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PINDIS, as recently presented by Lingoes and Borg [1978] not only marks the latest devel- 
opment within the scope of individual differences scaling, but, may be of benefit in some closely 
related topics, such as target analysis. Decisions on whether the various models available from 
PINDIS fit fallible data are relatively arbitrary, however, since a statistical theory of the fit meas- 
ures is lacking. Using Monte Carlo simulation, expected fit measures as well as some related 
statistics were therefore obtained by scaling sets of 4(4)24 random configurations of 5(5)30 objects 
in 2, 3, and 4 dimensions (individual differences case) and by fitting one random configuration to a 
fixed random target for 5(5)30 objects in 2, 3, and 4 dimensions (target analysis case). Applications 
are presented. 
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Introduction 

Investigators often wish to assess the similarity of  two spatial representations of  a set 
of  objects. To cope with this problem, several essentially identical procedures for fitting 
one matrix to a given target have been developed [e.g., Cliff, 1966; Fischer & Roppert ,  
1965; Green, 1952; Kristof, 1964; Schrnemann ,  1966; S c h r n e m a n n  & Carroll,  1970]. 
Dur ing  the sixties and seventies, considerable efforts were under taken to extend the com-  
parison of  two spatial representations to the assessment of  similarity a m o n g  a set of  N 
structures. In contrast  to models incorporated into procedures such as I N D S C A L  [Car-  
roll & Chang,  1970], A L S C A L  l-Takane et al., 1977] or  C O S P A  [ S c h r n e m a n n  et al., 
1978, 1979], P I N D I S  (Procrustean INdividual  Differences Scaling), as recently developed 
by Lingoes and Borg [1978], enables the researcher to give answers to questions such as 

i) What  is the structure c o m m o n  to N individuals, and, what  degree of  c o m m o n a -  
lity may  be realized a m o n g  N individuals? 

ii) To  what  degree can the c o m m o n  structure explain each individual s tructure? 

It  also offers a number  of  advantages over previous models:  

i) P I N D I S  allows the researcher to choose a m o n g  a max imum of five transform- 
ations or  models, one admissible similarity t ransformation and four so-called in- 
admissible t ransformations (see next section): a dimensional salience model,  a 
dimensional salience model  with idiosyncratic orientation, a perspective model,  
and a perspective model  with idiosyncratic origin. 

ii) Since P I N D I S  proceeds in a stepwise manner ,  the hierarchies of  t ransformations 
not  only provide more  insight into differences a m o n g  individual structures, but  
allow one to evaluate the improvement  in fit due to inadmissible t ransformations 
against the simpler transformations.  
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iii) Inadmissible transformations may also be useful when fitting one matrix to a 
fixed target, which is a special case offered by the PINDIS program. 

Though PINDIS has been applied in a variety of contexts such as social indicators 
research [Andrews & Inglehart, 1979; Borg & Bergermaier, 1979, 1981], business studies 
and the development of managerial skills [Maimon et al., 1980], perception [Borg, 1977; 
Borg & Lingoes, 1978; Coxon & Jones, 1980; Lingoes & Borg, 1978], attitude research 
[Borg & Lingoes, 1977; Feger, 1979; Lingoes & Borg, 1978], sociometry [Langeheine, 
1978a, 1978b, 1979], test theory [Langeheine & Andresen, 1980], and educational evalu- 
ation [Langeheine, 1980], some researchers [e.g., Andrews & Inglehart, 1979; Coxon & 
Jones, 1980; Lingoes & Borg, 1978] have more or less explicitly stressed the lack of 
statistics for testing the significance of similarities between configurations. This problem 
has long been noticed with respect to fitting one matrix to a target [e.g., Korth & Tucker, 
1975; Levine, 1977; Mulaik, 1972; Nesselroade & Baltes, 1970; Poor & Wherry, 1976]. In 
addition, the adequacy of the one available test by Poor & Wherry has recently been 
questioned by Borg [1981] and Borg and Bergermaier [1981] since the Poor and Wherry 
invariance index is not correct for distances. 

The purpose of the present paper, therefore, is to report results from Monte Carlo 
studies covering both the PINDIS individual differences case and the case of fitting one 
matrix to a fixed target. Before describing the data-generating procedure, a brief descrip- 
tion of what PINDIS does will be provided. 

The Lingoes-Borg PINDIS Model 

Method of Fitting 

In contrast to other approaches, PINDIS starts from a set of configurations X~ 
(i = 1, ..., N) of order n x m (objects x dimensions) pertaining to N individuals or other 
data sources. After norming all X~'s (centered at the origin) to unit length, an n × m 
centroid configuration Z is determined which is the average of all Xi's which have been 
optimally fitted to each other by an iterative procedure employing only admissible trans- 
formations (i.e., rotations/reflections, translations, and central dilations). The term "ad- 
missible" refers to those transformations which leave the observed comparative distances 
among the n objects invariant. Z thus has maximal average commonality with all Xi's. 
Each X~ is then optimally fitted to Z (target). The commonality is given by r2(,Y~, Z), 
where Xi refers to the fitted X~ (again by strictly admissible transformations only), and r 2 
is the squared product moment correlation of the n x m coordinates o f )~  and Z. The 
average of the rZ's provides a measure for the degree of commonality Z shares with all 
)~'s. This first commonality concept thus relates to the optimal similarity transformations 
of the Xi. 

All further transformations use some distortion of Z (i.e., inadmissible transforma- 
tions) in order to achieve a better approximation to the Xi. The first one of these trans- 
formations is the dimensional weighting of Z (dimensional salience model). Here, the 
dimensions of Z are stretched, shrunk, or reversed by negative weighting, to achieve a 
better fit to X~ : r20~, Z'W/), where W~ is an m x m diagonal matrix of dimension weights 
and Z' is the optimally rotated Z for all X~'s. A similar transformation defines the dimen- 
sional salience model with idiosyncratic orientation. It allows for an idiosyncratic rotation 
of Z to better correspond to each .~i. The efficacy is assessed by r2(X~, Z~ W~), where Z~ is 
a subject-specific, optimally rotated Z and W~ is the respective weight matrix. Both of 
these models have been used elsewhere, whereas the following two are specific to PINDIS. 
Let r20~i, V~ Z t) indicate the success of fitting a row-weighted Z to _~, where Z t is an 
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optimally translated Z for all X~'s and V~ is an n x n diagonal matrix of "vector" weights. 
This weighting conceives each object in Z as a terminus of a vector---emanating from the 
origin--that may be stretched, shrunk or even reversed in its direction. Finally, as Lingoes 
and Borg [1978] have shown, the predictability of X~ may be further improved by an 
idiosyncratic translation of Z relative to each Xi: r2()~t, F~Z~), where Z~ is a subjec t -  

specif ic,  idiosyncratically translated Z and V~ is the associated matrix of vector weights. 
These last two models are called the perspective model and the perspective model with 
idiosyncratic origin. 

In general, the problem reduces to minimizing the following loss function: 

tr (EE')  -- rain , (1) 
[Ri, Si, Wi, Vi, ki, ti, ui] 

where 

E = Vii ( Z  - jt'i)S i ~ - k i ( X  i - ju'i)R i . (2) 

Xi and Z in (2) refer to the individual and centroid configuration. W/ and V~ are diagonal 
matrices of dimension and vector weights, respectively. R i and Si denote orthonormal 
matrices for rotating Xi and Z. ui and tl are translation vectors, and j is the unit vector. 
Finally, k~ is a central dilation scalar. The different transformations outlined above there- 
fore make use of different optimizations in (2). In the dimensional salience model, e.g., 
V~ = I, S~ = S (an orthonormal rotation matrix used for all i) and t~ is a vector of zeros. It 
should be noted, however, that R~, u~, and k~ will generally be different under the various 
transformtions, resulting in different ,(fs which correspond to the outermost right-hand 
expression in (2). 

In order to enable target fitting, the PINDIS program also provides an option for 
input of a fixed Z. In this case the process of generating Z will be bypassed, but the 
remaining procedure is the same as described above except that the idiosyncratic trans- 
formations are also omitted. 

R e l e v a n c e  o f  Perspec t i ve  M o d e l s  

Whereas there seems to be no disagreement as to the psychological relevance of the 
dimensional salience models, this has been questioned for the perspective models--at least 
by one of our reviewers. We shall therefore briefly describe two cases where the per- 
spective model may be useful in adequately mapping psychological phenomena. Feger 
[1979; cf. also Roskam, 1981] had subjects rate both the similarity (closeness) between a 
set of 9 objects (6 political parties and 3 institutions--trade unions, employer's associ- 
ation, church) and the closeness of the objects to the subject himself. Data were obtained 
from 9 subjects, with 12 replications each, within a period of 36 weeks. The 108 similarity 
matrices were first scaled nonmetrically in two dimensions and the resulting configur- 
ations were then submitted to PINDIS. In the resulting Z configuration, the origin was 
fixed at the point representing the subject. Intra- and interindividual differences could 
then be explained by shifting the object points radially with respect to this given point-of- 
view or perspective. Psychologically, the distance between the origin and each object 
point was interpreted as strength of preference, therefore establishing a simple relation- 
ship between the perceived similarity of the objects (represented by inter-object distance) 
and the subjects' preference for these objects. For an adequate interpretation the model is 
restricted to non-negative vector weights, however. 

As a second example, consider the following situation from perceptual sociometry 
[Tagiuri, 1960]. In order to understand interpersonal relations, Tagiuri [1952] assesses 
two kinds of sociometric data: (a) person i's preferences for all of the other group mem- 
bers, and (b) i's perception of the preferences of the others towards himself. Later, Tagiuri 
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[1958] extended this approach to asking for all pairwise preferences of the group as 
perceived by each subject. Whereas Tagiuri used indices derived from these data in testing 
a variety of hypotheses, Feger [1977] translated Tagiuri's hypotheses and findings into 
statements about sets of distances. Feger thus focusses more clearly on structural aspects 
of the (perceived) sympathy structure(s) by contrasting the individual spaces with a (latent) 
common group space, e.g., the PINDIS Z derived from the individual configurations. 
Some of these statements may be combined into the following hypothesis: though we 
would assume that all individuals have basically the same perception of the group struc- 
ture, individuals will perceive themselves more closely related to the central group mem- 
bers as compared with the group structure. This should especially hold for persons of low 
popularity (i.e., low sociometric status). In terms of PINDIS we would therefore expect a 
vectorially weighted Z to be in closer correspondence with the individual X~'s. So far, we 
know of no tests of these propositions. 

We might further find that some other points in Z require substantial displacements, 
thus telling us that there is disagreement about who likes whom, or, more generally, about 
what goes with what. In this case, the vector weighting may be used as a procedure which 
provides indices about discontinuous relationships between Z and each Xi, respectively 
[Borg & Lingoes, 1977, 1978]. Subjects may merely perceive some objects differently 
relative to a reference system (Z) essentially shared by all of them [cf. also Coxon & 
Jones, 1980]. 

Data Generatin9 Procedure 

Despite some controversy on 2-way MDS Monte Carlo studies, different authors 
agree that results from this work can be useful for practical purposes since baseline fit 
measures obtained from scaling random data may be taken as a standard against which 
results obtained from actual data can be compared. The present study follows this ration- 
ale. It should be noted, however, that statistical testing is reduced to the rather weak 
hypothesis whether an actual r z exceeds one expected from scaling random configur- 
ations. 

In order to cover ranges typically used in empirical studies it was decided to vary 
parameters relevant in PINDIS as follows: number of objects (O): 5(5)30; number of 
dimensions (D): 2, 3, and 4; number of configurations (N): 4(4)24. Starting with as few as 4 
configurations is not only realistic but was mainly motivated by results of McCallum and 
Cornelius [1977] who were surprised about the negligible effect of number of individuals 
in their study on recovery of structure by ALSCAL. Nevertheless, they suspect that fewer 
than 15 individuals (their minimum) might have an effect. Though inclusion of as few as 5 
objects is clearly unrealistic (at least in 3 and 4 dimensions) we decided to start with 
O = 5 to get some feeling of the PINDIS behaviour with a very small number of objects. 

Though there seem to be some preferences as to the error model(s) for generating 
data in MDS simulations it is difficult to defend any particular method as the most 
plausible one for many psychological situations. In addition, SchBnemann et al. [1979] 
noticed that the definition of randomness hardly did affect results. The distribution of 
their indices turned out to be nearly identical for data generated from three radically 
different parent distributions, i.e., uniform, standard normal and exponential. Indeed, this 
should not be surprising since random data are just random in structure irrespective of 
the parent distribution chosen if we consider the situation of"pure noise"- see Graef and 
Spence [1979] for the same conclusion when imposing varying degrees of error on the 
coordinates. 

Given each combination of O, D, and N we therefore decided to sample coordinates 
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of the X~'s from the computationally most simple distribution, i.e., the pseudo-random 
uniform on the interval 0 to 1, imposing the additional constraint that only those objects 
were retained that lie inside the unit hypersphere [Spence, 1972]. Each X i was then or- 
thogonalized according to the approach reported by Cohen and Jones [1974]. In order to 
remove the rather unrealistic situation of equal variance, dimensions were finally 
stretched or shrunk in a manner similar to that used by Weeks and Bentler [1979]: 
dimensions one through four were multiplied by 1.4, 1.2, 1.0 and 0.8, thus decreasing the 
variance as the dimensionality is increased. 

For  each combination of O, D, and N, 20 replications were run, thus resulting in a 
total of (6)(3)(6)(20) = 2160 analyses for the individual differences case. That is, expected 
fit measures reported herein pertain to (20) (N) Xi's and their centroid configurations, i.e., 
to at least 80 and at most 480 matches of the respective X~'s with their Z's. In each case, 
all 5 transformations were included. For the target fitting case, exactly the same Xi's were 
used in a second loop to fit N - 1 X~'s to a fixed target, X 1. That is, for each choice of O 
and D, a total of(3 + 7 + 11 + 15 + 19 + 23)(20) = 1560 fittings were done. 

Results and Discussion 

Detailed results (minimum, maximum, mean, standard deviation and 95% cut-off 
value of the distributions as well as standard deviation and 95% cut-off value of the 
difference distributions--both for individual fit measures and overall means and both in 
terms of r 2 and the respective Fisher-z's) are tabled in Langeheine [Note 1]. It is recom- 
mended to use these tables in evaluating actual results. The following presentation has to 
be limited to some general trends, all in terms of r 2. 

Individual Differences Case 

Figure 1 gives a compact picture for the similarity transformation. Without exception 
the fit decreases as N and 0 are increased and increases as D is increased. Similar patterns 
hold for both of the dimensional salience models, which, in general, do only slightly better 
than the similarity transform (cf. Figures 3 to 5). 

With both of the perspective models, trends are the same for N and O as before, but, 
apart from N = 4 or O = 5, the fit decreases as D increases (of. Figure 2 for the per- 
spective model). 

Finally, the grand means for O, N, and D (cf. Figures 3-5) clearly show that there is a 
considerable improvement in fit under both perspective models. 

Some general trends from these analyses are evident: 

i) r 2 decreases as the number of objects increases. This is in accord with results 
from previous 2-way MDS studies. 

i i)  r 2 decreases as the number of individuals increases. This decrement is much more 
pronounced for small N. Thus MacCallum and Cornelius' conjecture is con- 
firmed that the number of individuals may have a considerable influence on the 
results. Due to the fact that coefficients are relatively stable for N > 15 their 
recommendation can be agreed upon: "Thus, it appears that empirical investi- 
gators can rest easily when they are unable to obtain large sample sizes. . ."  
[MacCallum & Cornelius, 1977, p. 421], provided the risk of failing to observe 
individuals with possibly different structures seems acceptable. 

iii) As to the effect of dimensionality there are two trends: 
a) Given O and N, the following relationship holds without any exception for the 

similarity transformation and both of the dimensional salience models: r 2 in 2 
dimensions<r  2 in 3 dimensions<r  2 in 4 dimensions. This, as well, corre- 
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NUflBER OF CONFIGURATIONS 

FIGURE 1 
Similarity transformation. Mean r-sauare for number of configurations and number of obiects in 2, 3, and 4 

dimensions (0 :2-D, 0 :3-b, A :4-D). 

iv) 

sponds with MacCallum and Cornelius and should not be surprising due to 
the greater freedom for motions in a higher dimensioned space. 

b) Just the opposite effect was noticed for both of the perspective models, i.e.: r2 
in 2 dimensions > r2 in 3 dimensions > r2 in 4 dimensions, with the exception 
of some cases where 0 = 5 or N = 4. This result, too, would be expected since 
shifting single objects in the space to correspond better to a target by applying 
the same one vector weight to D dimensions should be easier if there are only 
two as compared to three or even four dimensions. 

It should be kept in mind, however, that the analyses performed here used inde- 
pendent data for each choice of D. The effects noticed must, therefore, not necess- 
arily hold for actual data which may have been scaled, say, in 2, 3, and 4 dimen- 
sions prior to processing them to PINDIS in common dimensionality. 
With respect to the dimensional salience models, it is interesting to note that, on 
the average, both of them result in only slightly better fit as compared to the 
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vi) 

similarity transformation. This might be suspected for most sets of empirical data 
as well, which would merely indicate that these models are not adequate--though 
they are frequent in the literature. Results of this study therefore enable users to 
test whether improvement in fit is significant to claim individual differences due 
to dimensional weighting. 
Under the perspective models, on the other hand, we can generally notice an 
enormous improvement in fit. Users of PINDIS should therefore carefully consi- 
der whether the gain in fit is worth the cost of the additional parameters instead 
of using arbitrary rules of thumb. For a reevaluation of some previously pu- 
blished results, see Langeheine [Note 1] and the final section. 
With respect to as few as 5 objects it is evident that the only realistic case to be 
considered would be that of 2 dimensions, restricted to the similarity and dimen- 
sional salience transformations. 
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Fitting One Confiouration to a Fixed Taroet 

Results, all in terms of grand m e a n  r2's from 1560 coefficients, are presented in Figure 
6. As to the effects of number of objects, number of dimensions and transformations, these 
correspond exactly to those noticed in the individual differences case. The only irregu- 
larity noticeable is, that, in case of 5 objects, the perspective model does better in 4 as 
compared to 3 and 2 dimensions. 

Though PINDIS has been mainly developed to handle the individual differences 
case, the option of fitting one configuration to a fixed target may be useful in a variety of 
cases. Some of these are: comparison of results obtained from metric and monotone dis- 
tance analysis [2-way MDS, cf. Weeks & Bentler, 1979]; comparison of results obtained 
from different 3-way MDS procedures, say, INDSCAL and PINDIS; comparison of some 
structure matrix set up according to theoretical considerations with some obtained 
matrix. Be it in the area of MDS or factor analysis, the latter case offers not only one sort 
of confirmatory analysis but the possibility to fit the obtained matrix to an optimal target. 
In view of the criticism on the Poor and Wherry [1976] invariance index [Borg, 1981; 
Borg & Bergermaier, 1981] we rather recommend to use the current norms instead of the 
Poor and Wherry test in evaluating configurational similarity of two matrices. 

Applications 

For actual data, there are two questions to answer: 

i) When should fit measures obtained for any one single transformation be judged to 
exceed those expected by chance? 

ii) When should improvement in fit for a more complex transformation be con- 
sidered significant as compared to a hierarchically less complex one? In general, 
we are interested in the following comparisons: 2 vs. 1, 3 vs. 1, 4 vs. 1, 5 vs. 1, 3 vs. 
2 and 5 vs. 4 (where 1 to 5 refer to the transformations according to their com- 
plexity, i.e., similarity transformation, dimensional weighting, dimensional weight- 
ing with idiosyncratic rotation, perspective model, perspective model with idiosyn- 
cratic origin, respectively). 

In order to answer these questions, different strategies have been examined in Lange- 
heine [Note 1] with the conclusion that results were nearly identical when the 95% cut- 
off values (percentiles) of the random coefficient distributions (as well as those of the 
difference distributions) or the respective mean and standard deviation were used for 
Fisher-z's on r of the PINDIS r 2 (which is the squared produce moment correlation of the 
n x m coordinates of )~ and Z). We shall therefore use the 95% cut-off values in terms of 
Fisher-z's in evaluating the fit of singl e transformations as well as improvement in fit for a 
more complex transformation. 

Example 1 

Among other things, Maimon et al. [1980] used PINDIS to evaluate the hypothesis 
that structures of the interrelationships among 9 skills required for the performance of 
managerial skills are similar for 4 groups. Table 1 contains observed Fisher-z's corre- 
sponding to their results as well as 95% cut-off values obtained by using the PINDIS 
simulation program with the exact parameters (O = 9, D = 2, N = 4). Considering the 
first 3 transformations, Maimon et al. conclude that the 4 groups differ in degree of 
similarity to the centroid. On the other hand, they claim support for their hypothesis since 
the ". . .  vector weighting ... results in a very strong pattern of similarity" [Maimon et al., 
1980, p. 739]. 

Results from Table 1 make evident that we disagree with these conclusions, at least 
in part. Under the similarity transformation (column 1), only group 1 exceeds the critical 



438 PSYCHOMETRIKA 

0.90_  

0°85.  

0=99. 

o0 
O.q3. 

LU 

0 .88 .  
b_ 

0°82. 

0 .58 .  

E 0 .5q .  
0 
It. 

0=45. 
LU 
(E 

0 .39 .  
o9 

& o.3 . 

I 

o.28  

0.22. n- 
(.9 

0 .1q_  

0 . 1 q .  

0 .05  ! ! 

5 10 

' " i  ..... ; t 

q5 20 25 

NUMBER OF OBJECTS 

30 

2-D SIMILARIT¥ TRANSFORM 

a 2 " D  PERSPECTIUE MODEL 

x 3 " D  DIMENSIONAL SALIENCE 

¢-D SIMILARITT TRANSFORM 

z ¢ ' D  PERSPECTIUE MODEL 

o 2 " D  DIMENSIONAL SALIENCE 

+ 3 - D  SIMILARITY TRANSFORM 

3-D PERSPECTIUE MODEL 

X ¢-D DIMENSIONAL SALIENCE 

FIGURE 6 
Empirical values for fitting one matrix to a fixed target. 
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T a b l e  1 

Maimon et al. Data 

439 

Group Transformation 
I 2 3 4 5 

observed fit in terms of Fisher-z's 
I 1.502" 1.567 1.567 2.005 2.439 
2 .799 .881 .969 1.818 2.005 
3 .939 .984 1.000 1.818 2.644 
4 1.016 1.032 1.099 1.602 2.993* 
mean 1.064 1.116 1.159" 1.811 2.520 

95% cut-off Fisher-z's from simulation 
indiv. 1.228 1.255 1.258 2.175 2.923 
mean 1.028 1.098 1.102 1.961 2.536 

indiv. 
mean 

95% cut-off Fisher-z differences from simulation 
comparison of transformation 

vs. I 3 vs. I 3 vs. 2 4 vs. I 5 vs. I 5 vs. 4 
.067  . 080  ':'0'3'8 ....... 1~268 ........ 1 . 8 6 7  1 . 2 1 0  
.041 .057 .026  .967 1 . 5 3 8  .834 

N o t e :  Transformation: I = similarity transformation, 2= dimen- 
sional weighting, 3= dimensional weighting with idio- 
syncratic rotation, 4 = perspective model, 5 = perspective 
model with idiosyncratic origin 

indiv. = individual fit measures, mean = overall mean 

*transformation accepted (due to significant single z 
and significant improvement in fit for inadmissible 
transformation) 

value. With the exception of the mean, all of the dimensional weightings (columns 2 and 
3) fall short of the respective critical values. This holds as well for the perspective model 
(column 4) though the corresponding r2's as well as gain in fit over the similarity trans- 
formation might appear to be quite impressive in 3 of 4 cases as well as in overall terms 
(mean). Group 4 is the only one for which an idiosyncratically translated and vectorially 
weighted Z (column 5) fits the respective X~ better than would be expected by chance, 
both in terms of the single z and in improvement in fit. This would indicate, however, that 
certain points in Z have to be considerably relocated in order for Z to match X4, thus 
indicating an individual difference. On the whole, we can thus only confirm that there are 
considerable differences among the 4 structures. 

Example 2 

As a second example, we shall take a closer look at results of fitting 6 15 x 3 con- 
figurations to a fixed target, as reported by Coxon and Jones [1980]. If the analysis would 
have been performed by any procedure restricted to the similarity transformation, our 
conclusion would have been that only subjects 1, 5, and 6 share some aspects with the 
target (cf. Table 2). The latter two cases illustrate as well that the vector weighting (trans- 
formation 4) by no means guarantees "to make silk purses from sow's ears" [Coxon & 
Jones, 1980, p. 65]. Since Coxon and Jones used rules of thumb they obviously over- 
looked that a dimensionally weighted target fits X,  in excess of chance. As to subjects 3 
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T a b l e  2 

Coxon & J o n e s  Da t a  

Subject Observed and 95% cut-off 
z's for transformation** 
I 2 4 

1 .667  . 772*  1 . 5 1 7  
2 .438 .509  1 .134  
3 .527 .578 1 . 3 9 0 "  
4 .495  .522  1 . 4 4 4  
5 . 8 8 1 "  .939  1.O81 
6 . 8 1 2 "  .826  1.O81 

95% cut-off z*** .539 .601 1.247 

95% cut-off z differences*** 
comparison of transformation 

2 vs. I 4 vs. I 

. 1 0 5  .908  

* T r a n s f o r m a t i o n  a c c e p t e d  ( c f .  T a b l e  1) 

** c f .  T a b l e  1 

*** c f .  L a n g e h e i n e  [ N o t e  1,  A p p e n d i x  A3-5]  

Table 5 

Lingoes & Borg Data 

Subject Observed and 95% cut-off 
z's for transformation** 
I 2 4 

1 1 . 7 7 3 "  1 . 9 3 5  2 . 3 7 5  
2 1 . 8 8 0  2 . 1 6 8 "  2 . 1 2 0  
3 .795  1 . 5 1 1 "  1 . 3 7 0  
4 2 .111 2 . 4 0 6 *  2 . 5 7 3  
5 .876  1 . 3 2 6 "  1 . 5 8 0  

95% cut-off z***  .679 .741 t . 8 1 2  

95% cut-off z differences*** 
comparison of transformation 

2 v s .  1 4 v s .  1 

.172  1 .445  

* Transformation accepted (cf. Table I) 

** cf. Table I 

*** of. Langeheine [Note I, Appendix A3-I] 
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and 4, finally, we agree with their conclusion that both have something in common with 
the target, i.e., the dimensions, though not the points which require considerable replace- 
ments [cf. Coxon & Jones for some details]. 

Example 3 

Lingoes and Borg [1978] reanalyzed the Helm color data by deriving a Z from the 
11 normal subjects and then relating the 5 color deficients' spaces to this fixed Z. Table 3 
shows the respective observed z's and cut-off values. With the exception of subject 1, the 
theoretical expectation is confirmed that the dimension weighting (but not the vector 
weighting) improves the fit significantly. The gain in fit turns out to be most impressive 
for subjects 3 and 4 as is already obvious from the respective rZ's. Note that we would 
have to reject the null hypothesis of no similarity in all 5 cases if the analysis had been 
restricted to the similarity transform only. 
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