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SUMMARY

A nested series of hypotheses on dispersion structure is identified when observations are grouped in
a multivariate sample. A simple method of estimation is suggested for one of these hypotheses, and
results using this method are compared with those previously obtained by maximum likelihood
methods. Using these hypotheses, an analogy may be drawn between comparison of principal compon-
ents between groups and comparison of regressions between groups.
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Suppose that observations are made of a p-variate random vector X in each of k populations.
Many parametric techniques of multivariate analysis require normality assumptions, and a typical
starting point for any analysis of such observations is that X has a N,(u;, £2;) distribution in
population m; (i=1,...,k). Consider now a sample of size n; taken from population 7;, and
let Xx;, S; denote the maximum likelihood (ML) estimates of u;, £2;.

A common hypothesis tested on such data is H,: ;= for all i. This can sometimes
be a prelude to further analysis (e.g. canonical variate analysis, multivariate analysis of
variance). The likelihood ratio test statistic for H, is given (Mardia et al., 1979, p. 140) by
—2log A\, =Zn;log|S; S|, where S=(Zn;S;)/(Zn;) is the ML estimate of . Under H,,
—2log)\, has an asymptotic x* distribution with §p(p +1) (k—1) degrees of freedom. An
improved approximation to this distribution has been given by Box (1949), valid for each #n; as
small as 20 provided that k and p are not large (< 6).

H, may often have to be formally rejected when, nevertheless, it may be suspected that there is
some similarity between the £2; which could be used to advantage, either in subsequent analysis
or to improve the precision of other estimates. One possibility is that the £2; share common
principal axes although the size of each axis, and its relative importance, may vary from
population to population. This is equivalent to requiring the £; to be simultaneously reducible
to diagonal form by the same orthogonal matrix, ie. Hp: L*Q; L=A; (i=1,..., k), where L
is an orthogonal (p X p) matrix and the A; are all diagonal matrices. (Note, however, that there is
no implication here that the rank order of elements of A; is the same for each i=1,...,k.)

The relevance of Hj in practice may be seen more easily from the standpoint of principal
component analysis. In this technique, the original vector of variables X is transformed
to a new vector Y =(Yy,..., Yp)". Each new variable is a linear function of the original
variables, i.e. Y;=afX, and the new variables are ranked according to their variances, i..
var (Yy)=var (Y;) > ... >var (Yp). Y; is the ith principal component of the system, the ele-
ments of the vector a; are the coefficients of the ith principal component, and the values of
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Yy, ..., Yp corresponding to any individual in a sample are the principal component scores for
that individual.

In practice, principal component analysis is often used to identify major sources of variation
between individuals in a sample and to effect data reduction by indicating any minor, discardable,
sources of variation. Interpretation of the weighted averages afX in terms meaningful to the
experimenter will additionally enable labels to be attached to these sources of variation, and may
give further insight into the situation under study. Interest in the present note centres on the case
where the same vecfor of measurements is made on individuals in a number of different groups.
The most general situation is one in which the sources of variation between individuals, as well
as their associated interpretations, may differ arbitrarily from group to group. In hypothesis Hp,
on the other hand, it is postulated that the sources of variation are the same from group to group,
but may be ranked differently in each group and may assume different levels of importance in
each group. This may be a perfectly reasonable assertion to test in many practical situations.
For example, if the same set of examinations is taken by each student in a number of different
schools or colleges (as in the data set discussed by Krzanowski, 1979), it may be sensible to assume
that the basic sources of variation between students are similar in each college, but that differences
in teaching practice between colleges will place different emphases on these sources. Thus a
college which specializes in teaching numerical skills may reduce the variability between students
in arithmetic relative to the other colleges at the expense perhaps of the variability between
students in other directions, such as language construction, say. Arithmetic and language
construction may nevertheless be present as major sources of variability in all colleges. As further
examples, one may reasonably postulate similar sources of variability between people’s attitude to
work, but differing in importance between the various socio-economic groupings; or between
subjects’ responses to psychological stimuli, with differing levels of importance between adults and
children. Such differences in ranking may occur particularly among the less important
components. If a principal component study can be deemed to be compatible with Hj, then
clearly better estimation of parameters can be achieved under this hypothesis and a more concise
data description effected.

Hypothesis H; was first proposed and investigated by Flury (1983a, b), who has given a full
analysis, including the estimation of L and A; by maximum likelihood and the testing of H, by
likelihood ratio methods, Given ML estimates L and A the L-R statistic for H, is
—2log Ay = Z n; log | S;! Q, | where Q LA L*. To obtain’ L and A,, however, a complicated
iterative numerical algorithm is requued The purpose of this brief note is to show that simple
estimates of these quantities are readily obtainable by use of standard computer package facilities
for principal component analysis. Moreover, the reasonableness or otherwise of hypothesis H can
be assessed informally by a simple method. Finally, an analogy can be drawn between the
comparison of principal components using this analysis and familiar methods for comparison of
regression lines.

If Hy, is true, then L? Q; L = A; (diag) fori=1, .. ., k. Thus

k k
(L, L) = A;= A (diag), ie L' WL =A where W=Q, +...+ Q.
1
i=1 i=1

Hence the columns of L are the eigenvectors (i.e. principal component coefficients) of ¥
corresponding to the eigenvalues given by the diagonal elements of A. A simple estimate L of
L can thus be obtained from a principal component analysis of 7=S8; +...+S;. Let
the jth column of L be written l Then on settlng 7\,]~ = l S; l,, a simple estimate of A is given by
A =diag (N1, - - - Njp)- Use of Q L A Lt in place of Q, in =2 log A\, will provide an
approximation to the true L-R statlstlc for testing Hp. It is surmised that the approximation
will be very close, and this is illustrated below. However, there is an alternative way of
informally assessing the reasonableness of Hj. This can be used if not all n; are equal, and
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is based on the following argument. If H, is true, then L? Q; L = A; (diag) fori=1, .. ., k so that
Lt(n;/N)SY; L = (n;[IN)A; fori=1, .. ., k where N = Z n;. Thus

k

k
Y LA/ LI = ¥ (/N)As = Ao (diag)

i=1 i=1

and the columns of L are therefore given by the eigenvectors of ¥y = (n;Q; +... +ngQx)/N
corresponding to the eigenvalues given by diagonal elements of Ag. Now W, is estimated by
(ny Sy +...nSy)/N, which is just the pooled estimate S defined earlier. Thus if H, is true,
principal component analyses of both S and 7 should yield (as component coefficients) estimates
of the same quantities L. A comparison of the two sets of coefficients (either visually or by using
the method of Krzanowski, 1979) should therefore show up the reasonableness of Hj. Similar
sets of coefficients indicate that H}, is tenable, whereas very different sets indicate that it is not.
If all n; are equal, however, this method is not appropriate as S = (1/k)T and the coefficients are
bound to agree. A referee has pointed out that if Hj, is true, then all weighted means of the
individual S; would have the same eigenvectors. This could be used to obtain an alternative
informal test, or even to proceed more formally to some sort of union-intersection test, but will
not be pursued further here.

Flury (1983b) applied his maximum-likelihood algorithm to four different data sets extracted
from the multivariate literature: Iris Data (Fisher, 1936), Painted Turtle Data (Jolicoeur and
Mosimann, 1960), North American Marten Data (Jolicoeur, 1963) and Real and Forged Bank
Note Data (Flury and Riedwyl, 1983). His maximum likelihood estimates L for these data sets
are reproduced in Table 1, and compared with them are the simple estimates L obtained from a
principal component analysis of 7. For clarity of presentation, the coefficients are multiplied by
100 to yield integer values and only the differences between the simple estimates and the ML
estimates are given. This shows up important differences more clearly. As can be seen, agreement
between the two methods is remarkably close, only the Iris data exhibiting more than trivial
differences. Qualitatively they can all be said to give identical results. The L-R statistic values
—2log A, given by Flury (1983b), and approximations to these obtained from the simple
estimates as described above are given in Table 2. Again there is very close agreement between
exact and approximate values, with no conflict in the conclusions that would be reached from the
two sets of results. Note, however, that the approximate value is greater than the exact one in
each case. It can be shown that this will always be so.

Only one of the data sets (American Marten) had groups of appreciably differing size, so an
additional principal component analysis of S was worthwhile only for this data set. Results are
also displayed in Table 1, and they can be seen to be very similar to those from principal
component analysis of 7. This suggests that H}, is a reasonable hypothesis, which is supported
by the L-R statistic value of 8.34 on 6 degrees of freedom from Table 2. Note, incidentally, that
doubt is cast on the appropriateness of Hy, in all the other data sets considered.

Finally, it can be seen that the three hypotheses, H,: Q;=Qalli, H,: L* Q; L = A; (diag) and
H,: Q; all distinct, provide a nested system (Flury, 1983a). This can be likened to the situation
often encountered in regression analysis. Suppose that observations are taken on a series of
dependent and regressor variables in a number of different groups or populations. A common
mode of analysis is to fit separate regression equations in each group, and then to fit a series of
constrained regressions in which the constraints imposed become progressively more severe. By
this means it is possible to test hypotheses about parallelism or coincidence of regression lines
across groups. If we now have multivariate observations split up into groups, and we wish to
investigate the principal component structure across the groups, we can use the methods described
earlier to do so. First we can obtain separate principa’ component analyses of each S;, then a
principal component analysis of T and finally one ~. S. Testing Hj, tests the hypothesis that the
k dispersion structures have a common underlying set of principal components. This can be
likened to the case of parallel regression lines. Testing H, then tests the further hypothesis of
coincident dispersion structures.
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TABLE 1
Estimated principal component coefficients under the common component hypothesis.
M = Maximum likelihood estimates; T = components of T; S = components of S

Data set Component Method Coefficients (X 100)
A. (Iris) 1 M 74 25 60 18
p=4,k=3 T-M 0 7 -3 -2
ny =n, =n, =50 2 M —65 47 50 33
T-M 2 —29 8 14
3 M -16 —83 52 6
T-M —22 —4 —6 —21
4 M 11 —16 —-33 92
T-M 12 —16 -2 =7
B. (Painted Turtles) 1 M 64 49 59
p=3,k=2 T-M 0 0 0
ny =n, =24 2 M —66 74 11
T-M 1 1 -3
3 M —38 —46 80
T-M -2 2 0
C. (American Marten) 1 M 73 -14 —66 9
p=4,k=2 T-M 0 3 -1 -1
n,=92,n, =47 S-M -1 -12 4 7
2 M 39 57 39 61
T-M -1 0 1 0
S-M 2 1 0 -2
3 M 49 —58 63 —-19
T-M 2 2 -1 -1
S-M -2 10 5 —11
4 M —28 —57 -8 77
T-M 4 -3 0 -1
S-M -2 -4 18 -3
D. (Bank Notes) 1 M 77 —63 -9 -9
p=4,k=2 T-M -1 0 0 0
n, =100,n, =85 2 M 31 54 -51 -59
T-M -2 -3 -1 -4
3 M 4 3 78 —63
T-M -1 -2 0 1
4 M 56 56 35 50
T-M 2 2 -2 -4
TABLE 2

Comparison of exact and approximate L-R statistics

Degrees of Exact L-R
Data set freedom statistic Approximation
Iris 12 63.91 88.38
Painted Turtles 3 7.93 8.31
American Marten 6 8.34 9.39
Bank Notes 6 12.04 13.08
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