1985). The three-way
clustering methods and clinical classification procedures create entirely different
groups of infants. In the course of analysis, these discrepancies were considered from
different perspectives to gain further insight into the individual differences in the
Strange Situation. From the estimated means for the cluster solutions, it could be
derived that the role of avoidance and resistance is much more important to the
clinical classifications than to the clusters. The same conclusion can be drawn from
the results of discriminant analyses with the clinical classifications and the clusters as
dependent variables. The two groupings weighted the variables in a different way;
whereas the clinical groupings rest almost exclusively on avoidance and resistance,
the cluster groupings are based on the information of all variables, except resistance.

From the results of a discriminant analysis, which predicted the clusters using the
first principal component of a replicated principal component analysis, one single
dimension appeared to underlie the clustering. This dimension could be interpreted
as the extent to which infants primarily seek proximity and contact with the mother
(i.e. use PS and CM), or primarily stay at a distance from her (i.e. use AV and DI).
This points towards different styles of behaviour of the infants, largely independent
of their attachment classifications.

The differences between the two classifications point to different underlying
assumptions. Cleatly, there are theoretical substantive arguments why resistance and
avoidance play such a dominant role and carry so much weight in the clinical
classification. In the clustering method, it is the differences in the sizes of variances
which determine for a large part the outcome of the analysis, and especially resistance
is a variable with one of the smaller variances. One way of looking at these results
is that there are more and larger differences in the strange situation than are captured
by the clinical classification. On the other hand, they are apparently not the ones
which are deemed the most important in the theory of attachment. Earlier, we
indicated that attachment research has shown the validity of the clinical classification
by relating it to several preceding and subsequent behaviours. Whether this can also
be said for the differences highlighted by the clustering procedure is a matter to be
investigated.

With respect to the continuity—discreteness argument, the analyses lend some
support to the statement by Lamb e# /. (1985), that the A, B, and C do not represent
distinct types of infants, but that they have arisen from an underlying continuum
which has been artificially trichotomized. Of course, a similar statement can be made
about the statistically derived grouping. These results do not necessarily imply that
a natural trichotomy does not exist, they only indicate that such a division is not
strongly supported by the present empirical investigation. One should either call
upon theoretical arguments or additional empirical information to substantiate the
natural clusters claim.

The mixture method of clustering has allowed an effective exploratory analysis of
the data which enables some aspects of the three-way structure to be incorporated.
The assumption of independence of the episode measurements in the mixture model
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does not appear to be too restrictive, given the consistency of the results from
different analytical techniques. Thus, for the present data, we have reasonable
confidence in the summarization in terms of relatively homogeneous clusters.
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Appendix
Three-way mixture method of clustering

The fitting of a normal mixture model to three-way data is presented in the context of clustering entities
on the basis of multivariate observations being recorded on each of these entities (here infants) at
separate episodes ot locations. Then the observation vector x; (j=1,...,n) contains the multivariate
responses of the jth infant during both episodes, and is given by equation (1)

x; = (x]'.l,...,x;r)', 1
where x,, is a vector of length p giving the response of infant ; in episode £ for each of the same p
attributes measured during each episode (& =1,...,7). The vectors x;, (j = 1,...,mk=1,...,r) are

taken to be independently distributed.

This method is model based, in that the form of the density of an observation in each of the
underlying populations has to be specified. A common approach is to take the component densities to
be multivariate normal distributions with (in principle) different mean vectors and either equal or
arbitrary covariance matrices. Under the normal mixture model proposed by Basford & McLachlan
(1985b) for such three-way data, it is assumed that each infant belongs to one of g possible groups

Gy Gy, in proportion my,..., 7, respectively, so that during a given episode £,

x ~ Ny, V) in G; with probability m, (¢ =1,...,9). (2)

The within-group covariance matrix I is taken not to depend on the episode. From equation (2), the

density of the full observation vector x; conditional on the jth individual belonging to G, is equal to

Byt 12 .
Sl 0) = 2m) ™2 14 26XP|"‘E 2 (=) Vs l(xjk_:u’ik)] ©)
k=1
for i=1,...,g, where the vector 8 of unknown parameters contains the elements of p,, ((=1,...,8;
k=1,...,r) and the distinct elements of V; (/ =1,...,2).
Estimates of the parameters in this model can be obtained using the likelihood principle, whereby the
log likelihood of (1, 8) given by

n g
InL(m,6) = ln[Z (% 0)] 4
Jj=1 i=1
is maximized.

Once the likelihood solution of (m, 6) has been obtained, estimates of the posterior probabilities of
population membership can be formed for each x; (really the entity, here infant, with observation x;)

to give a probabilistic clustering. The posterior probability that x; belongs to G, is given by

Ty = 7 [, 0)/ 2 7 Sl 0) (5)

u=1
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Each x; is then assigned to the population or group to which it has the highest estimated posterior
probability of belonging, i.e. to G, if

Tu>Ty G=1,...,8i% 4. (6)
In this way, individual observations (here the individual infants) are partitioned into a2 number of
discrete, relatively homogeneous groups. If (m,6) were known, the allocation rule based on equation
(5) would be the optimal or Bayes rule (Anderson, 1984, chapter 6) which minimizes the overall error
rate. For the above model, the likelihood estimate of (7, 0) satisfies

L, 1z .
m==27, (F=1,..9 (7
7 jm1
g = Zfijxjk/z‘i’ij (i=1,....,9 ®)
=1 =1
and

. n T n
=z Tij(xjk—luilc),(xﬂc._luik)/r z Ty ((=1,...,9. )

j=1k=1 J=1

The posterior probability that the jth entity belongs to G,, given the observation x; on it, is given by

r 1.7 S
| Vi €xp [ _5 )Y (xjk —4) V' l(xjk —ﬂtk)]
Ty = g r i-lr 1 (10)
> ”uqul—ECXP[_— 2z (xjk—:u/uk)/ V;I(xjk_luuk)]
k=1

2

u=1

Equations (7) to (10) are solved iteratively by using some initial estimates of the unknown parameter
vector (71, 6). These iterative estimates can be identified with those obtained by directly applying the EM
algorithm of Dempster, Laird & Rubin (1977) to solve the likelihood equation. Then provided the
likelihood is bounded above, convergence to some local maximum is assured.

Unfortunately with mixture models, the likelihood equation has multiple roots, so there is the
problem of which root to choose. This problem is discussed in detail in Basford & McLachlan (1985¢)
and McLachlan & Basford (1988). With equal covariance mattrices for the groups and the normality
assumption, the maximum likelihood estimator of (7, 6) does exist and is strongly consistent. Therefore
the largest of the local maxima (assuming all have been located) is the one to choose. In the arbitrary
covariance matrix case, the likelihood is unbounded and so the maximum likelihood estimator of
(m, 0) does not exist (Kiefer & Wolfowitz, 1956). Kiefer (1978), however, verified for univariate data that
there is a sequence of roots of the likelihood equation which is consistent, asymptotically normal and
efficient. With probability tending to one, these roots correspond to local maxima of the likelihood.
McLachlan & Basford (1988) postulated that it would be surprising if the univariate result, that it is the
sequence of roots cotresponding to the largest of the local maxima which is consistent (see Hathaway,
1985), does not carry over to mixtures of multivariate normal distributions.
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