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Abstract

In this paper, a three-mode subspace technique based on higher order singular value decomposition (HOSVD) is presented.
This technique is then used in the context of wave separation. It can be regarded as the extension to three-mode arrays of
the well-known subspace technique proposed by Eckart and Young (Psychometrica 1 (1936) 211) for matrices. Three-mode
data sets are increasingly encountered in signal processing and are classically processed using matrix algebra techniques. The
proposed approach aims to process naturally three-mode data with multilinear algebra tools. So in the proposed algorithms,
the structure of the data set is preserved and no reorganization is performed on it. The choice of HOSVD for subspace method
is explained, studying the rank de=nition for three-mode arrays and orthogonality between subspaces. A projector formulation
for three-mode signal and noise subspaces is also given and the improvement of separation with the three-mode approach
over a componentwise approach is shown. We study two applications for the proposed Higher Order Subspace approach:
the reverberation problem in sonar, and the polarized seismo-acoustic wave separation problem. For the =rst application,
we propose a three-mode version of the Principal Component Inverse algorithm (IEEE Trans. Aerospace Electron. Systems
30(1) (1994) 55). We apply the proposed technique on simulated data as well as on real sonar data where the three modes
are angle, delay and distance. For the second application, we consider the polarization of the seismic wave as the third mode
(in addition to time and distance modes) and show the resulting improvement of wave separation using the proposed Higher
Order approach.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many application domains are faced with mul-
timodal data, due to the increasing number of
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parameters collected by sensors or the dimensions
of the physical system under study. Data with one
or two modes are well understood as they can
be modeled and processed respectively via vector
and matrix approaches. Processing such data re-
quires linear algebra techniques which have been
largely studied for several years in signal and image
processing.

0165-1684/$ - see front matter ? 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.sigpro.2004.02.003

mailto:nicolas.le-bihan@lis.inpg.fr
mailto:guillaume.ginolhac@cva.u-paris10.fr


920 N. Le Bihan, G. Ginolhac / Signal Processing 84 (2004) 919–942

When dealing with data having more than two
modes, diGculties soon arise because the well-known
concepts of linear algebra do not necessarily extend
to the N -mode case. For example, the estimation
of the rank of a matrix can be performed using the
singular value decomposition (SVD) [7], while the
direct estimation (and so, the direct computation) of
the rank of a multimodal array is not possible [8].
In most applications where N -mode (N ¿ 2) data
sets are encountered, classical signal processing tech-
niques consist of reordering the data set in a matrix
formulation [16,15]. The original data structure is
then rebuilt after processing.
Such an approach is practical in that all operations

are reduced to well-known matrix operations, but it
may not be satisfactory from the point of view of the
physical structure of the observed system. For exam-
ple, an antenna array recording waves with polariza-
tion properties will lead to three-mode data set record-
ing (see Section 4 for details). Reordering such data
is often done despite the polarization mode. However,
such an approach breaks the polarization “dimension”,
and does not take advantage of the physical type of
the recorded waves.
In this paper, we show that keeping the structure of

the data set during processing enhances the obtained
results. This is demonstrated using a case study on
the rank (along each mode) of the data set. Using
the “mutual information” available on the modes of
the data, makes it possible to decorrelate the diMerent
components of the recorded signal. In order to per-
form a decomposition and a rank study of three-mode
data, we use the higher order singular value decompo-
sition (HOSVD) [3]. Some other decompositions for
high-order arrays exist (TUCKER1 and TUCKER2
[20], PARAFAC [1]) but will not be used here. The
choice of HOSVD is motivated by the aims of provid-
ing an extension of the well-known matrix subspace
technique [17,4]. The HOSVD, in its three-mode (or
third order) version, decomposes the data into three
orthonormal bases. This is not the case, for example,
in parallel factor analysis (PARAFAC), where the ar-
ray is decomposed into a sum of rank-1 arrays that
may not be orthogonal one to another. This canonical
decomposition is, in fact, well suited for parametric
models (see [19,18,1]). In the two examples presented
in Section 4, as well as in the subspace method pro-
posed (Section 3), we do not face parametric models,

and so will not use the PARAFAC model. Despite
the PARAFAC model, HOSVD is not a canonical de-
composition, but we will use it for the three-mode or-
thonormal decomposition of the array it provides. We
will also show that considering the three-mode ranks
provided by HOSVD (see Section 2), allows us to ex-
tend classical matrix methods to the three-way array
case.
Three-mode array decomposition is always reduced

to matrix computation, and computing the HOSVD of
such an array is equivalent to computing the whole
set of unfolding matrices that can be obtained from
the original array. These unfolding matrices are close
to the matrices built in the long-vector approach [16].
The non-uniqueness of long-vectors leads to a loss of
information if only one special case of such a vec-
tor is considered. However, considering all long vec-
tors enhances component recovery, and that is what
we do when considering the whole set of unfolding
matrices. This justi=es the use of HOSVD rather than
long-vectors. A theoretical proof of this, illustrated
with numerical examples, is presented in Section 3.
In Section 4, we present applications on real data sets
from sonar with time diversity, and on a polarized
seismic signal acquisition data set. Results presented
in this paper are based on a previous work done by
the authors [14], with some new theoretical material
added.

2. Three-mode array rank de�nitions

After a brief recall of the three-mode array def-
inition, we introduce some multidimensional array
decompositions and link them with rank information.
Such information will be exploited in Section 3 for
developing a three-mode subspace technique. The two
decompositions presented are the most commonly
used in signal processing.

2.1. Three-mode arrays

In this paper, we will consider three-mode arrays,
noted Y, over real and complex =elds. For sake of
generality, de=nitions will be presented for the com-
plex case and the real case will be speci=ed when en-
countered.
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2.1.1. De<nition
A three-mode array, with dimensions N , M and P

on its three modes, is given by

Y∈CN×M×P: (1)

The de=nition of the rank for such an array is the
simple extension of the well-known matrix rank
de=nition.

2.1.2. Generic rank
The generic rank of a three-mode array Y is the

minimum number of rank-1 arrays that yield to Y by
linear combination. Any three-mode array, of rank r,
can be considered as

Y =
r∑

i=1

	i PYi ; (2)

where PYi are rank-1 unit three-mode arrays (i.e ‖ PYi‖=
1; ∀i, with ‖ · ‖ the Frobenius norm). Any PYi can be
expressed as the outer product of three unit vectors:

PYi = ui ◦ vi ◦ wi ; (3)

where ui ∈CN , vi ∈CM and wi ∈CP and the operator
◦ represents the outer product of two vectors. This
rank is sometimes called generic rank and we will use
this notation to refer to it. A more complete study of
tensors rank (and especially the generic rank) can be
found in [2]. The main problem with generic rank is
that it can not be estimated directly [8].

2.2. Decompositions

We focus on two kinds of tensor decompositions,
namely PARAFAC and HOSVD. These decomposi-
tions are of interest for the discussion as they give
access to rank information that will be exploited in
Section 3.

2.2.1. PARAFAC
In order to give a canonical decomposition of any

given three-mode array, some techniques have been
developed. A review of these techniques can be found
in [3,1,10]. The PARAFAC model is well suited for
parametric models, as in [19,18], and has found appli-
cations in multiway analysis [1,10,20].

2.2.1.1. De�nition. The parallel factor decomposi-
tion (or canonical decomposition) of a three-mode

Fig. 1. PARAFAC (or canonical decomposition) of a three-mode
array.

array Y∈CN×M×P is a decomposition of Y as a
linear combination of minimal number of rank-1
three-mode arrays. A schematic representation of the
Parallel Factors decomposition is presented in Fig. 1.

2.2.1.2. Properties. This decomposition may be seen
as the generalization to the three-mode array case of
the diagonalization of matrices [3]. However, the prop-
erties of this decomposition are very diMerent from the
matrix case. The most remarkable diMerences are:

• Rank-1 arrays of the decomposition may not be
orthogonal.

• The number of terms (rank-1 three-mode arrays)
in the decomposition may be superior to the
largest of the three-mode dimensions, i.e. possibly
r¿max(N;M; P).

Other considerations about this decomposition, such
as uniqueness, are not presented here and can be found
in [11]. Calculation of the PARAFAC decomposition
is often performed using the Alternating Least-Squares
(ALS) method [10]. Another way to calculate the
canonical decomposition by means of simultaneous
eigen value decomposition (EVD) has been proposed
in [3].

2.2.2. HOSVD
In its three-mode version, HOSVD is equivalent to

the TUCKER3model [20,10]. It was introduced by De
Lathauwer [3] when dealing with independent com-
ponent analysis (ICA) in the blind source separation
(BSS) problem. HOSVD is a generalization of the
SVD for higher order tensors. 1

1 A tensor of order zero is a scalar, of order one is a vector and
of order two is a matrix. Higher orders are used for tensors with
order higher than two. Tensors are multiway arrays that satisfy
multilinearity properties.
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Fig. 2. HOSVD of a three-mode array (Y∈CN×M×P).

2.2.2.1. De�nition. The HOSVD of a three-way array
Y∈CN×M×P is given by

Y = C ×1 U(1) ×2 U(2) ×3 U(3) (4)

with C the core tensor which is not hyperdiagonal but
with the all-orthogonality property (see [3]). Matri-
ces U(i) contain the singular vectors along the three
modes ofY. These matrices are unitary. In (4), the no-
tation ×i corresponds to the scalar product along the
ith mode. A schematic representation of the HOSVD
for a three-mode array is given in Fig. 2.

The HOSVD decomposes the original three-way ar-
ray on three orthonormal bases (one for each mode).
This orthogonality justi=es our choice of HOSVD for
the extension of the subspace method to three-way ar-
rays (so that the decomposition of the original data set
in two orthogonal parts can be performed).

2.2.2.2. Rank of unfolding matrices. Given a three-
mode array, there exists three unfolding matrices that
can be derived from it. So, for any Y∈CN×M×P , the
unfolding matrices are given by

Y(1) ∈CN×MP;

Y(2) ∈CM×PN ;

Y(3) ∈CP×NM : (5)

Considering these three matrices, one can de=ne three
ranks: r1, r2 and r3, which are respectively the ranks
of Y(1), Y(2) and Y(3). These ranks are called N -mode
ranks. However, another de=nition is possible for the
rank of a three-mode array, based on the rank def-
inition of the unfolding matrices: the rank(r1; r2; r3)
of Y. This de=nition will be used in the proposed
subspace method (see Section 3).

2.2.2.3. HOSVD computation. It has been demon-
strated in [3] that the estimation of the three singular
matrices of a given three-mode array can be performed
by the estimation of left singular matrices of the three
possible unfolding matrices. This is to say that these
unfolding matrices can be decomposed into:

Y(i) = U(i)C(i)V(i)†; (6)

where U(i) are singular matrices of Y (see Eq. (4)).
The core array C is then obtained as

C =Y ×1 U(1)† ×2 U(2)† ×3 U(3)†: (7)

This computation technique, together with the de=ni-
tion of the rank(r1; r2; r3) shows the crucial role played
by unfolding matrices in the HOSVD decomposition.
An important property that must be emphasized is that
the HOSVD gives a three-mode orthogonal decompo-
sition of the original data set. This important property
will be exploited in the subspace technique developed
in Section 3.

We have seen in this section that two main de=ni-
tions exist that give information about the three-mode
array rank. The =rst is the generic rank r of the array
and the second is the rank(r1; r2; r3), composed of the
three N -mode ranks (ranks of unfolding matrices, i.e.
ri=rank(Y(i))). Since we want an orthogonal decom-
position of the original three-mode data set, from now
on, we will only consider the rank(r1; r2; r3) because
it is associated with the HOSVD.

3. Subspace methods based on HOSVD

In this section, we present the extension of the sub-
space method for three-mode arrays. The proposed
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technique is based on HOSVD, because we are look-
ing for orthogonality between subspaces. We intro-
duce the concept of three-mode projectors and give
their expressions. We focus on the wave separation
problem by means of the subspace method. Next, we
show that the performance in wave separation is im-
proved when the best approximation of a three-mode
array takes into account at least two unfolding matri-
ces instead of only one matrix. Numerical results are
presented to illustrate this point.

3.1. Extension of subspace method to three-mode
arrays

First, we recall the subspace method for matrices
before introducing its extension to the three-mode ar-
ray case.

3.1.1. Subspace methods for matrices
Consider a full rank matrix A (∈CN×M with

M¿N ) and its SVD given by

A = UCV†; (8)

where U and V contain left and right singular vectors
of A, respectively, and C is a pseudo-diagonal ma-
trix containing the singular values of A (ordered in
decreasing order). The subspace method consists in
decomposing A into two matrices As and Ao:

A = As + Ao: (9)

Matrix As is often called the signal subspace whereas
Ao is called the noise subspace. The rank of As is de-
noted r and therefore, the rank of Ao equals N−r. The
matrix As is considered as the best approximation of
rank r of matrix A. Eckart and Young’s theorem [4] is
used to obtain As by computing the best least-squares
approximation:

As = UCsV†; (10)

where Cs is obtained by setting the last N − r singular
values to zero. It is possible to show that matrix As

can be written as follows [17]:

As = UsU†
sA = AVsV†

s ; (11)

where Us and Vs are obtained by taking the r =rst
columns of U and V. The matrix Ps =UsU

†
s is called

the projector of the subspace signal. Such projectors
are well known and used in signal processing.
In the next paragraph, wewill focus on the extension

of this subspace approach to the three-mode arrays
case.

3.1.2. Subspace methods for three-mode arrays
Similarly to 2D arrays, subspace methods for

three-mode arrays are based on a rank approxima-
tion of the HOSVD. Consider a full rank (regard-
ing the rank(r1; r2; r3) de=nition) three-mode array
A(∈CI×J×K) and its decomposition into two
three-mode arrays:

A=As +Ao; (12)

where As describes the signal subspace and Ao the
noise subspace. The expression of As can be written
as follows [3]:

As = Cs ×1 U(1)
s ×2 U(2)

s ×3 U(3)
s : (13)

The three-mode arrayAs is the rank(Is; Js; Ks) approx-
imation of A. Matrices U(i)

s are obtained by keeping
the Is (or Js or Ks) of U(i) (i.e. the best rank Is, Js and
Ks approximations of U(i)) de=ned in (4). The last
step of the process is the computation of Cs using the
following de=nition [3]:

Cs =A×1 U(1)†
s ×2 U(2)†

s ×3 U(3)†
s : (14)

One can estimate the noise subspace,Ao, by the sub-
stitution of the signal subspace from the original data
set. It should be noted that such an approximation is
not always the best approximation (in the mean square
sense), despite the bidimensional case. However, a
best rank approximation can be computed. For more
details about this subject, see [3]. By combining Eqs.
(13) and (14),As can be rewritten as

As =A×1 U(1)
s U(1)†

s ×2 U(2)
s U(2)†

s

×3U(3)
s U(3)†

s : (15)

This last equation is interesting because it allows us
to introduce the projectors of the three-mode array.
Actually, the matrices Pi=U(i)

s U(i)†
s are the projectors

of the three unfolding matrices. Eq. (15) allows us to
extend the subspace method to three-mode arrays. It
must be noted that this approach consists of working
in the three modes at the same time.



924 N. Le Bihan, G. Ginolhac / Signal Processing 84 (2004) 919–942

Nevertheless, the idea of performing the algorithm
after unfolding the three-mode array in one direction
is not new [16]. However, the HOSVD seems to be
more interesting because all the unfolding matrices are
treated at the same time. We show in the next para-
graph that wave separation via the HOSVD is more
eGcient.

3.2. Contribution of the second unfolding matrix
for wave separation

First, we show by a theoretical approach that wave
separation is more eGcient when the algorithm is
performed with two unfolding matrices at the same
time instead of using only one. The second paragraph
presents a simulation to demonstrate the performance.
The last paragraph presents another way to show this
point.

3.2.1. Theoretical approach
We consider two wave separation algorithms based

on HOSVD: the =rst one only uses the =rst unfold-
ing matrix, whereas the second one uses the =rst two
unfolding matrices. We want to show that the second
algorithm is more eGcient than the =rst one because
it uses both directions at the same time.
We denote by A1 the three-mode array built with

a projection only on the =rst mode and A12 the one
built by projections on the =rst and the second modes.
The expressions are written as follows:

A1 =A×1 U(1)
s U(1)†

s ×2 U(2)U(2)† ×3 U(3)U(3)†;

A12 =A×1 U(1)
s U(1)†

s ×2 U(2)
s U(2)†

s

×3U(3)U(3)†: (16)

The vector space described by three-mode arrays can
be considered as a Hilbert space [3] and it is possible to
introduce the scalar product as well as the collinearity
concept between two three-mode arrays.
So, if both three-mode arraysA1 andA12 described

by Eq. (16) are collinear, that means that the informa-
tion contained in both arrays is identical. The result of
wave separation with the two approaches would then
be the same. On the other hand, ifA1 andA12 are not
collinear, then the information contained in both ar-
rays is diMerent. As A1 is a particular case of A12, it
means that this last array contains more information,

and so, it could be more interesting for wave separa-
tion. The aim of this paragraph is to show that these
two arrays are not collinear.
We can write the Cauchy–Schwartz relation:

〈A1;A12〉26 ‖A1‖ · ‖A12‖: (17)

Equality is obtained when both three-mode arrays are
collinear. We try to =nd the conditions for equality
in (17). Using Eqs. (16), we can write Eq. (17) as
follows (equality case):

〈A;A×1 U(1)
s U(1)†

s ×2 U(2)
s U(2)†

s ×3 I3〉2

=〈A;A×1 U(1)
s U(1)†

s ×2 U(2)
s U(2)†

s ×3 I3〉
·〈A;A×1 U(1)

s U(1)†
s ×2 I2 ×3 I3〉; (18)

where I2 and I3 are respectively the identity matri-
ces for the second and the third mode. Thanks to this
equation, we can note that equality is reached when
U(2)

s U(2)†
s = I2. This is possible only if U(2)

o U(2)†
o = 0.

That means that the noise subspace in the second mode
does not contain energy. Otherwise, the three-mode
arrays are not collinear and so the matrix built with
the two =rst unfolding matrices is more interesting for
wave separation.
We present a numerical simulation in the next para-

graph to illustrate this demonstration.

3.2.2. Numerical simulations
The con=guration presented in this paragraph comes

from the concept of detection in the presence of rever-
beration with active sonar. Three echoes are collected
by a linear array. In this example, we have access to
several sonar images which form a three-mode array.
Its structure is presented in Fig. 3. The =rst dimen-
sion corresponds to samples (time delay information),
the second dimension to beams (angular information)
and the third to sonar images (temporal diversity in-
formation). The transmitted signal is a modulated fre-
quency (wideband signal). Two echoes are unmoving
and therefore have the same positions for all sonar im-
ages whereas the third echo position changes in each
sonar image.
Only four sonar images are taken into account for

this simulation. Fig. 4 shows the numerical simulation
output.
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Fig. 3. Three-mode array structure.

We want to separate the two unmoving echoes from
the moving one. This is impossible by a simple SVD
(performed separately on each of the four images), be-
cause the power of the three echoes is the same. Using
the HOSVD, however, we show that this separation is
possible under some conditions.
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Fig. 4. Numerical simulation output.

Assume the three-mode array composed of these
four sonar images is called A. The three-mode ar-
rayA1 is a rank approximation matrix fromA, built
with only the =rst unfolding matrix. We want to com-
pute the scalar product between this three-mode ar-
ray and another A12 which is built with the =rst two
unfolding matrices. At the beginning of the simula-
tion, all singular vectors of the second unfolding ma-
trix are taken into account. Next, less singular vec-
tors of the second unfolding matrix are used to build
the three-mode array A12. If the result is similar to
the theoretical approach, the scalar product must de-
crease when selecting less singular vectors. Actually,
it means that the noise subspace in the second mode
becomes more important, and if the energy increases
in this subspace, the scalar product between A1 and
A12 decreases. Therefore, the result of the separation
will be improved.
Fig. 5 shows the result of this simulation. At the

beginning of the plot, the scalar product is important
(squared norm of the three-mode array A1), because
the two three-mode arrays are collinear. The noise
subspace in the second unfolding matrix is empty.
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When the noise subspace is built with all eigenvectors
except the last, the scalar product decreases fast. Both
three-mode arrays are not collinear. The separation
with this last case will be better. In order to check
this property, we estimate the signal subspace with
A1 and A12 and compare their results. Here, A12 is
built with only the last singular vectors of the second
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Fig. 6. Estimation of signal subspace with only the =rst unfolding matrix.

unfolding matrices. Figs. 6 and 7 show respectively
the separation result by using the three-mode arrays
A1 andA12 . The =rst result shows that the separation
is not perfect. Both signal components (unmoving
and moving) are not separated whereas the subspace
signal estimation is correct in the second simulation.
This example shows that wave separation is more ef-
=cient if two unfolding matrices are used at the same
time.
We present, in the next paragraph, another way to

show this property by studying the signi=cance of un-
folding matrices.

3.2.3. Signi<cance of unfolding matrices
We showed in the previous paragraph that wave

separation is improved with the HOSVD if the noise
subspace in the second or the third mode contains
energy. We could expect this property by taking into
account the structure of the unfolding matrices. Using
the method described in [5], we study the rank of the
unfolding matrices in simple cases. We consider three
cases: an unmoving echo, an echo with a linear speed
and a third one with angular speed. The third unfold-
ing matrix is not taken into account here, because the
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Fig. 7. Estimation of signal subspace with the =rst two unfolding matrices.
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Fig. 8. Unfolding matrices for an unmoving echo.

useful signal is cut and therefore it is very diGcult to
interpret it.
Let us consider the =rst case of the unmoving echo.

Fig. 8 shows it in the three-mode array as well as
in the =rst two unfolding matrices. Only a block of
the three-mode array is represented by the unfolding

matrices. For the =rst unfolding matrix, all blue vec-
tors are identical and therefore the rank is equal to one.
For the second unfolding matrix, echoes are located
on the same line (beam) and therefore the rank is also
equal to one. That means that both noise subspaces
are empty.
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Fig. 9. Unfolding matrices for an echo with a linear speed.

image

sa
m

pl
e

beam

image

beam

image

be
am

sample

sa
m

pl
e

beam

image

block

block

A(1)

A(2)
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Fig. 9 shows the three-mode array and the two =rst
unfolding matrices for an echo with a linear speed. It
is located in the same beam in all sonar images but
its position changes in time sample. That means that
the vectors in the =rst matrix are diMerent. We can
show [5] that the rank of this matrix is greater than
one because echoes are caused by wideband signals.
On the other hand, the rank of the second matrix is
equal to one because the beam of the echo does not
change. This result shows that the noise subspace in
the =rst mode is not empty. So, the interest of the =rst
unfolding matrix is that it can separate an unmoving
echo from another echo with linear speed.

Fig. 10 shows the three-mode array and the =rst two
unfolding matrices for an echo with angular speed.
The rank of the =rst matrix is equal to one because all
vectors are identical. But the rank of the second matrix
is greater than one because several lines are =lled. That
means that the noise subspace in the second mode is
not empty. Therefore, it can be used to separate an
unmoving echo and an echo with an angular speed.
So, if we have no information about a moving target,

it is necessary to use both unfolding matrices to be
sure to separate moving from unmoving echoes. This
analysis also allows better understanding of the results
of the previous paragraph. Actually, when the moving



N. Le Bihan, G. Ginolhac / Signal Processing 84 (2004) 919–942 929

around 20 km

transmitter linear
array

moving target

Fig. 11. Experiment description for detection in presence of
reverberation.

target has only an angular speed, the separation using
only the =rst unfolding matrix is impossible. When,
both unfolding matrices are used, the separation is
performed eGciently.

4. Application to real data

In this section, we present two diMerent applications
of the HOSVD subspace method described in Section
2. We consider the concept of wave separation in two
diMerent domains: active sonar (detection in presence
of reverberation) and seismic signal processing.

4.1. Active sonar

We show in this section that HOSVD allows us to
develop an eGcient algorithm in order to detect a weak
signal in the presence of reverberation. This algorithm
is based on the “Principal Component Inverse” (PCI)
[9,12].

4.1.1. Experiment description
The transmitted signal is hyperbolic frequencymod-

ulated (HFM) with a center frequency of 1200 Hz, a
bandwidth of 100 Hz and a duration of 4 s. The array
has 128 sensors with a distance between sensors of
5:2 mm. The received signal is demodulated around
the center frequency and sampled at 120 Hz. Fig. 11
depicts the experiment. Reverberation is mainly due
to bottom echoes.
The real target is located at several points about

20 km from the sonar transmitter. Two situations are
presented: the target is located either outside or inside

the reverberation. The target echo is marked by a black
circle on all sonar images.
Only four recurrences are used to test the devel-

oped algorithm. Wideband beamforming as well as
Spatial Block Normalized Matched Filtering (SB-
NMF) [5] are applied to obtain =nal sonar images.
The SBNMF algorithm allows us to reduce the strong
non-stationarity of reverberation, and therefore leads
to an easier detection. Results for four recurrences
are shown in Fig. 12. We can note that the detection
is relatively easy in the =rst three recurrences. Nev-
ertheless, some false alarms may occur (marked by a
black rectangle). For the last recurrence, detection is
impossible because the highest peak corresponds to a
false alarm and does not come from the target echo.

4.1.2. 2D PCI algorithm and results
We present an eGcient algorithm for removing the

reverberation. This algorithm was =rst proposed in
[5] and is based on PCI [9]. The PCI algorithm is a
particular case of subspace methods and consists in
working with the noise subspace.
Two hypotheses are needed for a correct running of

the 2D PCI to remove reverberation:

• reverberation must be more powerful than target
echoes and white noise and

• the rank of the reverberation subspace must be
small.

We have shown in [5] that it is necessary to perform
the PCI algorithm after wideband beamforming and
before matched =ltering to ful=ll these hypotheses.
Moreover, PCI must be applied to small blocks with
respect to the transmitted signal duration. One way to
cut the data set is presented in Fig. 13.
The aim of the algorithm is to decompose each ma-

trix Yi; j into two matrices:

Yi; j = Yr
i; j + Yo

i; j ; (19)

where Yr
i; j is built with the most important singu-

lar values and describes the reverberation subspace
whereas Yo

i; j describes the useful signal and white
noise subspace.
The most important step in this algorithm comes

from the estimation of the reverberation subspace rank
for each matrix Yr

i; j. The rank is related to the useful
signal power. It is estimated by computing the sum
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Fig. 12. SBNMF outputs for the four recurrences.
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Fig. 14. SBNMF outputs after 2D PCI for four recurrences.

of the singular values of Yi; j and comparing it to a
threshold P which is linked to our prior knowledge
about the target echo and the white noise power. If
the sum is not greater than P, PCI does not treat the
block (i; j). If there exists an index M as follows (RY

is the rank of Yi; j):
M∑

l=0

�2RY−l ¿P; (20)

then PCI is applied to block (i; j) with a rank r equal
to RY−M+1 and the reverberation subspace is =nally
removed.
We apply this algorithm to our real data. The PCI

algorithm is independently performed on each recur-
rence. The SBNMF is next applied to obtain =nal re-
sults which are shown in Fig. 14. We can note that the
reverberation echoes marked with a black rectangle
are removed by the 2D PCI. We compute the number
of false alarms as a function of detection threshold to
have a better idea of the detection improvement. Fig.
15 shows these results for the four recurrences. Note
that 2D PCI has removed reverberation echoes for all

detection thresholds (no more false alarm is located in
rectangles). But, the result of the last recurrence is not
suGcient for a correct detection. There remain some
false alarms which are of about the same power as the
target echo and therefore they are very diGcult to re-
move with the 2D PCI. Actually, the PCI algorithm
uses only the power of echoes to separate them, and
so when these are close to each other, the algorithm
does not run correctly.
In the next paragraph, we propose to use one more

item of information to improve detection. This method
is based on the HOSVD and PCI and is called the
three-mode PCI algorithm.

4.1.3. Three-mode PCI algorithm
Reverberation is mainly caused by the seaRoor. As

the target is moving, we can say that the reverbera-
tion echoes and target echo have not the same tem-
poral diversity. We propose to use this new contrast
to separate the bottom echoes from the target echo.
Actually, as real data provides four recurrences, it
is possible to build a three-mode array to use the
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temporal diversity information. The three-mode ar-
ray has the same structure as that in Section 3.2 (see
Fig. 3). Moreover, we showed in Section 3.2.3, with
this kind of three-mode array, that HOSVD can sepa-
rate two echoes with the same power if one of them is
unmoving. As HOSVD allows us to extend subspace
methods to three-mode arrays, we propose to extend
the PCI to the three-mode case. This new algorithm
should remove reverberation echoes which are more
powerful than target echoes as well as bottom echoes,
even if they have the same power as the target echo.
This algorithm, called three-mode PCI, is expected to
give better results compared with the 2D PCI.
From the previous analysis, we can deduce that the

conditions for correct running of the three-mode PCI
algorithm are:

• reverberation must be more powerful than target
echo and white noise,

• reverberation echoes have to come from the bottom
and the target must be moving and

• the rank of the reverberation subspace must be
weak.

For the same reasons as for the 2D PCI case, it is
necessary to perform three-mode PCI on small tempo-
ral blocks with respect to the transmitted signal dura-
tion. In preprocessing, wideband beamforming is ap-
plied on each recurrence. The cutout of the three-mode
array is shown in Fig. 16.
In each block, PCI application needs to estimate the

rank of the reverberation subspace. This estimation
requires two steps as for 2D PCI. The =rst step con-
sists of computing two thresholds P1 and P2 (for both
directions) which are linked with the useful signal +
white noise power but also the target movement. The
second step is the rank estimation which must be made
on the two unfolding matrices. For each three-mode
block (i; j), the sum of squared singular values is com-
puted and compared with the two thresholds. If there
exists an index M1 or M2 for which:

M1∑

l=0

�2RY1−l ¿P1;

M2∑

l=0

�2RY2−l ¿P2; (21)
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the PCI is applied to block (i; j) with r1=RY1 −M1+1
and r2 = RY2 −M2 + 1. Next, the reverberation sub-
space is computed by means of Eq. (15) and is =nally
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Fig. 17. SBNMF outputs after three-mode PCI for four recurrences.

removed. After this processing, the SBNMF is applied
on each sonar image.
The SBNMF outputs are shown in Fig. 17. For the

=rst three sonar images, the detection result is almost
the same. On the other hand, the detection result in the
last recurrence is improved. Some false alarms marked
by a black hexagon have appeared. These false alarms
are caused by bottom reverberation and as expected,
they have been removed by three-mode PCI, even if
they have the same power as the target echo.
We also show in Fig. 18 the number of false alarms

as a function of the detection threshold. This allows us
to compare the results of three-mode and 2D PCI ap-
proaches. For the =rst three recurrences, we can note
that 2D PCI and three-mode PCI have the same perfor-
mance, except for the =rst recurrence. Actually, target
echo in this recurrence is less powerful and therefore it
is more diGcult to remove reverberation echoes with
the 2D PCI. And therefore three-mode PCI removes
more reverberation echoes. The most interesting re-
sult comes from the last recurrence where the num-
ber of false alarms decreases with the three-mode PCI
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Fig. 18. Number of false alarms for 2D PCI and three-mode PCI algorithms.

for all detection thresholds. In particular, some false
alarms which have almost the same power as the target
echo are removed and this allows the target peak to
become the highest.
This application showed the detection improvement

thanks to the three-mode approach. It is possible to
use more properties of diMerent echoes in order to
remove reverberation echoes. In this article, temporal
diversity is used to distinguish unmoving echoes from
a moving target, but there exist some other contrasts
like spatial diversity to remove reverberation echoes
from the sea surface.
In the next paragraph, the polarization characteristic

is used to separate seismic waves.

4.2. Seismic wave separation

As shown previously (in Section 3), the use of
several unfolding matrices in a wave separation prob-
lem leads to better results than a matrix approach.
As HOSVD takes into account the three possible

unfolding matrices in the process, wave separation on
the three-way data set will be enhanced when using
the HOSVD approach. We present an example of
seismic wave separation, in the case where an array
of four-component sensors is used for the recording
of data having three modes: a temporal mode (record-
ing length), a distance mode (size of the array) and a
polarization mode (number of components for each
sensor).
In this example, we consider the data set collected

by an ocean bottom cable (OBC). Such a cable is made
of four-component sensors that are disposed at con-
stant spacing along the cable. Each four-component
sensor is made of: a hydrophone, recording pressure
variations, and three vector geophones recording un-
derground displacement in three orthogonal directions
(classically noted X , Y and Z). A schematic repre-
sentation of a measurement process using multicom-
ponent sensors is presented in Fig. 19.
The hydrophone provides a scalar measurement,

while the set of three geophones that we call triphone
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Fig. 20. Schematic representation of the waves propagation in OBC recording con=guration. The acoustic guided waves propagate through
the water (blue waves) and the elastic seismic waves propagates through the underground (red waves).

provides a vector measurement of the wave=eld. In
our example, the cable is made of 19 multicomponent
sensors, which have recorded 128 time-samples on
each one of their components. The cable was placed
in shallow water con=guration (14 m depth) and was
lying on the sea Roor. The source was an air gun that
provided explosions. The acoustic wave generated by
the source propagates through the water and, partly,
through the sea Roor. This last part of the wavefront
must be considered as an elastic (or seismic) wave.
A schematic representation of the wave propagation
in an OBC recording con=guration is presented in
Fig. 20.
So, in the data set, there coexist waves that have

been propagating through the water and waves that
have been propagating through the sea Roor. In order
to characterize both water and ground propagations, a
wave separation step is required to isolate the two sets
of waves.
In Fig. 21, the original four-components of the data

set are presented (a version of this =gure without

any notation is available: 26). One can note that a
very strong dispersive wave=eld (i.e. phase shift be-
tween signals recorded on two neighboring sensors) is
present in the four-component signals. This is due to
an acoustic wave-guide eMect that may occur in shal-
low water con=gurations [6]. Water acts, in this case,
as a wave-guide where acoustic waves are trapped
and where several modes can propagate. The guided
wave=eld amplitude is ampli=ed in the wave-guide
and, therefore, a stronger magnitude than that of elas-
tic waves is recorded.
The aim of the process is to use the whole data set

simultaneously in order to separate the acoustic guided
wave=eld and the rest of the propagated wave=eld
(mainly elastic waves according to the theory [6]). In
order to take advantage of a four-component recording
campaign, we propose to use the subspace method
presented in Section 3, based on HOSVD. The data set
can be modeled as a three-mode array Y∈R4×19×128.
The subspace method, according to Eq. (8), will lead
to the decomposition ofY into two subspaces that can
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be noted as

Y =Y1 +Y2: (22)

This can be seen, in our special case of shallow water
con=guration, as a decomposition of the original data
set into an acoustic (Y1) and an elastic part (Y2).
The three-mode arrayY1 is built with singular vectors
associated with high magnitude singular values (in the
three modes) andY2 is the rest. According to physical
properties of the recording waves, Y1 will lead to an
estimate of the acoustic guided waves and Y2 to the
elastic waves that have propagated through the ground.
Y1 will though be a rank(r1; r2; r3) truncation of the

original data set Y. The choice of the three ranks ri
(with i = 1; 2; 3) is a diGcult task on a real data set.
In this example, we have =xed the values of the three
ranks in order to get a geophysically realistic guided
wave extraction. This means that diMerent values have
been tested for the acoustic part Y1 and looking at
the results in Y1 and Y2 (in order to see if elastic
coherent waves were present in the elastic part of the

decomposition), the choice of ri has been made. After
looking at several combinations of three-mode ranks,
we chose one with rank(3, 4, 4). It must be pointed out
that this step of determination of three-mode ranks is
a drawback in the application of the proposed method
to seismic data sets. This problem is directly related
with the lack of power information on seismic waves.
So, we are not in the same position as for the previous
application (Section 4.1), where the rank of the signal
subspace was estimated from prior knowledge. Some
future work will focus on the de=nition of geophysical
criteria in order to perform automatic determination
of the N -mode ranks.
In order to compare classical methods with the

HOSVD based one, we present results obtained us-
ing the SVD independently on the four components,
and compare them to the HOSVD technique results.
Our aim is to show that better results can be ob-
tained with a three-mode array approach compared
with a component-wise one. In our particular seismic
case, working with HOSVD means that we take into
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Fig. 22. Signal subspace using component-wise SVD (rank 2 truncations). This subspace is very similar to the original data set (Fig. 21).

account the relationship between components, which
is in fact wave polarization (at least between the geo-
phone components). The proposed HOSVD approach
incorporates the polarization information and takes ad-
vantages of the signals redundancy on all components
to evaluate it correctly on each component.
The signal subspace obtained with the SVD

component-wise technique (i.e. the estimated acous-
tic part Y1) in Fig. 22 is presented. It can be seen that
this subspace contains mainly the information that
was in the original data set (Fig. 21). Inversely, in
the signal subspace obtained with the HOSVD tech-
nique, the contribution of the acoustic wave=eld is
recovered on each of the four components (Fig. 23).
So the acoustic part obtained with HOSVD contains
mainly the acoustic wave=eld that propagates in the
water waveguide.

The diMerence between the results obtained with
the two approaches is more signi=cant in the es-
timated noise subspaces. When using the SVD
component-wise technique, Fig. 24, the waves that
remain have no geophysical signi=cance. Especially,
they do not show any coherence along the distance
mode. On the contrary, in the noise subspace estimated
with the HOSVD method (Fig. 25), it is possible to
recover some elastic waves from the four-component
signals. On the geophone Z component, it can be
seen (Fig. 25) that a reRected wave may have prop-
agated through the ground to a reRector (geological
interface) before impinging on the array. This wave
could already be observed on the original Z compo-
nent (see Fig. 21) but was corrupted by the acoustic
guided wave. Note that the SVD component-wise ap-
proach was not able to select and extract the guided
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Fig. 23. Signal subspace using HOSVD (rank(3, 4, 4) truncation). This subspace contains mainly the acoustic guided wave. HOSVD-based
approach allows estimation of the four-component of the acoustic part of the wave=eld.

wave contribution on this component Z (see Figs. 22
and 24).
Moreover, on the hydrophone and geophone Y com-

ponents in Fig. 25, we can see some low-frequency
wave=eld on the right of the two images (approxi-
mately at the time-sample 100). There are also some
elastic waves crossing these two noise subspace com-
ponents from right to left (there are also some waves
on the X component). These are in fact reRected
waves.
A version of Fig. 25 without any notation is pre-

sented in Figs. 26 and 27. Waves are more visible in
this second version of the =gure.
As a conclusion on this seismo-acoustic example,

we can say that the inclusion of polarization informa-

tion (i.e. processing the whole components simulta-
neously) leads to a better separation between acous-
tic and elastic components. Including polarization is
possible when using HOSVD (or any three-mode ar-
ray model or decomposition) and leads to better re-
sults, but it is more time consuming (because it re-
quires computation of several SVDs on the unfolding
matrices). However, the improvement of the separa-
tion result makes it worth considering all components
of the sensors in the processing. Moreover, polariza-
tionmay be useful discriminating information between
waves having similar behavior in temporal and dis-
tance mode (see [13] for examples). This information
is eMectively taken into account through multilinear
techniques. This gives a justi=cation for the necessary
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Fig. 24. Noise subspace using component-wise SVD.

use of three-mode models (rather than matrix-based
models) when the data set has explicitly three modes.

5. Conclusion

In this paper we presented a subspace method for
three-mode data set analysis. We also extended the
subspace technique, well known for matrices, to its
counterpart in the three-mode array case. Through
simulation results, the utility of considering several
unfolding matrices in the processing of three-mode ar-
rays was justi=ed. This leads us to the conclusion that
some long-vector approaches can be avoided when
dealing with multimode data sets, except when we
consider the whole possible long-vector formulation.
This last case is equivalent to the use of HOSVD.

This multilinear algebra tool is the best suited to
develop an extension of the subspace method accord-
ing to a simple consideration: HOSVD provides an
orthogonal subspace decomposition of the original
three-way data set. This is convenient to extend the
concept of orthogonality between the subspaces (sig-
nal and noise) built, and so, to perform second-order
(or decorrelation)-based separation.
A problem encountered when considering mul-

tiway arrays is the concept of rank. The approach
proposed in this paper is not based on generic rank
but on three-mode rank considerations. So, the signal
subspace in the higher-order subspace method is the
rank(r1; r2; r3) truncation of the original three-way
array. The choice of working with three-mode rank
instead of generic rank is also motivated by the fact
that this last rank can be used when considering
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Fig. 25. Noise subspace using HOSVD. DiMerent seismic waves are highlighted. The waves that are emphasized with colors were not
recoverable with a component-wise approach. One can see in this subspace a second mode of acoustic waves (red), the reRected wave
on the Z geophone component (blue) and low-frequency reRected waves (green). In order to make possible a more clear visualization of
waves, we present here versions of Figs. 21 and 25 without notations: Figs. 26 and 27.
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Fig. 26. Original four-component of the data set.
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Fig. 27. Noise subspace using HOSVD.

models such as PARAFAC. This model has not been
selected for the higher-order subspace method be-
cause of the possible non-orthogonality between the
decomposition elements. This emphasizes the ambi-
guity in extending the concept of subspace method
from matrix to three-way arrays: in three-way array
case, generic rank and orthogonality do not come
together as they do in the matrix case.
The application of the proposed subspace method

has been presented on two kinds of data set. On
three-mode sonar data, it was shown that considering
all modes of the data set leads to better results than
considering only two of them. An extension of the
PCI algorithm has been proposed for 3D sonar im-
ages, named 3D PCI. Its eGciency was shown in the
context of detection in the presence of reverberation.
As a second example, we considered the context of
seismo-acoustic wave separation.

In a marine seismic campaign con=guration, the
acoustic and seismic wave=elds coexist and it was
shown that taking polarization information into ac-
count leads to good wave separation performance. Po-
larization is though considered as the third mode of
the data set which allows separation of acoustic and
seismic waves, in a better way than a component-wise
approach.
In our opinion, the use of multilinear tools is neces-

sary for data set having naturally three-modes. Future
work would consist of extending this approach and
developing other signal processing methods for mul-
tiway data. De=nition of new wave separation tech-
niques based on multilinear algebra and proposition
of new representation tools for multiway data will
be a natural continuation of the presented work. The
proposed higher-order subspace method can be easily
applied to multiway data sets of other application
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domains of signal processing, such as in electromag-
netics, speech or communications. Finally, it should
be noted that the subspace method has been presented
for three-way arrays, but its extension to N -way data
sets is straightforward.
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