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1 Introduction

In an only occasionally referenced paper, Darroch (1974) discussed the relative merits of
additive and multiplicative definitions of interaction for higher-order contingency tables. In
particular, he compared the bllowing aspects: partitioning properties, closeness to inde-
pendence, conditional independence as a special case, distributional equivalence, subtable
invariance, and constraints on the marginal probahilities. On the basis of this investigation,
he believed that multiplicative modelling is preferable over additive modelling, “but not by
s0 wide a margin as the diflerence in the attention that these two definitions have received
in the literature” (p. 213). One important aspect of modelling contingency tables did not
fipnre in this comparison: interpretability.

The potential systematic relationships in multivariate categorical data becomes progres-
sively more complex as the number of variables and /or the number categories per variable
increase. In turn, interpretation becomes increasingly difficult. We consider techniques for
data that can be logically formatted as three-way contingency tables. This does not limit us
to three variables but rather it limits us to, at most, three types or modes of variables.

The focus in this chapter lies with the interpretation of the dependence present in three-
way tables and how insight can be gained into complex patterns of different types of depen-
dence. Since the major aim in most empirical sciences is to apply (statistical) models to data
and to obtain a deeper insight into the subject matter, we consider it worthwhile to take up
Darroch’s comparison and extend his set of criteria by considering the interpretational pos-
sibilities (and impossibilities) of multiplicative and additive modelling of contingency tables.
The investigation will primarily take place at the empirical level puided by a particular data
set that consists of four variables but is best analyvsed as a three-way table.

Similarities between additive and multiplicative modelling techniques for two-way tables
have been discussed by Escoufier (1982), Goodman (1985, 1996), and Van der Heljden,
Mootjaart and Takane (1994). Limited discussions of the three-way case can be found in Van
der Heijden and Worsley (1988) and Green (1989). Neither of the latter two consider three-
way correspondence analysis (three-way CA) nor multiple correspondence analysis (MCA).
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The major empirical comparisons made in this chapter are between three-way CA, which
uses an additive definition of interaction (Carlier & Kroonenberg, 1996, 1998), extensions of
Goodman’s multidimensional row-column association model {Goodman, 1979, 1985; Clogg
& Shihadeh, 1994; Anderson, 2002; Anderson & Vermunt, 2000}, which use a multiplicative
definition of interaction, and categorical PCA which is related to MCA, the major method
discussed in this book. These methods will be compared empirically in terms of how and to
what extent they succeed in bringing out the structure in a data set.

2 Data and design issues

We hope to show that although our attention is focused on three-way tables, the methods
disenssed are more general than they may appear at first pglance. After describing a data
set from Wickens and Olzak {1989) that guides our empirical comparison of methods for
three-way tables, we briefly discuss general design issues that help to identily potential data
analytic problems to which the methods presented in this chapter can be applied.

2.1 The Wickens & Olzak data

Wickens and Olzak (1989) report the data [rom a single subject on a concurrent signal
detection task (Table 1). In the experiment, a signal abruptly appeared on a computer
sereen and disappeared again after 100 milliseconds. The signal consisted of either one of
two sine curves or both together. One curve had more cyeles and is referred to as the high
frequency signal (M), while the other with fewer cycles is referred to as the low [requency
signal (L), however in the analyses they are mostly combined into a single interactively coded
factor (7)) with four categories. On each trial of the experiment, the subject was presented
with either both signals, only the high frequency signal, only the low frequency signal, or
neither and each of these was repeated 350 times. Thus, the independent variables consisted
of a ully-crossed 2 x 2 design, with a total of 4 x 350 = 1400 trnals. However, one observation
went astray and only 1399 trials are present in the data used here.

The subject’s task on each trial was to rate his confidence on a scale from 1 to 6 regarding
the presence of each of the two possible stimuli. The lower the rating, the more confident
the subject was that the signal was absent, and the higher the rating, the more confident the
subject was that the signal was present. Thus, the response vanables were the two confidence
ratings (H) and (L) .

When a signal was present, the subject was expected to express more conlidence that
it was presented than when the signal was absent. This s generally confirmed by the data
(Table 1), but there appear to be interactions as well. Wickens and Olzak’s (1989) analyses
and those by Anderson (2002), both of which use a multiplicative definition of interaction,
confirm the presence of a three-way interaction between the presence of the two signals and
the confidence rating of the low signal. However, Anderson (2002), who used a more focused
test, also detected a three-way interaction between the two signals and the rating of the
high signal. Since there are interactions in the data involving the two stimuli and one or
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Table 1: Concurrent Detection Data {Wickens-Olzak, 1989)

High Signal absent High Signal present
(—H) (H)
Confidence in Confidence

High Signal (H) High Signal (H)

1 2 3 4 5 6 1 2 3 4 5 6
144 4 9 7 6 7 T4 5 5 14 60
Low 2013 30 20 5 14 7 b T 13 16 38 37
Sipnal |Confidencein 3| 9 23 17 17 3 0 6 7 &5 10 10 15
absent |Low Signal (L) 4|16 17 10 20 2 2 412 5 13 6 14
(—L) BB 4 010 4 0 23 1 1 3 &
Gl 3 3 0 1 4 1 g o0 1 1 1 3
15 2 2 1 0 4 1 1 2 0 447
Lcrw 206 B B B h 3 0 4 0 1 & 25
Sipnal |Confidepcein 3| B 10 7 4 1 1 1 3 3 7 H15
present | Low Signal (L) 4(12 17 15 13 2 2 4 4 8 17 12 21
(L) hil12 17 19 15 10 4 312 8 11 20 20
a3l 209 25 24 12 12 11 &5 12 11 12 33

Mote. An (i, j)-entry in the table indicates the number of times the subject expressed confidence level i in
the presence/absence of the low frequency signal and his confidence level § in the presence/absence of the
high frequency signal.

the other response, in this paper we format the data as a stimulus condition or joint signal
(7) by high rating {H) by low rating (L) cross-classification, in particular the data form a
I = .J x K-three-way table with I =4, J =6, and K = 6. The aim of the present analyses
15 to lighlight and describe the nature of the interactions in the data.

2.2 Design issues

Several desipns yield data that are naturally organised as entries in three-way contingency
tables. Two aspects of designs are relevant in this context (1) the role of the variables and
(1) the mutual exclusiveness of the entries in the table.

With respect to the first design aspect, in a study variables typically take on the role of
response or factor (explanatory variable). In a three-way contingency table, there can be
three response variables or responses in which case we speak of a response design. When
there two responses and one factor, or when there is one response variable and two [actors,
we speak of response-factor designs. In the Wickens and Olzak (1989) experiment, the two
types of ratings are the two responses and the joint signal is the factor. Especially for
multiplicative modelling, it is important to consider this response-factor distinetion, while
for additive modelling it is primarily relevant in interpretation.

With respect to the second design aspect, in most statistical approaches to analysing
contingency tables, it is assumed that observational units are independent and each observa-
tion's “score” is a triplet {7, 7, ). The design is lly-crossed if each observation falls into one
and only one cell of the table. Most log-multiplicative models require fully-crossed designs,
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while additive modelling via CA is indifferent to the design as it does not explicitly use
stochastic assumptions. In the case of the Wickens and Olzak data (1989), even though all
of the observations come from a single subject, the responses over trials are considered to be
independent as is common in this tyvpe of experiment.

3 Multiplicative and additive modelling

Since our methods for three-way tables are characterised as being either an additive or
multiplicative model, we review the defining features of the models under study in this
chapter. The exposition in this section leans heavily on that by Darroch (1974).

Let 7 be the probability and p,;,. the proportion of observations that fall into categories
i, 7, and k of variables A, B, and ', respectively, where i = 1,.... 1, j=1,...,J. and k =
Lo K and 22055 mije = 2 pije = 1. As usual, marginal probabilities and proportions
will be indicated by replacing the index over which is summed by a dot. For example,
pij. 18 the marginal proportion for the i-th category of A and the j-th category of 5. All
summations will run from 1 to the capital letter of the index, i.e. & will run from 1 to K.

In the multiplicative definition, the absence of three-way interaction is defined as

Hpy, e = Eedantiy (1)

for all 7, j, and & and for some &, ¢, and ¢y, One way to express this is that the
interaction between two variables does not depend on the values of the third variable (see
section 4.1). By taking logarithms of (1), we get models that are additive in the log-scale
(Rov and Kastenbanm, 1956).

An equivalent expression for (1) is

]Ti;j ke j'[_i;.rj fle j'[_i;.rj et j'[_i;.rj.r ke

=1 (2)
?l_i;"_;i"i."r ?l_i;'r_;i ke ?L_i;_;i'r F.‘?l_i;_;i b

forall s #£4¢, j # 7 and & # & (Darroch, 1974). The expression in (2) is the ratio of odds
ratios for two variables given the third vanable. Deviations from no three-way interaction are
reflected by the extent to which expression (2) differs from the value of one {or equivalently
the logarithm of (2) differs from zero).

The additive definition of no three-way interaction, introduced by Lancaster (1951), is

?l_i;j ke

Hy: ——— = o + Pie + i (3)

i .Mk

for all 4, j, and k and for some o, Fik, and 755, and this s equivalent to
Tidlke M.k ik M.
J7OS | P I g N (; 1) I L (1)
3 T 4. T g Mg . T M. T 5.

(Darroch, 1974, p. 209). Thus according to the additive definition of no three-way indepen-
dence (i.e. according to equation (1)), the deviation from complete independence between A,
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B and € equals the sum of the deviations from (two-way ) marginal independence hetween
Aand B, A and €', and B and C'. For cell {7, 7. k) the three-way mmteraction term which is
hypothesised to be zero has the form

Mijk Tijk

(5)

M 4. Tk
where
Tijk = WMo + (T Mo — T g + (Mo, — T W) + (T — T T T
or
?I_i;_;iﬂ." = Wi Mo+ Mg+ k. 2?1‘;..?1‘.}.??..*. {H}

Apart from the distinction between multiplicative and additive modelling, there is an-
other sense in which the word “multiplicative” crops up in discussing models for contingency
tables. The lormer distinction refers to the diflerent ways that nteractions are defined. A
different question is how the interactions themselves are treated (regardless of the definition
of nteraction). In both types of modelling, the interactions are decomposed into multi-
plicative terms via two-way or three-way SVDs to provide a lower-rank representation of
the systematic patterns in the interactions. The use of the SVD allows a separation of the
interaction into a systematic part and an umnterpretable remainder. In the additive frame-
work, there is only one decomposition for the overall three-way dependence from which the
decompositions of the two-way interactions are derived, while in the multiplicative modelling
definition, the decompositions are carried out either for each interaction separately, or for a
group of interactions jointly, but in the latter case it is not possible to separate out which
part belongs to which interaction {unless restrictions are placed on the parameters).

4 Multiplicative models

Log-linear models, extensions of Goodman's RC({M ) association model to multi-way tables,
and association models with latent variable interpretations all use a multiplicative definition
of dependence. Since the last two types of models are special cases of log-linear models, we
start with a briel mtroduction and discussion of log-linear models using the Wickens and
(Olzak data. We use these models to show how the multiplicative definition of dependence
manifests itsell. Then we turn to extensions of the RC({M) association model for three-way
tables.

4.1 Log-linear models

In this discussion, we initially treat the Wickens and Olzak {1989) data as a four-way cross-
classification: presence of a high requency signal (Le., *HIGH SIGNAL", H); presence of a low
frequency signal (Le., “low signal”, £); confidence rating in the high frequency signal (i.e.,
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“HIGH RATING”, H); and confidence rating in the low [requency signal (ie., “low rating”,
L). Later in the paper, we switch to a more advantageous format of a three-way table by
[ully crossing the two factors into a single “Joint Sipnal”, 7. as will be justilied by the results
of preliminary analysis of the data.

Any table that has some form of independence (Le., complete independence, joint inde-
pendence or conditional independence) can be expressed as the product of marginal proba-
hilities. For our data, ideally the subject’s rating of the high signal should only depend on
the presence of the high signal, and the rating of the low signal should only depend on the
presence of the low signal; that is, the ratings are condifionally independent given the stimuli.
This specific hypothesis can be expressed as the product of varions marginal probahilities;
thus the logarithm is an additive function of the logarithm of the marginal probabilities.
Log-linear models are typically parameterised not in terms of logarithm of probabilities, but
in such a way as to allow dependence structures that cannot be expressed as a product of
marginal probabilities (Le., some form of non-independence). The parameterisation of our
hyvpothesis regarding the subject’s behaviour is

li]g{?l_h.r_;ii-‘} = A4 ’3"1': ' ’j".l'E ' }'j{ ' }'id ' J‘?liiH ' ’}'J'EJ.L ' )"“5 {T}
where A 1s a normalisation constant that ensures 32, ) T = 1, AN }.j"' and Af are mar-
ginal eflect terms for high signal i, low signal I, high rating j and low rating &, respectively,
and J.}';H  AEF and A5 are bivariate interaction terms. The presence of the marginal effect
terms ensures that the fitted one-way marginal probabilities equal the observed margins (e.g.,
if AJt is in the model, then .. = ph..) and the presence of the interaction terms ensures
that the two-way fitted probabilities equal the observed ones (e.g., if AJ4F is in the model,
then mp.. = ppi.). In sum, the presence of a constant, marginal effect term and interaction
terms guarantee that the fitted probabilities from the model reproduces the corresponding
observed proportions. Since the experimenter determined the high by low signal margin
(and it is inherently uninteresting), the term A} should always be in the model. Location

constraints are required on the log-linear model parameters to identify them (e.g., 3, }.}H =1
and 37, A5 = 37, AL = 0).

Besides algebraic representations, log-linear models also have schematic or graphical rep-
resentations (Edwards, 2000; Whittaker, 1990). For example, model (7) is represented by
the graph labelled 1a in the top part of Figure 1. The boxes represent the variables, lines
comnecting two boxes (Le., varlables) represent possible dependence, and the absence of a
line between two variables represents conditional independence. According to model (7), the
ratings on the two signals are conditionally mdependent given the stimuli, so there is no
line commecting the high and low ratings in the graph. The line connecting the high signal
and high rating and the one connecting the low signal and low rating indicate dependence
between these variables may exist. Whether dependence actually exists depends on whether
,3'.1'!}-” equals ) for all i and § and J.ﬁ',"‘ equals 0 for all I and k.

A slightly more complex log-linear model for the data allows for a possible dependence
between the ratings themselves (e.g., perhaps a response strategy on the part of the subject).
The graph representing this model is labelled 1b in Figure 1. The corresponding algebraic
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maodel 1s
H c H L, yHH cL HL HE
log(mhje) = A+ A+ A7 + A7+ AL+ AT AR H AT+ A (8)

Model (8) contains a sub-set of all possible bivariate interactions between pairs of variables.
Deleting one or more set of mteraction terms from model (8) yields a model that represents
some form of independence.

When dealing with hierarchical log-linear models (i.e., models which include all lower
order terms that comprise the interaction terms), the (in)dependence between two variables,
say the high sipnal ‘H and the high rating H, given fixed levels the other variables, can
be expressed through the odds ratios in the 2 x 2 subtables of 'H and H. For mstance, if
the relationship between the high signal and high rating is independent of the presence and
rating of the low signal, then the odds-ratios in these sub-tables for high stimuli h and A’
and high ratings j and ' for fixed values of & and [ do not depend on the specific values of
k and for 1.

To show that model {8) (and all models that only incude bivariate interaction terms)
use a mmltiplicative definition of no three-way interaction, we first examine the condifional
or partial odds ratios for two varables given a fixed level of the third varable. According to
model (8), the odds ratio in the 2 x 2 subtables of variables H and H given level [ and k of
ariables £ and L equals

Thij i.',-"f Thij ke
f"m.r: ' (e P
T Lk Thl '

= exp (N5 = M) — (N5 - N (9)
where the subindices in parentheses indicate the catepories of the conditioning variables.
The odds ratios Oy ey and Bupe e ey are also funetions of their corresponding interaction
terms. The dependence between two variables in partial sub-tables does not depend on the
alue of the other variables.

The definition of no three-way interaction that is lurking behind the scenes can be seen by
considering the ratio of odds ralios or two variables given dilflerent levels of a third variable
for a fixed level of the remaining variables (if there are any). For example, the ratio of odds
ratios for the high signal conditions (Le., h, &'} and high ratings {Le., 7, j') given different
low signal conditions (Le., [, I') and a specified low rating (Le., k) based on model (8) is

Hn’lh’:j_;i’l:”-‘] o ?"_h.l'_;iﬂ.‘?"_h’.l'_;i’ﬂ.‘?l_n'l’.f’_;iﬂ.‘?l_nll.f’j”.‘ -1 {1[']}
Ohns jirerk) T Lk Thij hTOhi b T b

Equation (10) is equivalent to the multiplicative definition given earlier in equation (2). To
see this, replace b in equation (10) by 7 and note that & 1s constant. In other words, models
that include only bivariate interactions such as (8) use a nultiplicative definition of no three-
way interaction. An implication is that a measure of three-way association is the ratio of the
odds ratios and the extent to which equation (2), or specifically in this case equation (10),
departs from 1 indicates the amonnt of three-way dependence in data.
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A hierarchical log-linear model that includes a three-way interaction is
o(mnge = A+ X+ AF + N+ AL+ N 4 XL 4 N 4 N 4 el \HEL (1)

The praphical representation of this model is labelled 1e in Figure 1. According to this
model, the ratios of odds ratios, #p ) / Bivr ks (n'f), are functions of the three-way interaction
parameters AJEF . These ratios are not equal to 1 unless A“F = (0 for all (h, 1, k).

la wa e
ratings respond SIEHAL RATING g TOO
ter ki enly I l-w:laﬂ = twwradng | }ﬂm
b e meH -
- 7 500
rating related to e '“':'": ~
rating other signal [ bwdpd = lewming | 400 Ia
-
¢ ey G |I e 4
— i o~
hl’ﬂ"’ ’kﬂﬂfﬂmfﬁ SIENAL . RATING E 00 I../'l
rating low signal [oomss 3= wweang i u Q.
: waf e
1d nn G a
bl rasing 5 e i
affect each other Juwt gl b ruty Dgrries -of-Freedom
{a) Models (b} Deviance Plot

Figure 1: Concurrent Detection Data: Selection of loglinear models.

The log-linear models given in equations (7), (8) and (11}, which correspond to graphs
la, 1b and 1c in Figure 1, respectively, were fit to the data, as well as a model that includes
the two three-way interactions Jn.?jf” and AJY* which has graphical representation 1d. The
results for these models are presented here in the form of a deviance plot (Fowlkes, Freeny, &
Landwehr, 1988). The ‘convex hull’ connecting the outer points on the lower edge is drawn
to identify candidate models for selection. Ideally one wants to have a low y? with as many
degrees-ol-freedom as possible. Based on the deviance plot, log-linear models 1e and 1d in
Figure 1 are candidates for selection.

There are three-way interactions between the two sipnals and each of the ratings; there-
fore, the data are reformatted as a three-way table such that there is one factor, which
consists of the four possible combinations of signals {1.e., a “joint signal” or “signal con-
dition™ ). In our data, we will use 7 to denote joint signal and index it as ¢ = 1 (both
signals absent), 2 (high present, low absent), 3 (high absent, low present), 4 {both present).
Therefore, in the next section, our starting log-linear model is

log(mie) = A + A 4 )nf Ay 4 A;‘?H F AL 4 Jnﬁf"‘._ (12)

which has bivariate interaction terms that represent the three-way interactions between the
- A - H L
two stimuli and each of the responses (i.e., ,1;% and A5").
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4.2 Log-multiplicative association models

In this section, we turn to those extensions of log-linear models that provide more inter-
pretable representations of dependence in three-way tables. In particular, we seek to sepa-
rate the systematic patterns from the unsystematic parts of the interactions so as to gain
insight into the nature of the association between the variables. The main tool for this will
be the SVD (for a good introduction to the SVD, see Greenacre, 1984, pp. 340f).

Interaction terms in log-linear models are unstructured in the sense that they equal what-
ever they need to equal such that the corresponding margins of the data are it perfectly.
Goodman (1979, 1985) proposed that the two-way nteraction terms in a saturated log-linear
model for a two-way table be replaced by a lower rank approximation based on a SVD of
the nnstructured interaction terms {Clogg, 1986). The resulting model, known as the mul-
tidimensional row-column or RC({M) association model, s log-multiplicative rather than
log-linear, because it 1includes multiplicative terms for the interaction. Given the success
of the RC'(M) model at providing interpretable representations of dependence in two-way
tables, numerous extensions to three- and higher-way tables were proposed. Many of these
propesals use bilinear terms (e.g., Becker, 1989), trilinear terms (e.g. Anderson, 1996), or
both hilinear and trilinear terms (e.g., Choulakian, 1988a). Wong (2001) provides an exten-
sive summary of most of these proposals including the required identification constraints.

We present a subset of possible log-multiplicative models for three-way tables (i.e., those
which prove useful for the data at hand). Since our starting log-linear model, equation
(12), only includes bivariate interaction terms, we present a general log-multiplicative model
that only includes SVDs of two-way interactions. Following a brief review of the essential
elements of log-multiplicative association models, we present a general strategy for modelling
data that connects substantive research hyvpotheses to models through the use of a latent
ariable interpretation of log-mmltiplicative models.

Bivariate association models

We start with a general log-mmltiplicative model for three-way tables discussed by Becker
(1989) that only includes bivariate interactions. In this model, each of the two-way interac-
tion terms is replaced by a sum of bilinear terms, which can be computed via the SVD. In
the case of our sipnal detection data, we replace the interaction terms }.;-:EH__ )-.ﬂ,‘l‘ and ,lﬂ,"‘ i
equation (12) with separate bilinear terms; that is,

log(mje) = A+ N + A7 4 Z"JHM““ vy

r

Zg,_.f}[q]“" M Z”Hf[r]'*’ Pt (13)

t=1

JH L . . : . S . .
where w ™ and y‘"( are scale values for joint signal i and high rating j on dimension r

representing the J' H association, wy* and 57" are scale values for joint signal i and low

rating & on dimension s representing the L association, vﬂ Y and " are the scale values
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{ﬂr high 1':1,1 ing j and low rating & representing the HIL association on dimension §, and
oy Hir)s o5 1sy and ok () are association parameters that measure the strength of the JH,
J L and HL relationships on dimensions r, s and ¢, respectively. For identification, location
constraints are required on all parameters {e.g., 3, )-.‘-'r w1 =0), and additional scaling
and orthogonality constraints are required for the scale values {ﬂ. i,u.a':.i{Hu.,-';:;H =1lifr=7¢
and () otherwise).

When B = min(l,J) — 1, § = min(/. K) — 1 and T = min(.J, k') — 1, model (13) is
equivalent to log-linear model (12). Models where i < min(f,.J) —~ 1, § < min{/, K} - 1
and for T' < min(.J, K')—1 are all special cases of the log-linear model (12). Additional special
cases can be obtained by placing equality restrictions on the scale values mld assoclation
parameters across interaction terms, such as w'¥ = '* and *7:; Hip) = a’ TL(s) for r = s.
Based on our experience and published applications, models with one or two dimensions
often fit data well (Le., &, S and/or T equal 1 or 2).

Given (13), the conditional odds ratios are lunctions of the scale values and association
parameters. Based on model (13),

lﬂg{ﬂﬁf:jj’[#]} = Z*’JHM 'JH “f's“;frH}{"}':-a{H ”ﬁf}
log (@ pw(j)) = Z” Lis) (Wi = wi W = s
log (B k) = g*’ﬂrur]{”ﬁh T"ﬁrh {TFE{L Uﬂr}‘}'

Using the fact that odds ratios are lunctions of scale values and association parameters, plots
of scale values provide visual displays of the dependence structure in the data as measured
by a multiplicative definition of interaction (Le., odds ratios).

With higher-way tables, not only does one have the flexibility to decide what interac-
tions to represent by multiplicative term(s), but also what restrictions should be placed on
parameters. Given the large number of possibilities, we turn to an approach that provides
guidance for the construction of an appropriate model or a subset of models for a given
application.

Log-multiplicative latent variable models

The approach advocated here starts with a researcher’s substantive theories about under-
lying processes. We describe in this section a latent wvariable model from which we derive
log-multiplicative association models {Anderson & Vermunt, 2000; Anderson & Bockenholt,
2000; Anderson, 2002). The latent variable model described here is based on statistical
graphical models for discrete and continuous variables (Lauritzen & Wermuth, 1989; Whit-
taker, 1989; Wermuth & Lauritzen, 1990). Just as we have graphical representations of
log-linear models, adopting the latent variable perspective provides graphical representa-
tions of log-multiplicative association models.

In the latent variable model, the discrete variables are observed and the continuous
ariables are unobserved. In this chapter, the observed discrete variables, or a subset of
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them, are conditionally independent given the latent continuous variables. Provided a num-
ber of assumptions are met, the model derived for the observed discrete variables is a log-
multiplicative association model (for details, see Anderson & Vermunt, 2000, or Anderson,

2002).

Eﬂ m'l'lrﬂﬁ

=0 . :
oty | 3_ -
=] § -
T O
(o) RATING -
2] -
e ™
"

Degroes-of -Froedoan
(a) Models (b) Deviance Plot

Fipure 2: Concurrent Detection Data: Selection of latent association models. Boxes are
observed variables; circled # indicate latent variables. Model 2o is the preferred one.

Examples of graphical representations for latent variable models implving log-multiplicative
models are given in Figure 2. In these figures, observed {discrete) variables are represented
by boxes, and the latent (continuous) variables are represented by circles. Lines connecting
variables indicate that the variables may be conditionally dependent and the absence of aline
between two variables indicates that the vanables are conditionally independent. Note that
in graphs 2a and 2d in Figure 2, the three of the observed variables (boxes) are conditionally
independent of each other given the latent variable(s). The other two graphs in Figure 2
(Le., 2b and 2¢) permit conditional dependence between two of the observed discrete vari-
ables (i.e., the high and low ratings). Unstructured two-way interaction terms are included
if discrete (observed) variables are connected by a line. A multiplicative term is included if
there is a path between two cbserved discrete values that passes through one latent variable.
For example, consider graph la in Figure 2, which postulates one latent variable (perhaps a
subjective impression of the joint stimulus) where each of the ratings is related to this latent
variable. The log-mmltiplicative model with this graphical representation is

log(my) = A + A4 lf AL 4 Jﬂmfvf Fotwd (14)

where 7% is the variance of latent variable #, and given the additive model assumptions for
the mean of the latent variable in cell (7, 7, k) is

ik = o (w] 4 Vf )
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; 3] - . . . e
The term e?wy v is included in the model because there is a path between the “Joint

i

signal” and the “HIGH RATING” that goes through the latent variable, and the term ow:’ e
is included in the model because there is a path between the “Jloint Signal” and the “low
rating” that poes through the latent variable. A slightly more complex model is given in
graph 2b, which has a line connecting the high and low ratings. The algebraic model for
graph 2b is equation {14) with the {unstructured) interaction term Aﬂ.‘l‘ added to represent
a possible association between the high and low ratings.

From the deviance plot in Figure 2, the models corresponding to graphs 2a and 2b clearly
do not fit very well relative to the log-linear models. The latent variable structure for these
models is too simple; therefore, we add an additional latent variable. It may be the cas
there are separate internal {subjective) impressions of the signals and each of the ratings are
based on the their subjective impressions. Graphs 2e and 2d in Figure 2 are diagrams [or
this conjecture. The log-multiplicative model corresponding to graph 2c is

log(me) = A4 A + A7 + A0+ A5" + ofw? v + oqu (15)

where nrf and nr:, are the variances of latent variables # and &5, respectively. Since there is
a line connecting the box labelled “HIGH RATINGT and “low rating”, we included the term
,3'.‘1."‘. We include the multiplicative term r:rfu;f'rH Jf because there 1s a path between the box
labelled “Joint Signal” and “HIGH RATINGT that passed through the circle labelled “f,7
The second multiplicative term o3wy “vf was included because there is a path between the
box labelled “Joint Signal” and “low rating” that passes through the circle labelled “£,7. In

the model corresponding to graph 2d, the mmltiplicative term o aVH “ap© replaces }.H =

HIGH
RATING

e Joint Sigmal

Figure 3: Concurrent Detection Data: Final latent association model with a joint signal
ariable as factor and two latent variables

Comparing the it of the log-linear models from Figure 1 (i.e., models la - 1d) and the
log-multiplicative models corresponding to graphs 2e and 2d in Figure 2, the latter are more
parsimonious. Based on a detailed analysis, Anderson (2002) considered Model 2¢ to he
adequate for describing the patterns in the data. Note that although the fits of Model 1c
and Model 2c are almost equal, the latter model retains more degrees of [reedom. This model
has two latent variables, one for each sipnal. We can further refine this model by placing
restrictions on the parameters, which correspond to specific hypotheses. For example, the
way the subject “translates” the subjective impressions of a sipnal into a response may be
the same regardless of whether rating the high or low signal. This conjecture would be
represented by restricting v}"’ = rlr}‘-" =y forall 7 =1,...,6. Specific hypotheses regarding



Kroonenberg & Anderson: Additive and multiplicative models 13

the differential effect of the design variables on ratings tested by placing restrictions on w!

and /or wl. Additional restrictions were placed on the interactively coded design variables
to test, for example, whether the subjective confidence of the low signal when it is absent is
the same regardless of whether the high signal is present (ie., wy® = wy'™").

Figure 3 represents the final model with the paths between variables labelled by parame-
ters of the model representing the association. Table 2 contains the parameters estimates of

the final model that include restrictions on the parameters.

Table 2: Concurrent Detection Data: Parameters of the Final Latent Assomation Model and
Quantifications of Categorical PCA (CatPCA) Analysis.

CatPCA
Parameter || (uantifications®
Variable Level Estimate High Liovw
Ratings 1 —{1.41 —047  —0.44
{high confidence 2 —0.47 —048  —0.34
= 3 —(.22 —.33 —0.21
low confidence) 4 —0405 —.11 (.06
(24 ) 5] (.41 (.28 .41
G 0.74 (.66 (.66
Low ratings HIGH — & low —0.50
HIGH + & low —(1.50)
(wi ) HIGH — & low + (.58
HIGH + & low + .44
variance 340]| dim. 1 dim. 2°
HIGH RATINGS | HIGH — & low —(1.0H —04%  —0.74
HIGH — & low + —(.30 —0.451 —0.04
(wi ) HIGH + & low 041 058 010
HIGH + & low + (.58 .41 (.67
variance 260

Note: ®Quantifications of confidence scores from CatPCA; scaled to unit length.®45° rotated versions of
category quantifications from a categorical PCA on the three-way table (see section 6 with Joint Signal (7
as one of the variables. These quantifications are independent from the confidence ratings.

Note that the differences between the successive pairs of scale values increase with the
values of the ratings. Varances can be interpreted as measures of strength of the relationships
between stimmli and responses. The estimated cell means of the subjective confidence or

the high signal, 8,, equal g5 = o (w4 v;), and those for the low signal, #;, equal
Hafik) = U:f{wéﬂ ).

5 Additive models: three-way correspondence analysis

In Section 3 it was pointed out that models using the multiplicative definition of interaction
decompose each (group of ) interactions separately, while models using the additive definition
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of interaction decompose the complete dependence with a single multiplicative model. The
decomposition of the separate interactions is then derived from the global one. The most
prominent model using the additive definition is three-way correspondence analysis (CA) and,
in contrast with the association models, no distributional assumptions are made or used. In
this sense, three-way CA is an exploratory teclmique. 1ts most important properties are that
(1) the dependence between the variables in a three-way table is additively decomposed such
that the relative size of each interaction term can be assessed with respect to each other,
(2) a single multiplicative model for dependence operating at the level of proportions rather
than on the log-scale 1s used to model global, marginal, and partial dependence allowing for
additively assessing the contributions of these interactions to the modelled dependence, and
(3) graphical comparisons between all interactions can be made within a single graph. Full
details can be found in Carlier and Kroonenberg (1996, 1998), earlier technical results are
contained in Dequier (1974), Choulakian (1988b) and Kroonenberg (1989).

5.1 Measuring dependence
Measuring global dependence

The global dependence between the joint signal 7 and the confidence in the low signal L
and the confidence in the high signal H is measured by the mean squared contingency 2,
defined as

®? — Z Z Z P‘ui.' Di.pg.p. i.‘ Z Z ZPr DDk Dijk 1

k P g s PiPi Pk

= ZZ;;J;..;J.};J.;,PH. (16)
i ik

@®? is based on the deviations from the three-way independence model, and it contains the
global dependence due to all two-way interactions and the three-way interaction.

For instance, the two-way marginal total of the two confidence ratings is defined as the
sum over the joint signal weighted by its marginal proportion. If the conditional proportions
for all values of the joint signal ¢ are equal, then p;; = pj. Then Py = Pjy, and the
three-way table can be analyvsed with ordinary CA between the two confidence ratings. The
symmetric statement alter permutation of the indices holds as well. One-way marginal totals
are welghted sums over two indices and they are zero due to the definition of ., and thus
the overall total is zero as well.

Measuring marginal and three-way dependence

The global dependence of cell, Py, can be split into additive contributions of the two-way
interactions and the three-way interaction (see also equation (5)).
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 Pijo— PPy Pik — BiPek | Pk — PPk | Pijk — Dijk -
P = . . . , (17)
Pi. . PPk P LT L L
where pije = pij Pk + PikPj + Pjkli- — 2pi.pjpk (see equation (6)). The last term of
equation (17} measures the contribution of three-way interaction to the dependence for cell
(7,7, k)(see also section 3, equation (5)).

Using the definition of global dependence of cells, the measure of global dependence of a
table is defined as the sum over all cell dependencies, ®* = 5, ik Fijk- Due to the additive

splitting of the dependence of individual cells, 2 can also be partitioned additively

P2 — ZZPF--p-_}i- (Pr’_;i-p . ) ZZPP Dok (pri. PPk )
i

PiDk
2
p-_;il.* p_;l L] pi-_;ll. pi-_;ll.
S Y pups (—j ST ppsa ( )
=% I BBk
= ‘I"f.r' ‘fn" Eu-." F.m‘* (18)

The mmportance of decomposition (18} is that it provides measures of fit for each of the
interactions and thus their contributions to the global dependence.

The left-hand panel of Table 3 shows this partitioning for the Wickens-Olzak data. The
two-way margin of the two confidence ratings L x H 1s distinctly smaller (18%) than the
two-way interaction of the joint signal with the high ratings JH (28%) and that between
the joint signal and the low ratings JL(33%), with the three-way interaction in between
(21%). The L x H-mteraction is not really interpretable given the presence of the other
interactions because it is the sum of the four tables in Table 1, and summing the praphs
virtually elilminates all systematic patterns present in the data. The other two two-way
interactions have straightforward interpretations as they indicate to what extent there is
a high (low) confidence in the presence of a particular combination of signals. Finally, the
three-way imteraction represents about a fifth of the dependence. Due to the presence of error,
generally only a small part of this interaction contains interpretable information about the
mutual influence of the ratings and the joint signal.

5.2 Modelling dependence

Up to this point, the decomposition of equation (17) is the additive parallel of the log-linear
model of equation (11). In particular, 1t has separate terms for each of the interactions, but
no decomposition of the interaction terms themselves has been considered vet. In ordinary
CA, the 5VD is used to acquire a more detailed insight into the nature of the dependence,
and in three-way CA a three-way analogue of the SVD is needed.
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Table 3: Concurrent Detection Data: Partitioning Fit for the 2 x 2 x 2-Model

Global Besidual
Dependence | Dependence W of

Source df | ¥~ W | ¥ g luteraction
Joint Signal({7) 3 0 ap 0 0
HIGH RATINGS (H) ] {0 o) 9 2
low ratings (L) ] (0 o) 1 i
J = H 15| 357 25| 18 1 b
J = L 15| 416 a3 16 1 1
LxH 25| 222 181199 16 a1
Three-way interaction | 7h| 261 21 |10 14 74
Total dependence L0 1256 100 | 436 100 a5

Note: % of Interaction = Residual v /Global % 100%: eg. 90% = 199/222 « 100%

Modelling global dependence

There are several candidates for the three-way generalisation of the SVD, in particular
Tucker’s three-mode decomposition (Tucker, 1966) and Harshman's (1970) parRArac. In
this paper we will only discuss the Tucker3 model, 1.e. the global dependence is decomposed
as

Fijx = Z Z Zﬂvsrﬂfﬁvf)jsf-‘m T Gk (19)
v & t

where a,, are scale values for the joint sipnal, and they are orthogonal with respect to
their weights p,. (Le. 3, pi.aya;e = 1il 7 =+ and 0 otherwise). Similarly, the b;, are the
orthogonal scale values for the confidence in the presence of the high signal, and the oy those
for the confidence in the presence of the low signal, with dimensions r, s, and {, respectively.
The g,.; are the three-way association parameters or analogues of the singular values, and
the e;;, represent the errors of approximation. In three-way CA, a weighted least-squares
criterion is used: the parameters grs, ir, bjs and oy are those which minimise

Z Z Z IJ;..IJ.}.II..#[’.’?_”"
i 7k

Thus the global measure of dependence, 2, can be split into a part fitted with the three-way
SVD and a residual part.

Modelling marginal dependence

The marginal dependence of the joint signal ¢ and high ratings j is equal to



—
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i — PP
JON
i g
with similar expressions for the other two marginal dependencies. The elements F; are
derived via a weighted summation over & from the global dependence of the cells,
J'-

Given we have modelled the global dependence F;;,, with the Tucker3 model in equation (19),
we can use equation (20) to find the model for the marginal dependence,

Fy. = Z Z Zfirsr"ffsvf*jsf?-r T €. (21)
e -3 t

with ¢ = >y powow and e = 3, poeije. Inspecting this formula leads to the conclusion
that the marginal dependence between the joint sipnal and the high ratings is derived from
the overall model by averaging the low ratings components.

Whereas in standard CA an optimal common dimension has to be determined for the
rows and the columns, three-way CA requires a determination of the numbers of components
for all three ways. For the Wickens-Olzak data all models with dimensions less than or equal
to 3 for each way were mmvestigated and displayed in a deviance plot. The most relevant
models are included in Figure 4 together with the relevant log-linear and lopg-multiplicative
models. From this figure we can see that the confidence ratings each needed two dimensions,
and the joint-sipnal mode needed either two or three dimensions. Given the desire for relative
simplicity and the fact that the proportional y* values of the sipnal dimensions for the 2x2x2
model were .39 and .26, and for the 3 =% 2 % 2 model .39, .26, and .07, led us to prefer the
former. Thus of the total v? in the three-way table, 65% is fitted by the three-way CA.

From Figure 4 it can be seen that the multiplicative models clearly outperform the
additive models; they combine the same degrees-of-freedom with a lower chi-square. It
is not quite clear why the CA fits so dramatically worse. One reason might be that the
additive models try to fit the complete interaction (i.e. the global dependence), while the
log-multiplicative models only ft the three-way interaction. A thorough investigation into
this aspect will have to be made in the future.

The results for the 2 x 2 x 2 three-way CA are summarised in the right-hand panel of
Table 3. The L = H interaction has a bad fit of only 10%, but as argued above it contains
very little mteresting information about the problem at hand anyway. The other two two-
way Interactions are fitted very well by the model with 95% and 96% of their interaction
explained by the model. Fmally, only 26% of the three-way interaction is captured by the
three-way model, but this is as expected. The fitted y?s of J x H and J x L together
account for 90% of the total fitted 2 of 820 (=1256-436), in other words it is primarily these
two interactions that are being ftted by the three-way CA.
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Figure 4: Concurrent Detection Data: Deviance Plot containing both multiplicative and
additive models. “Independence” mndicates the model of three-way independence; “Indepen-
dence + rsi” indicates the independence model with a decomposition of the global depen-
dence by a r % s x {-Tuckerd model. “Independence + 2227 is the preferred additive model

and Model 2c the preferred multiplicative model.

5.3 Plotting dependence

The three-way CA model is symmetric in its three ways. However, this symmetry cannot
be maintamed when graphing the dependence, because no spatial representations exist to
portray all three ways simultaneously in one graph. A strict parallel with ordinary CA can
therefore not be maintained. To display the dependence or its approximation in three-way
CA, we will make use of a nested-mode biplot, which was called the interactive biplof in
Carlier and Kroonenberg (1998), but the present term is more explicit and avoids overusing
the term interactive.

Plotting global dependence: Nested-mode bhiplot

The nested-mode biplot aims to portray all three wavs in a single hiplot. As a bhiplot has only
two type of markers, two ways have to be combined into a single one. In the Wickens-Olzak
data we have combined the two confidence ratings, indexed by (j, k) and represented it by
a single marker . Thus for the construction of the plot the confidence ratings are coded
interactively. The remaining mode, ie. the joint signal, defines the plotting space and it
also supplies a set of markers; 1t will be relerred to as the reference mode. )

The construction of the biplot for the fitted part of global dependence, designated as Fij,
follows directly from three-way SVD of the global dependence.
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Fipgure 5 Concurrent Detection Data: Nested-mode biplot from three-mode correspondence analvsis. Hi
(Li) i-th level of confidence in presence of high (low) signal, ie. co-ordinates of the HIGH RATINGS = Joint
Signal (low ratingsx<Joint Signal) two-way margins. The script letters with associated arrows indicate the
co-ordinates of the Joint Signal categories.

f:’i:jk = Z ZZ!}vsrijsf-‘m fls~a~=zﬂ':m~]rrtsr
I8 & t

T

Py = > dyag (22)

i

By replacing the (jk) with a new index £ we see that the co-ordinates of the combined re-
sponse variables on component » are the dy., and the a; are the co-ordinates of the joint sig-
nals. Given this construction, the combined response variables are in principal co-ordinates
and the joint sipnals in standard co-ordinates. When plotting these co-ordinates in the
nested-mode biplot we will portray the combined response variables as points and the joint-
signal co-ordinates as arrows.

The interpretation of the nested-mode biplot can be enhanced by exploiting the ordinal
nature of both response variables. In particular, we can draw a grid by connecting in their
natural order both the high confidence ratings for each value of the low confidence rating
and vice versa. The result is the grid in Figure 5, which shows the nested-mode biplot for
the 2 x 2 % 2 three-way CA. As 90% of the global dependence consists of the 7 x H and
J x L dependence, these interactions primarily determine the shape of the plot.
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What can one learn from such a plot? First, note that the co-ordinates of the signals
(H,L.H,—L,~H, L, —H, L), form nearly a rectangular cross indicating the relative inde-
pendence of the high and low sipnals. The slight upward turn of the arrows for the condition
where only one signal 15 present, indicates that slightly more often the subject judged the
not-presented signal to be present as well. A characteristic of the confidence grid is that the
presence (absence) of a signal generates the corresponding appropriate confidence score. In
addition, the lack of signal generally leads to low confidence scores but there is not much
differentiation between the lower levels of the confidence scores, especially in the case of the
absence of a low signal. The longer grid lines for the high-signal confidence when the confi-
dence in the presence of the low signal is at its lowest, indicate that in those cirenmstances
the confidence in the presence of the high signal is much more marked.

Plotting Marginal Dependence

In section 5.2 we saw that the marginal dependence of the joint signal i and the high ratings
4 was derived by summing over the mode with low ratings k

f:’;}-. =3 130 geabjecs| ap = dijgea, (23)
i & t

i
with ¢y = ¥, poeck, the weighted average of rp over k. This leads to the conclusion
that the marginal co-ordinates for the high ratings can be derived from the overall model
by averaging the appropriate components (here: the ¢,;), and similarly for those of the
low ratings by averaging the component scores dj. over j. Therefore, the d;,. are the co-
ordinates on the joint-signal axes for the margmmal dependence of the lugh ratings. These
marginal co-ordinates are indicates by H1, .. ., Hbin Figure 5, and similarly L1, ..., LG are

the co-ordinates for the marginal dependence of the low ratings.

6 Categorical principal component analysis

As explained in Chapter xx, a categorical principal component analysis (PCA) in which all
ariables have a multiple nominal measurement level is equivalent to multiple correspondence
analysis (MCA). Meulman and Heiser (1998) investigated to what extent MCA is able to
portray higher-order interactions m contingency tables using a 2 x 2 x 2 data set as an
example.

The Wickens-Olzak data are a four-way data set with two numerical or ordinal six-point
confidence rating variables and two binary signal variables. If we want to apply the Meulman
and Heiser conceptualisation, we could carry out a MCA by performing a categorical PCA
on the four variables whithout respecting their measurement levels. However, given that in
categorical PCA one can do justice to the measurement levels, it seemed a better choice for
the ordinal confidence ratings. Commonly, ordinal variables in the context of categorical
principal component analysis are modelled with second-order splines with two interior knots
(see e.g. Hastie, Tibshirani, and Friedman, 2001, chap. 5), and this is what was done here.
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Fipure 6: Concurrent Detection Data: Symmetric two-dimensional biplot for categorical PCA with profile
points connected per Joint Signal, £, H = both high and low signal present, - .-, —£, —'H both absent; arrows
for two ordinal confidence variables and the two binary signal-present variables.



Kroonenberg & Anderson: Additive and multiplicative models 22

A categorical PCA of the Wickens-Olzak data with two nominal variables (presence or
absence of a high or low signal) and two ordinal variables (measure of confidence in presence
in high and low signal) was fitted in two dimensions, providing a fit of 75%. Also the results
for the three-way table with the joint signal were examined, but these are essentially the
same due to the completely balanced design. The grids shown in the biplot of the profiles
and the variables (Figure 6) have been made m the same way as in the three-mode CA by
comnection the confidence ratings in their natural orders. But here we have a separate grid
for each signal presence-absence combination (el similar figures in Meulman and Heiser
(1998). Each point in the plot represents a cell of the four-way contingency table. For
instance, the topmost point is the cell with both signals present and both confidence ratings
equal to 6. The lowest point is the cell with both signals absent and both confidence ratings
equal to 1. In the present graph, the four grids are practically equal and translated versions
of each other, illustrating additivity of the quantifications. The results suggest that the
theory developed by Meulman and Heiser {1998) can be extended to variables with more
and ordered categories as is suggested by them (p. 296), but this subject needs frther
investigation.

An
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Figure 7: Concurrent Detection Data: Transformed confidence scores versus original scores for the latent
association model (joint transformation for both scores; see section 4.2) and for categorical PCA (separate
transformations for each confidence score). The transformations for the ordinal scores in the categorical
PCA are based on B-spline transformations of degree two and two interior knots (see section 6).

The optimal scaling transformation plots are given in Figure 7 and they show how the
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original categories of the ordinal confidence variables were transformed from their original
numbering of 1 through 6. These graphs are based on the values reported in Table 2, and it
can be observed that the categorical PCA parameters are very similar to the jointly estimated
alues of the latent association model. The values for the joint signal variable are also given
in Table 2 where is can be seen that the first dimension of the categorical PCA concurs
very well with the scale values from the latent variable association model. These outcomes
concur with an observation for the two-way case by Van der Heijden et al. (1994), “The
conclusion is that in CA the interaction is decomposed approximately in a lopg-mmltiplicative
way [..] This close relation between CA and models with log-bilinear terms holds also for
more complex models™ (p. 106).

7 Discussion and conclusions

The additive and mmltiplicative approaches to modelling are characterised by first Gtting
a model to the original frequencies. In the additive case, one can choose an appropriate
model by examining the relative contributions of the interaction terms and then combining
the chosen ones, while in the multiplicative case one has to fit series of models to assess the
necessity of including each interaction term.

When dealing with variables with more than a few categories, straijghtforwardly fitting the
models does not suffice because of the large number of parameters in the interaction terms.
To model the interaction terms in both cases, multiplicative decompositions based on two-
way and /or three-way SVD, are used. Again the two approaches differ in the way a model
15 “assembled”. Within the additive approach, the complete dependence 1s decomposed and
the contributions of the interactions are assessed to come to an appropriate model. In the
multiplicative approach, first a model consisting of several log-additive terms and one or more
multiplicative decompositions of log-interactions is constructed which 1s then assessed with
respect to its goodness-ol-fit. Several models constructed in this way are then compared to
find the preferred model. There is an additional phase of sophistication for the multiplicative
maodel in which latent variables are used to develop more parsimonions and powerlul models.

Furthermore, methods have been developed to include restrictions on the estimated pa-
rameters for further simplification of the model and improved interpretation, as was shown
in the Wickens-Olzak example. Such sophistication is at present not readily available for the
additive approach to three-way tables, but several papers have appeared which introduce
constraints in (M)CA (e.g. Bockenholt & Takane, 1994; Hwang & Takane, 2002). A sophis-
ticated archeological example for the two-way case was presented by Groenen and Poblome
(2002), but three-way extensions of this approach are not yet available.

With the multiplicative decompesition, several graphical representations are available for
log-multiplicative models that can aid interpretation, such as graphs and schematic diagrams
that represent the model itself, plots of scale values which sometimes are one-dimensional,
and thus easy to mmterpret. In the case of latent variable models, one can fruthully plot
estimates of the means on the latent variables and use these to create insightful plots. With
three-way CA all dependence can be displayed in a single plot so that an integrated overall
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view of the global, marginal and partial dependence can be obtained. However, such displays
require careful inspection and it s necessary to develop a fairly detailed nnderstanding of
what can and what cannot be read in them.

The main interpretational conclusion of the paper 15 that both the omltiplicative and
additive models for three-way tables have much to ofler compared to simple signilicance
tests and numerical inspection of the interactions or modelling of them via log-linear models.
When the variables have few categories an inspection or log-linear modelling might still be an
option, but for larger tables it is becomes almost impossible. I the interactions have a good
structure and stochastic assumptions can be met, sophisticated multiplicative modelling can
lead to parsimonions models with good interpretabilitv.  Moreover, it becomes possible to
zoom in to test detailed hypotheses. When the assumptions are more difficult to meet or
the structure is messy, the additive approach has much to recommend itself, especially in
supplying a grand overview of all aspects of the dependence, and as such it can be even useful
when more precise modelling is possible. In the [uture, with more sophisticated machinery
for the additive approach, it may be possible to model in a more refined way as well. For
the present example, the log-multiplicative models outpreformed the three-way CA in terms
of deviance-degrees of freedom ratio, but why this is so is not yvet properly understood.

Categorical PCA (and MCA) can also be used as an alternative when there are problems
with log-multiplicative models, and it 1s expected that 1t will give similar results. However, a
detailed theoretical analysis is required to establish dilferences and similarities between the
models discussed in this chapter.

To summarise our attempt to introduce an interpretational element in the decision
whether one should prefer multiplicative or additive modelling, we have extended Darroch’'s
(1974) original table with properties of the models {Table 4). Its top part lists the proper-
ties of additive and mnltiplicative methods as given in Darroch (1974), while the lower part
shows the interpretational properties of the models of the models presented here. Unfortu-
nately, our investigations have not led us to a more unequivocal conclusion than Darroch’s.
This is primarily due to the fact that interpretability is very much data dependent and no
model-based arpuments can solve content-based limitations or preferences.

8 Software notes

The first author has written a program for three-way CA as part of his peneral suite of
programs for three-way analysis, 3WayPack, information about which can be found on the
website of The Three-Mode Company'. The suite comes with a Pascal Interface and the
program itsell is written in Fortran90. An Splus program (with mainly French commentary
and output) also exists. It was written by the late André Carlier and distributed via the
Laboratoire de Statistique et Probabilité (LSP), Université Paul Sabatier, Toulouse, France.
Further information can be obtained from the LSP website®.

http:/ /three-mode leidenunival/
2http:/ fwww.lsp.ups-tlse.fr/index. html; search for MULTIDIM
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Table 4: Properties of multiplicative and additive models after Darroch

Multiplicative Definition Additive Definition
Property Log- Log- Thes-mode CA
linear multiplicative
Partition properties No No Yes
Closest to independence Yes Yes (i
Conditional independence | Yes Yes No
as special case
Distributional equivalence | No No Yes
Subtable invariance Yes Yes No
No constraints on Yes Yes No
marginal probabilities
Statistical tests Yes Yes No
Estimation Usnally pessible | Can be diffionlt | Always possible
Modelling of data Exploratory Counfirmatory Exploratory
Ease of interpretation Dithienlt sSimple given Good overview:
model found can be complex

Log-multiplicative modelling (including latent variables) was carried out with LEMm {Jeroen
Vermunt, University of Tilburg, Tilburg, The Netherlands)*. The output and details of the
log-multiplicative models of the Wickens-Olzak data as presented in the paper by Anderson
(2002) can found on her website®.

Categorical PCA was carried out with software developed by the Leiden Data Theory
Group as implemented in the program module Categories of SPSS 11.0° {Meulman, Heiser,
& SPSS Inec., 2001).
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