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Summary

The usefulness of three-mode principal component analysis to explore multi-attribute genotype-envi-
ronment interaction is investigated. The technique provides a general description of the underlying patterns
present in the data in terms of interactions of the three quantities (attributes, genotypes, and environments)
involved. As an example, data from an Australian experiment on the breeding of soybean lines are treated in

depth.

Introduction

The existence of significant genotype X environ-
ment interaction creates difficulty in genetic analy-
sis in several ways, such as by confounding esti-
mates of genetic parameters and statistics, and by
complicating selection and testing strategies. Such
interactions reflect differences in adaptation which
may be exploited by selection and by adjustments
to the test strategy. In this context, conflict inevi-
tably exists between breeding for broad adaptation
(minimizing interactions) and specific adaptation
(emphasizing favourable interactions). However,
any objective decision requires a full understand-
ing of the nature of genotype X environment inter-
actions. Further complications arise because com-
monly, breeders are interested in more than one
attribute at a time. Selection indices (Smith, 1936;
Manning, 1956) were an early attempt to combine
multi-attribute information into a single variable
for subsequent analysis.

In this paper a multivariate technique, Three-
Mode Principal Component Analysis (TMPCA) is
used to handle all genotypes, environments, and
attributes simultaneously. The primary aim will be
to demonstrate how the technique can give a gener-
al description of the main patterns present in the
data in terms of interactions of the three quantities
involved.

The technique will be illustrated with data on the
adequacy of several lines of soybeans (genotypes)
scored on several characteristics (attributes) at sev-
eral locations measured in two consecutive years
(environments). Previous analyses of these data
have been published, notably using ordination and
classification (Mungomery et al., 1974; Shorter et

al., 1977), individual differences scaling (Basford,

1982), and three-way clustering (Basford &
McLachlan, 1985). The adaptation of the geno-
types is, therefore, well known so the use of this
data set permits some judgement on the usefullness
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of this method of analysis. The analyses reported
here should be feasible for any genotype by envi-
ronment by attribute data.

Experimental details

Mungomery et al. (1974) is the first published ac-
count of the experiment from which these data
were collected. Fifty-eight soybean lines, whose
origin and maturity details are shown in Table 1,
were evaluated at four locations in south-eastern
Queensland in 1970 and 1971. The first forty breed-
ing lines were local selections obtained from cross-
ing line 43 (Mamloxi) with line 41 (Avoyelles). As
only a few of these were released as varieties (and
so given a cultivar name) they will only be referred
to in the subsequent text by line number. Lines 41
to 58 will be referred to by line number with name
in parentheses. The locations Lawes, Brookstead,
Nambour, and Redland Bay are all within 150 km
of Brisbane, and cover a wide range of climatic and
edaphic conditions, details of which are given in

Shorter et al. (1977, p. 225). Before the trials start-
ed, it was anticipated that the performance of the
lines would be somewhat similar at the two humid
coastal locations, Nambour and Redland Bay, and
that the performance at Lawes and Brookstead
would be different from each other and from the
two coastal locations. Redland Bay and Nambour
were similar in that a soybean rust (Phakopsara
pachyrhizi) epidemic occurred in both years of the
test, although this was relatively more severe at
Redland Bay in 1970, and less severe at that loca-
tion in 1971. This disease occurred late in the sea-
son and had more effect on later-maturing lines.
Lawes and Brookstead trials were free of this dis-
ease in both years of the test.

The experiment was a randomised complete
block design with two replications in each location.
A number of chemical and agronomic attributes
were observed, but only the following are discussed
here: seed yield (kg/ha), plant height (cm), lodging
(rating scale 1-5), seed size (g/100 seeds), seed
protein percentage, and seed oil percentage. Mun-
gomery et al. (1974), Shorter et al. (1972), and

Table 1. Origin and maturity of soybean lines (after Mungomery et al., 1974)

Line no. Name Origin Maturity®
140 Local selections? 9-11
43 CPI 17192 Mamloxi Nigeria 11
41 CPI 15939 Avoyelles Tanzania 9
42 CPI 15948 Hernon 49 Tanzania 9
45 Hampton USA 8
48 Leslie USA 8
49 Semstar Local cultivar 8
50 Wills USA 8
47 Jackson USA 7
53 Bragg USA 7
55 Lee USA 6
56 Hood USA 6
57 Ogden USA 6
44 Dorman USA 5
46 Hill USA 5
54 Delmar USA 4
58 Wayne USA 3
51 CPI 26673 Morocco 3
52 CPI 26671 Morocco 3

* Local selections are derived from 41 (Avoyelles) and 43 (Mamloxi).

® Maturity is US maturity group classification or estimated equivalent.



Basford & McLachlan (1985) restrict their analyses
to yield and protein percentage, while Basford
(1982) discussed all six attributes.

Method of analysis

Traditionally genotypes have been characterised
by an array of attributes producing a two-way ta-
ble: the genotype X attribute (G X A) matrix. Al-
ternatively, genotypes have been characterised by
an array of performance values for a single attri-
bute measured in a number of environments. This
is a two-way table: the genotype X environment
(G x E) matrix. The extension of these tables to
the multi-attribute, multi-environment case pro-
duces a genotype X environment X attribute
(Gx Ex A) matrix. As indicated earlier, the
study of such three-way tables can potentially be of
benefit to plant breeders, because they contain all
the plant information from which inferences are to
be made, as distinct from other measures on the
environment.

Williams & Stephenson (1973) introduced a nu-
merical method for the partition of three-dimen-
sional data sets (sites X species X time) in marine
ecology. Based on analysis of variance (equivalent
to using Euclidean distance as a dissimilarity mea-
sure for classification), the ‘mean variance per
comparison’ was used to assess the relative impor-
tance of dimensions or ‘modes’ and to provide a
simple method of data reduction. Williams & Edye
(1974) illustrated the applicability of this model to
three-dimensional data matrices in agricultural ex-
perimentation, in particular they examined chang-
es in botanical and chemical composition of pas-
tures, i.e. their data were paddocks X measure-
ments X time. Basford (1982) analysed the three-
way genotype X environment X attribute matrix
via individual differences scaling (see e.g. Carroll
& Chang, 1970) by calculating for each environ-
ment the distances between genotypes from their
(standardized) scores on the attributes. Effective-
ly, this means that the (G X E X A) matrix with
scores is transformed into a (G X G x E) matrix
with distances. Another approach is that of Bas-
ford & McLachlan (1985) who considered a cluster-
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ing of genotypes into groups based on the response
in the other two modes, environments and attri-
butes simultaneously. By appropriate specification
of the underlying model, the mixture maximum
likelihood method of clustering allows the (G x
E X A) matrix to be handled directly.

In the present paper the (G X E X A) matrix
will be analysed with three-mode principal compo-
nent analysis (see e.g. Tucker, 1966; Kroonenberg
& De Leeuw, 1980; Kroonenberg, 1983, 1984),
which fits into the ordination rather than the clus-
tering tradition. The aim of this procedure is to
derive components for each of the ways or ‘modes’
(say, P, Q, R, of them for the first, second, third
way or mode respectively), as well as a three-way
matrix (the core matrix) of order P by Q by R. This
core matrix G contains the weights assigned to each
of the possible combinations of the components
from the three modes. Thus g, indicates the joint
weight for the p-th component of the first mode,
the g-th component of the second mode, and the
r-th component of the third mode, and its squared
value indicates the explained variation for that
combination of components. The complete model
may be written as

P Q

R
Xi= L L L & biq Cur Bpqr T €ijk
p=1 g=1 r=1

with i=1, ..., 58 genotypes, j=1, ..., 8 envi-
ronments, and k=1, ..., 6 attributes, and ¢;; the
random error. An observed score X is thus ‘mod-
elled’ as a systematic part of sums of multiplicative
terms plus error. The a;, are the entries of an I X P
matrix A with the components for the first mode as
its columns. The b;, and ¢,, are similarly defined for
the second and third modes.

Supposing that clear-cut interpretations exist for
the components in terms of latent entities, one way
of interpreting the core matrix is to consider the
elements g, as the scores of (in our case) latent
genotypes on latent attributes for latent environ-
ments (or types of environments). The g, indi-
cates the weight or importance of a particular com-
bination of a,b.c,, for the modelling of x.

When such a clear-cut interpretation only exists
for one mode, as is the case here for environments,
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so-called joint plots can be made to investigate the
relationships between each of the environment
components and the original genotypes and attri-
butes.

The program TUCKALS3 (Kroonenberg &
Brouwer, 1985) was used to analyse the soybean
data. This program is based on the alternating least
squares algorithm described by Kroonenberg & De
Leeuw (1980). Unlike the individual differences
scaling reported by Basford (1982) this program
handles only metric data.

For ease of interpretation, it is desirable to ex-
press the component configurations in low, prefer-
ably 2-4, dimensional space. However, representa-
tion of data in a reduced space inevitably results in
some loss of information if the underlying spaces
are of higher dimensionality. To assess the ade-
quacy of the model the fitted sum of squares can be
computed both for the overall solution and for each
genotype, attribute, and environment separately
(see Ten Berge et al., 1987). These fitted sums of
squares can be expressed as squared multiple cor-
relations between the data and their estimates
based on the three-mode model.

Application

The data can be analysed in various ways depend-
ing on the focus or purpose of the research. One
approach is to consider the data as a split-plot
multivariate-multifactor design, in particular as six
variates (attributes) with two independent varia-
bles, year (2 levels) and location (4 levels) as fac-
tors and the genotypes applied within each year-
location combination (environment). The agron-
omist generally wants to investigate the main ef-
fects of overall quality and variability of locations
over years, while plant breeders are especially in-
terested in genotype by environment interactions
for line selection purposes.

One of the major problems in using univariate
and multivariate analysis of variance on such data is
heterogeneity of error variances. Shorter (1972)
and Mungomery (1978) investigated this aspect in
depth for the current experiment. Analyses of vari-
ance for each attribute were computed and Tukey’s

test for additivity indicated that in general there
was no reason to assume other than the usual addi-
tive model. Bartlett’s test of homogeneity of varia-
nce across the eight environments indicated errors
were heterogeneous. Various transformations
were tested but resulted in little or no improvement
in homogeneity except for the lodging score and
seed size, and even there the test remained highly
significant; the transformation, however, did not
improve additivity in all environments. The major
consequences of heterogeneity of error variances is
on the test of the interaction mean square where
too many significant tests are likely to occur. It
seemed that this would be a serious problem only if
the significance was marginal. The combined ana-
lyses over all environments were therefore comput-
ed using the untransformed data for all attributes,
but taking into account that the error variances
were heterogeneous when interpreting tests of sig-
nificance (Shorter, 1972; Mungomery, 1978). A
multivariate analysis of variance showed that the
year main effect, the location main effect and the
year by location interaction were significant. The
same result applied for the univariate analyses,
except for year and interaction effects for seed size.
Thus the usual plant breeders’ convention of iden-
tifying each year by location as an environment
which influences plant response in a particular way
was adopted.

Both multivariate and univariate F-tests with en-
vironments and genotypes as factors were signif-
icant. Table 2 gives the main effects for environ-
ment for each attribute. The main visual impres-
sion from this is that there is very little obvious
pattern in the deviations or effects.

Variance among lines was partitioned into that
attributable to within and between two groups.
Group A consisted of the locally selected later
maturing lines (143), while Group B was the
largely introduced earlier maturing lines (44-58).
Highly significant differences existed among lines
within each group for all attributes except lodging
score in the B group. The groups were significantly
different for all but yield and lodging. Hence such a
partition of variability was not very informative in
explaining the pattern of plant response.

For each attribute k the data may be represented



via an additive linear model for the averages of the
two replications per cell

xP = u®+ afd+ B+ 8

with i=1, ..., 58 genotypes; j=1, ..., 8 envi-
ronments, k=1, ..., 6 attributes. Within plant-
breeding research two common procedures for sin-
gle attributes are employed — ordination and clus-
tering (see Byth & Mungomery, 1981). Either
af + 8% or only the G X E interaction, 8 is used.
In the present case, it was deemed important to
relate differences in mean performance of geno-
types to environment and attribute differences.
Therefore, the first option was chosen, which
means that g® + B,fk) are removed from the data.
The different units of measurement for the attri-
butes make it imperative to equalise the scales per
attribute before they can be analysed jointly, be-
cause otherwise there is no compatibility across
attributes. Therefore, a scaling was performed
over all genotype-environment combinations, so
that the overall variability across attributes was
equalised while maintaining the between-environ-
ment variability in the analysis. Because after scal-
ing the interactions are comparable over attributes,

Table 2. Main effects of environments for each attribute
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in the sequel the index k will be written as any other
index, i.e. as a subscript, rather than a superscript.
More formally, if we define X, as

Kk = Xije — ﬁ}'k - ﬁjk
where the carets indicate the usual least-squares
estimators, then the scaling factors s are

L]
= Z 21: (R 1>
ij=
Model fit

Overall. Several solutions with different numbers
of components for each of the modes were tried.
Unfortunately, three-mode models are generally
not nested, i.e. the size and nature of components
may change when new components are added to
the model. Therefore, several solutions have to be
inspected to come to an adequate description of a
data set. The squared multiple correlation for a
solution with 3 components for genotypes, 2 for
environments, and 2 for attributes, i.e. a 3X2X2-
solution (Model I) was equal to 0.72. Alternative-
ly, one may say that 72% of the variability mea-
sured by the uncorrected sum of squares of the data

Environments Attributes®
Yield Height Lodging Size Protein QOil

Lawes 1970 0.2 0.3 1.3 0.8 -0.8 0.8
Lawes 1971 0.5 -0.1 -03 0.2 -0.3 -03
Brookstead 1970 -0.5 0.1 0.0 -03 -0.2 -04
Brookstead 1971 0.4 0.1 0.4 1.4 1.4 —-1.0
Nambour 1970 -0.2 -0.2 -0.7 0.7 -3.6 2.8
Nambour 1971 0.3 -03 - 1.0 0.1 0.8 0.1
Redland Bay 1970 -04 0.0 0.6 -1.5 0.3 -0.9
Redland Bay 1971 -0.3 -0.0 -0.3 -1.5 2.4 -1.2
Attribute means 2.1 0.9 2.3 11.1 40.3 20.0
Standard error® 0.5 0.1 0.4 1.3 2.0 1.1

*Degrees of freedom for the standard errors is 399.

®The bold entries in the table are those effects which are different from all other effects for that attribute according to the

Student-Newman-Keuls multiple range test.
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could be fitted by the model. Adding a third com-
ponent to attribute mode (thus fitting a 3x2x3
solution — Model II) increased the R? to 0.76. Sub-
sequently, increasing the environment mode with a
third component (3 X 3 X 3-solution — Model III)
increased the R? to 0.77, while a 4 X 4 X 4-solution
(Model IV) raises it to 0.81 at the cost of a large
number of extra parameters and an increased com-
plexity of interpretation. On the basis of informal
judgements of the increases in R? compared to the
increases in number of parameters and the inter-
pretational qualities of the solutions, the 3 X 2 X
3-solution was deemed adequate and is reported
here.

As a reviewer remaked, one would like to have
more formal criteria for judging the adequacy of
solutions. As far as we know, the only way to do
this, is to assume the genotypes are random sam-
ples from some population (which they clearly are
not, nor are they treated that way), because then
the three-mode model can be reformulated as a
regression model (see Kapteijn et al., 1986). For
comparing two nested regression models under the
assumption of independent and identically distrib-
uted errors with mean zero, an asymptomatic F-
test is availablel, i.e.

(R — R)/ (1~ RY)} * {df, — df,)/(n — dfy)

where the subscript b refers to the less restricted
and a to the more restricted model, and n is the
number of observations (see e.g. Seber, 1977, p.
342). The F-statistics for the successive differences
between the models are F,y; (7,2628) = 62.6, Fy; iy
(12,2616) = 9.5, and Fy;(88,2528) = 6.1. Even
though, all differences are very significant (which is
largely due to n = 2784), only the comparison be-
tween Models I and II gives a really large F value.
These tests concur with the informal conclusions
above. Note, however, that hypothesis testing in
this context is a rather dubious exercise.

Levels of modes. For eight of the 58 genotypes the
model accounted for less than 35% of the varia-
bility in their response compared to the overall fit
of 76% . In particular, these were the lines 2 (29%),
3(32%),24 (24%), 26 (11%), 27 (13%), 38 (12%),

41 (Avoyelles; 28%), and 42 (Hernon; 34%). All
these genotypes, except for Avoyelles and Hernon,
had generally low total variability indicating that
they largely achieved average scores on the attri-
butes in all environments. The comparatively low
fit of 41 (Avoyelles) is somewhat surprising, as it is
one of the two varieties from which the lines 1-40
were derived. The largest total variabilities were
found for the non-local selections 45-58.

Even though there are some differences in fit
between the environments and between the attri-
butes, these are sufficiently small not to warrant a
discussion.

Components description

Treating the components of the three modes sep-
arately gives only a partial view of the structure of
the variability in the data. For a full view, it is
necessary to look at the components of all modes
simultaneously. As mentioned above the compo-
nents of the genotypes (Table 3) and those of the
attributes (Table 4) do not have obvious interpreta-
tions, and the lower-dimensional representations
primarily serve the purpose of data reduction. We
will, therefore, defer the discussion of the geno-
types and attributes until later.

Environments. The two environment components
partition the fitted variability into 71.5% and
4.5%, respectively. The first component (Table 5)
is almost equal for all environments with the largest
loadings for Redland Bay 70 & 71, and the smallest
ones for Nambour 70 & 71. Thus this component
reflects the overall similarity of the environments.
The second component reflects a real Nambour —
Redland Bay contrast, be it that Redland Bay 70 is
rather extreme and that Lawes 70 joins Nambour
on the other side of the component.

As in Basford (1982), the expectations expressed
by Shorter et al. (1977, p. 225) about the similarity
between the two coastal locations Nambour and
Redland Bay is not supported by these outcomes,
rather the opposite is true. Due to generally similar
loadings, the first axis will be used to investigate the
interactions between genotypes and attributes for



all environments together. The second component
will be used to explore the differences between the
two coastal locations, Nambour and Redland Bay.

Associative patterns of components

In this section the relationships between the re-
duced spaces of the three models will be addressed
in two different ways. The first is to look at so-
called joint plots, which portray the interactions
between the genotypes and attributes for each of
the components of the environments, and the sec-
ond way is to look at the component scores of

Table 3. Genotype components
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attribute-environment combinations on genotype
components to focus more on the relationships be-
tween the attributes and environments, rather than
on the genotypes.

Joint plots. Joint plots (a variant of Gabriel’s (1971)
biplot — see also Kroonenberg, 1985, p. 86, 87),
display the relationships between genotypes and
attributes for each environment component, i.e.
they show what environments have in common
(first joint plot — Fig. 1) and in which way Nambour
and Redland Bay differ (second joint plot). The
interpretation of such plots proceeds as for Ga-
briel’s biplot based on the principle that distance in

Genotype Component Genotype Component
1 2 3 1 2 3
1 0.07 0.15 0.14 30 0.14 -0.16 0.02
2 0.03 0.07 0.04 31 0.08 0.03 0.07
3 -0.02 0.12 0.09 32 0.11 0.04 -0.23
4 -0.05 0.17 0.03 33 0.03 0.18 0.03
5 - 0.06 0.17 0.13 34 0.10 0.06 0.01
6 -0.04 0.15 0.15 35 0.07 0.01 -0.01
7 -0.06 0.20 0.10 36 0.14 -0.14 0.04
8 -0.01 0.08 0.27 37 0.13 -0.05 -0.21
9 -0.05 0.13 0.15 38 0.02 0.01 0.05
10 -0.05 0.10 0.06 39 0.11 0.11 -0.18
1 0.15 -0.04 0.06 40 0.08 -0.04 -0.08
12 0.17 -0.08 -0.02 41 Avoyelles 0.06 0.09 -0.10
13 0.16 -0.06 -0.02 42 Hernon 49 0.01 -0.07 -0.28
14 0.08 0.17 0.1 43 Mamloxi 0.10 -0.10 0.13
15 0.06 0.05 0.04 44 Dorman -0.15 -0.09 0.08
16 0.09 0.04 0.11 45 Hampton -0.22 0.10 -0.07
17 0.18 -0.20 -0.07 46 Hill ~-0.20 -0.03 0.12
18 0.19 -0.17 -0.07 47 Jackson -0.21 -0.05 -0.09
19 0.13 -0.09 -0.04 48 Leslie -0.19 0.13 -0.16
20 0.16 —0.16 -0.09 49 Semstar -0.19 0.23 -0.17
21 0.14 0.02 0.09 50 Wills -0.19 0.05 -0.20
22 0.16 -0.16 -0.13 51 CPI 26673 -0.15 -0.35 0.18
23 0.14 -0.04 0.00 52 CPI 26671 -0.15 -0.27 0.32
24 0.02 0.05 -0.07 53 Bragg -0.21 0.00 -0.17
25 0.01 0.16 0.07 54 Delmar -0.24 -0.13 0.08
26 0.01 0.03 -0.09 S5 Lee -0.22 -0.19 -0.10
27 0.00 0.05 -0.09 56 Hood -0.21 -0.11 -0.17
28 0.07 0.18 0.12 57 Ogden -0.21 ~-0.11 -0.24
29 0.09 -0.16 0.02 58 Wayne -0.17 -0.27 0.23
Percentage variation accounted for 63.2 8.6 4.4
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the plot is expressed through the inner product of
two vectors. Two vectors are highly related if they
are close together and thus have a high inner prod-
uct, as for instance lodging and height in Figure 1a;
they are unrelated if they are at right angles as for
instance protein percentage and seed size; they are
inversely related if they have angles of 180 degrees,
as yield and protein.

To evaluate the importance of an attribute, say,
protein percentage, for each genotype, one has to
compare the projections of each genotype on the
vector protein percentage. Similarly, one may
compare the projections of the attributes on a ge-
notype vector. In general, it is only necessary to
look at one type of projection, and because of that,
generally only the levels of one of the modes, here
attributes, are indicated by vectors. The levels of
the other mode are indicated by points, even

Table 4. Environment components

Environments E1l E2
Nambour 1970 0.23 0.4
Nambour 1971 0.29 0.32
Lawes 1970 0.37 0.46
Lawes 1971 : 0.36 0.09
Brookstead 1970 0.35 0.06
Brookstead 1971 0.38 -0.12
Redland Bay 1970 0.43 —-0.62
Redland Bay 1971 0.38 -0.28
Percentage variation
accounted for 71.5 4.6

Table 5. Attribute components

Attributes Al . A2 A3
Oil percentage 0.48 -0.14 0.04
Seed size 0.47 032 034
Yield 0.33 -0.57 0.59
Protein percentage -0.36 0.50 0.70
Lodging -0.40 -023 0.12
Height -0.39 -0.49 0.18
Percentage variation

accounted for 60.8 10.8 4.5

though they are actually vectors. Returning to the
protein percentage vector, it can be observed that
of the non-local lines Morocco’s 51 (CP126673) and
52 (CPI 26671) and 58 (Wayne) have the highest
protein percentage (coupled with a moderately
above average oil percentage), while the local culti-
var 49 (Semstar) has a far below average protein
percentage (but one of the highest oil percentages).
Similarly, within the local selections (1-40, 41, 42,
and 43) the major differences are especially due to
differences in protein percentages of their seeds
and their yields (with the attributes being inversely
related), rather than for instance height and seed
size.

Figure 1b shows a further ‘refinement’ of the
differences in lines; it presents the first against the
third axis, rather than the first against the second as
in Figure la. There clearly exist differences be-
tween the very early, early (mid-)late maturing
non-local lines. This is caused by the relatively
lower yielding crop with relatively lower protein
for the earlier lines compared to the later ones.
Within the local selections this same pattern seems
to be more related to individual genotypes, than to
specific groupings of genotypes.

For comparison, in Figure 1 the grouping of ge-
notypes resulting from the outcome of three-way
cluster analysis of Basford & McLachlan (1985) is
shown. The distinctiveness of clusters I, II, and II1
(non-local lines) and the other genotypes is evi-
dent. The clusters in the local selections clearly
occupy different positions in the three-dimensional
space, but some of the boundaries seem rather
arbitrary. It is, however, comforting to see that the
two methods support each other. In particular, the
locations of the attribute vectors can be used to
outline the principal differences between the clus-
ters. For instance, cluster VII is particularly char-
acterised by strong, tall plants with the highest
protein percentage of the local selections but with a
rather low yield. On the other hand, cluster IV
genotypes are better characterised by considerable
yields with above average oil and rather below
average protein percentages. All the above state-
ments can be made numeric by giving the actual
values of the inner products of the vectors men-
tioned.
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AXIS 2

Protein %

-3 = 0 1 2 AXIS 1

AXIS 3

i
-2 -1 0 1 2 AXIS1

Fig. 1. Joint plot of genotypes and attributes for first environment component. (Arabic numerals refer to genotypes - see Table 1;
Roman numerals refer to the clusters identified by Basford and McLachlan, 1985, Table 2; arrows indicate attributes).
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Finally, the major differences between Nambour
and Redland Bay locations are contained in the
second joint plot. However, the plot itself is not
shown, because the display is one-dimensional.
The second joint plot indicates that the seeds of the
non-local selections grown in Nambour, especially
the very early ones, have far higher protein per-
centages, lower yield and lower oil percentages
than those grown in Redland Bay. The reverse
pattern can be found in Redland Bay, in which
location especially in 1970 the very early Moroccan
and Wayne lines had rather low protein levels, but
high yields, and the local selections had moderate
yields and increased protein percentage. The dis-
tinction between the environments seems primarily
due to the non-local lines, as the local lines stay
relatively close to the origin.

Component scores. Even though the primary in-
terest of plant breeders is in examining groupings
of genotypes in order to assess how genotypes dif-
fer in response to different environments, it is also
important to investigate the characteristics of the
environments and the attributes jointly with re-
spect to genotype responses. To this end, the re-
sults of the three-mode analyses can be expanded
to show the original attributes and environments as
they are related to the components of the geno-
types. Such an analysis could be made by a two-
mode principal component analysis on the (A X E)
by G matrix, and plotting the (A X E) component
scores. The advantage of using a three-mode model
to construct similar component scores for each ge-
notype component p, i.e.

Ay = X

Q
q=1 r

R
3. By

is that there are less parameters to estimate.

Plots of the component scores can be made
which bear some resemblance to the usual way of
looking at plots of G X E interactions. Figures 2, 3,
and 4 show the E X A interaction for each of the
three genotype components in the main body of the
figures, while along the right-hand vertical axis the
component loadings of the genotypes for that com-
ponent are schematically depicted. Possibly some

environmental index could be used for the horizon-
tal axis, but it will have to be an index taking into
account all attributes. The present arrangement of
environments gives reasonably smooth profiles
over environments, so that the general patterns can
be evaluated. In the figures large deviations of
attributes in a particular environment indicate that
there is large specific adaptation, and considerable
differences in scoring on these attributes by the
genotypes, and that the differences between geno-
types on the component in question were especially
due to such attributes in the environment.

In Figure 2 there is in both years and on most
attributes a relatively low variability at Nambour
with respect to the tropical-nontropical distinction
between genotypes, which can be seen on the first
genotype component. This distinction may also be
expressed in terms of an early/mid (maturity: 3-6)
versus late (9), and very late (11) difference, due to
the confounding of maturity and origin. In the lat-
ter case, one could conclude that earlier maturing,
mainly nontropical lines have higher yields with
higher oil and lower protein percentages, larger
seeds, and smaller, relatively weak plants com-
pared to the later maturing tropical lines. The trend
is particularly large for Redland Bay in 1970, sug-
gesting that the tropical (very) late lines gave very
low yields with relatively high protein percentage.
Most likely the severe rust late in the growing sea-
son contributed to this.

Figure 3 illustrates a clear maturity effect in the
nontropical lines, while the differences between
the tropical lines are not related to maturity. In this
case, there is again a protein percentage — yield
contrast (relatively independent of oil percentage)
with the earlier nontropical lines having more pro-
tein and relatively larger seeds, and the middle
maturing nontropical lines having higher yields and
smaller seeds. A similar contrast exists for 17, 18,
20, 22, 30, and 36 versus 4, 5, 7, 28, and 33 of the
tropical lines. For Redland Bay the differences
between the genotypes as shown in Figure 3 were
not particularly marked.

Finally, Figure 4 illustrates again a contrast with-
in both the nontropical and tropical lines, but in
this case all environments produce relatively higher
yields with higher protein percentages for the mid-
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dle maturing nontropical lines together with hardly
above average oil percentages. Within the tropical
lines there is now a contrast between 32, 37, and 42
on the higher yield plus protein side, and 1, S, 6,
and 9 on the opposite side. Note that line 8 has a
rather bad record on all attributes.

Conclusion

By treating in detail a specific well-known example
from research on soybean lines, the use of three-
mode principal components analysis for investigat-
ing multi-attribute genotype-environment interac-
tions was explored. Given the complexity of the
data, it is difficult to provide simple answers to the
questions asked. By employing a number of differ-
ent ways of presenting the results, such as joint
plots and component scores, the method succeeded
in illustrating diverse aspects of the data. Which
type of description will be most useful in any partic-
ular study will depend on the specific research
questions, and the size and structure of the data set.

Perhaps the most useful result is that three-mode
principal component analysis formalizes the inter-
pretative processes necessary in analysing such da-
ta. Standard analysis of variance indicates that
many significant differences and interactions exist,
but does not give specific information about the
response patterns. The previous discussion showed
it to be a complementary technique to cluster anal-
ysis in describing the way the attributes contributed
to the differentiation of the genotypes (or groups of
genotypes). However, extra insights were ob-
tained, for example, one of the dimensions por-
trayed in the joint plot in Figure la appears to be
independent of the clusters obtained by the mix-
ture maximum likelihood technique. Most impor-
tantly, three-mode principle component analysis
provides a model-based technique which prevents
the rather piecemeal approach of subjectively com-
bining individual two-way analyses. By describing
the underlying complex situation in a low dimen-
sional space, the researcher is able to integrate the
response patterns inherent in the data in a reason-
ably direct manner. Any definitive recommenda-
tion of three-mode principal component analysis in

this context can only be made when more experi-
ence is obtained by application to other similar data
sets.
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