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ABSTRACT 

Employing a tensorial approach to describe a k-way army, the singular value 
decomposition of this type of multiarray is established. The algorithm given to attain a 
singular value, based on a generalization of the transition formulae, has a Gauss-Seidel 
form. A recursive algorithm leads to the decomposition termed SVD-k. A generaliza- 
tion of the Eckart-Young theorem is introduced by consideration of new rank 
concepts: the orthogonal rank and the free orthogonal rank. The application of this 
generalization in data analysis is illustrated by a principal component analysis (PCA) 
over k modes, termed PTA-k, which conserves most of the properties of a PCA. 
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1. INTRODUCTION 

While in factorial data analysis the duality scheme introduced by Cailliez 
and Pages (1976) has permitted adequate comprehension in algebraic terms 
of such exploratory methods as principal component analysis (PCA) and 
simple or multiple correspondence analysis (CA or MCA), its capacity to 
explain a multimode analysis is limited. Thus, it is most appropriate for 
two-way arrays. For a three-way array, three duality schemes can be drawn, 
but each entry does not play the same role, as for example in the case of the 
statis and prestatis methods (i.e. statis on the arrays); see Lavit (1988). These 
duality schemes are described in Leibovici (1993), along with other models 
linked to this composite design. 

Algebraists and statisticians, attempting to generalize from models such as 
PCA or singular value decomposition (SVD), have developed models for 
three-way arrays and k-way arrays to extend existing models. The main 
problem lies, however, in the manner in which the data may be represented, 
and thereafter, for what optimization. It is in this context that the Tucker 
models (Tucker, 19661, developed in PCA over three modes (PCA-3) by 
Kroonenberg and De Leeuw (1980), h ave been introduced. The latter 
authors have systematically used the Kronecker product. Focusing on SVD 
have been the Parafac model (Harshman, 1970; Kruskal, 1977) and Cande- 
camp by Carol1 and Chang (19701, which are actually the same model. 
Yoshisawa (1987) has described a model combining both the orthogonal 
Parafac and the Tucker approach. Apart from the Kronecker product, which 
can be seen as the tensor product operating between matrices for a fixed 
representation, an extension of the algebraic framework was also required. 

Preliminary work was conducted in this area by Kaptein et al. (19861, and 
Franc (1992) in his thesis included a new algebraic approach, the tensor 
algebra. A k-way array is seen as a tensor of order k, an element of the tensor 
product of k vector spaces. This new approach enabled Franc to describe 
algebraically and analytically Candecomp, Parafac, and PCA-3, and also to 
extend them to k modes without difficulty. 

The purpose of this presentation is to base an extension of PCA to a PCA 
with k modes, by deriving singular values and the SVD, using the tensorial 
approach in order to obtain a theorem similar to that of Eckart and Young 
(1936). In the second section, simple theoretical elements of the tensor 
product are described. Two further sections are devoted to the explanation of 
the SVD for a tensor of order 2, 3, or k. An algorithm to obtain the SVD-k 
will be shown in Section 5, and a generalization of the Eckart-Young theorem 
for a tensor of order k in Section 6. This last part leads to the elaboration of a 
method termed principal tensor analysis over k modes (PTA-k), which can be 
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used as a standard method for multiway multidimensional analysis, as PCA is 
for multidimensional analysis. 

2. TENSOR PRODUCT AND MULTIWAY ARRAYS 

Firstly, it is essential to recall some definitions for a simple construction of 
the tensor product and some of the main properties of the calculus from 
which subsequent methodologies will be derived. These points are given in 
greater detail in Chambadal and Ovaert (19681, Schwartz (19751, Charles and 
Allouch (1984), and Lang (1984). 

DEFINITION 1. 

(i) Let E,, . . . , E, be k Euclidean vector spaces of finite dimensions, 
with metrics D,,..., D,. With a k-tuple (a,, . . . , uk) of vectors in these 
spaces, let the element denoted a, 8 a2 @ ... 8 ak be a k-linear map on 
E, XE, x ... x E, defined by 

where ( , )E, indicates the inner product in E,. This element is termed a 
decomposed tensor. 

(ii) The space generated by all the decomposed tensors is termed the 
tensor product of the k spaces E,, . . . , E,, and is denoted E, @ E, @ ... @ 
E,. Its dimension is the product of the dimensions. 

(iii) The inner product in E, @ E, @ ... 8 E, is defined as 

for decomposed tensors. Let {eji, . . . . “j,} be a basis of Ej, and X and A be 
two tensors: 

c AiiiP,.,ik el,, @ e2iz 8 ... Q ekik, 
i,i,...i,, 

c Xiliz...it el,, 8 e2i2 8 ... Q ek,t (2) 
i,i, ik E,@E,@ ... @Ek 
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i,i, . ik 

= “x”( D, c%+ D, -.. c$ D,) A” 

= (X, A) E,@E2@.~~@E, 

where AiliZ...ik’ xi,i,...ik E R, d means the Kronecker product, 
the vectorialization of the tensor X, i.e., its representation as a 

and x” is 
vector of 

length dim(E, 8 Es o *-- @ Ek). This definition leads to the expression 

(E, @ E, 8 .-a 63 Ek)* = E: @ E,* @ --. @ Et, (3) 

where * means the dual space. 
(iv> Chambadal and Ovaert (1968) g eneralize the assertion (3) defining 

the tensor product of two linear applications: Let A, : E, + F, and A, : E, 
+ F,; then let A: E, ~3 E, + F, @ F2 such that A(x, @ x2> = A,(x,) 8 

A,(x,); this unique linear application is expressed as A = A, 8 A,. 
(v) A useful operation is proposed by Schwartz (19751, generalizing the 

image of a vector by a linear application as the contracted product of a vector 
by a tensor, here denoted . . (no notation having been given by the author). It 
consists of tensor multiplication of the tensor and the vector followed by 
contraction on the space to which the vector belongs. For example, let A be a 
temnr; of E @ F 8 G, and let {e,ll,n, {&>,,,, and {gkll, p be bases of E, F, 

A = xAijkei @fj 63 gk. 
qk 

Consider a vector z* E G*. Then 

A.. z* = xAijkei @h(gk, z*> 
ijk 

= CAijkei @f,(gk. Ez,gi)= CAijkZkei @&- 
ijk m ijk 

(4 

A . . z* is an element of E @ F. With z an element of G, A . . z will often be 
expressed in the same way, explaining a contraction as an inner product. In 
(4), ( gk, z*> is then changed to ( gk, 2)~. Thus the inner product of two 
tensors can be seen as the contracted product between them, and so the 
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metric may be expressed [see (iv)] as 

(A, X> E,0E20 . ..OEt = A.. X = A . . (D, @ D, 63 ..a Q Dk) . . X. (5) 

REMARK 1. 

(1) Note that (4) can be obtained by transforming A to a matrix with 
dim( E 8 F) rows and dim(G) columns expressed as 

with qn rows and p columns. Computing the image of z by this matrix leads 
to 

c, + 

A..z* = AGz*. (7) 

If complete vectorialization is put into bijection, for example E @ F 8 G and 
L(R; E @ F @ G), then the indexed vectorialization as in (6) identifies E @ 
F @ G as L(G*; E 8 F). 

(2) The fundamental difference between & and 8 is that the Kronecker 
product operates with a specific and fixed choice of base (lexicographic order 
of indices), i.e., 8 is algebraic, whereas & is arithmetic (on coordinates). 
The advantage of the tensor product is the flexibility of its representations. 
They depend on the operation applied. 

(3) Using the contracted product with the inner product enables one to 
have an underlying use of metrics. 

There are several important properties of the tensor product which may 
be considered fundamental to factorial data analysis. 

PHOPERTY 1. 

(a> Definition l(iii) describes the universal property of the tensor prod- 
uct, which is generally taken for the definition and construction of the tensor 
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product. For any bilinear map S the space tensor product implies the 
commutative diagram 

S (bilinear) 

ETFxrY 

(8) 

E@F 

(b) The tensor product of two subspaces of E and F is a subspace of 
E @J F. 

(c) E @ F* is isomorphic to L( F; E), the space of linear ‘maps from F to 
E, and E* @J F is isomorphic to L(E; F). Even if E @ F # F Q E, they are 
isomorphic. 

(d) The operation @ is associative. 

By Property 1( c ) a matrix is identified with a linear map and with a tensor 
of order two: E @ F N L( F*; E) N M(n; q; I@. The factorial analysis meth- 
ods can thus be described by tensor calculus. This approach can be general- 
ized to an array with k ways, by consideration of the latter as a tensor of 
order k, i.e., an element of a tensor product of k vector spaces. In practice, 
and in our presentation, those spaces will be iw”~, where m, is the number of 
cells in way t. 

3. SINGULAR VALUES FOR TWO MODES 

Let S, : E* X F* + R be the bilinear map defined by S,(e* , J;* > = Xij 
with {e?),, ,&*I,, the canonical bases of the spaces. The universal property 
of the tensor pro&ct implies 

(9) 

E* @ F* 

Then for all rj~* and 4p* in E* and F*, 

= “(lpd p)F= s,<+* 63 cp*) = x..(I+b* @ p*>. (10) 
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PROPERTY 2. 

(i) The first singular value can he expressed by diflerent muximization,s: 

CT, = ,,81;;‘2y_Lgx(111* @ cp*> = ma (** @ P*, X> 

,,cp*,,;:= I 
llti*llt*= 1 
Il~*ll,~. = I 

= max ($8 q,X)~@r= max X..(Ic,@ ~0) 
ll*llE= 1 Il*llF= 1 
IldF= 1 Ilqllf:= 1 

=x-c+, @ cpl> (11) 

(ii) The tensor solution in (11) is unique up to an orthogonal transforma- 
tion leaving X invariant. 

Proof. It is a maximization of a continuous linear map over 

{ l+b @ cp~ll$bllE = 1, IIPIIF = I} c {~llME@F = I}> (12) 

which is closed in a compact set (the unit sphere); thus it is itself compact. 
This implies the existence of cr. The uniqueness is because of the linear 
map. ??

In expressing the Lagrange problem associated with this maximization, 
the classical transition formulae which lead to the eigenequations of the 
well-known operators are found. In matrix form these are 

If there are metrics D and Q on E and F respectively, (13) becomes 

XQP = N XQ”XDrc, = a2rC, 

“XDtc, = arp “XDXQcp = c2q 
(14 

In a tensorial form the transition formulae are 

x..cp = a*, 
x . . * = crcp, 

where X is the tensor equivalent to the matrix X. 

(15) 
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The other singular values can be obtained by consideration of orthogonal- 
ity constraints in the optimization. Lemma 1 given in Section 4 (for the 
generalization) enables us to affirm the existence and uniqueness. A priori 
there is a choice with regard to orthogonality in E or F or both. Let E, and 
F, be the subspaces generated by the first solution, so that 

E @a F = (El h Et) @ (F, 6 F;) 

= (E, @F,) h(E: @F;) h(E, 8 F:) h(E: @ Fl) 

= (El @F,) h(E, 6s F$ ; (16) 

note that El’ ~3 VI1 c (E, ~3 F1)’ . 
Given the duality [(13) or (15)] in the first solution, the maximization 

solution with constraint in (E, @ F1)l is in fact in El’ @ F1’ , i.e., the 
projections of X on the other subspaces of the orthogonal space lead to the 
null tensor. Thereafter, this space is termed the orthogonal tensorial space of 
the subspaces E, and F,. 

REMARK 2. The well-known core matrix in the PCA-3 of Kroonenberg 
and De Leeuw (1980) derive from ‘this observation and from the lack of 
duality in these solutions. That is to say, for three modes the solution in the 
orthogonal space of the first solution is not always in the orthogonal-tensorial 
space of the preceding solution. 

After reiterating the process of solution for singular values or, in this case, 
after diagonalization (13), an orthogonal decomposition of the tensor, the 
singular values decomposition SVD-2, may be expressed as 

or in matrix form, 

rank x 

(17) 

(18) 
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The well-known matrix approximation theorem may thus be formulated, it 
permits the performance of a PCA: 

THEOREM 1 (Eckart and Young, 1936). The best rank r (r < q> approti- 
mation of a rank 4 matrix X, according to the norm coming from the inner 
product in E 8 F, is given by the matrix built with the first I^ tensors of the 
SVD: 

the squared distance being 

min [IX - 211” = IIX - x,11” = (29) 
Z 

rank Z=r<q=rank X s=r+l 

Proof. The SVD of X provides (complementing it) an orthogonal basis 
for the whole space E 8 F, and also here for each of the spaces E and F. 
Let g, be the unitary transformation effecting the change of base. Thus for 
all matrices Z of rank r, 

I/X - a2 =IIgAX - ~)112 =IIgAX) - %ml12 
4 dim(E@F) 

= c (a, - &ms)” + c g,(z): 
s=l s=q+ 1 

(21) 

The inequality is due to the fact that rank Z = rank g,(Z); to have rank r, r 
values must be chosen for gm(Z), and the others set equal to zero. The best 
values are the first r singular values: 

xr =&AX,) = c a,& Q cp,. (22) 
s=l 
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REMARK 3. 

(1) A more appealing proof of (191, available for any unitarily invariant 
norm, based on the Poincare separation theorem, can be found in Rao 
(1979). 

(2) It should be noted at this point that saying the rank of a matrix is q 
corresponds to stating the existence, for the tensor form, of a decomposition 
into q decomposed tensors. But these tensors of rank one have the intrinsic 
property of being orthogonal and even tensorially orthogonal (according to 
the orthogonal-tensorial space). The generalizations proposed in Section 6 
will be based on this fact in introducing new concepts of tensor rank. 

4. THE DERIVATION OF SINGULAR VALUES FOR THREE OR 
k MODES 

A presentation with three modes is given here; the extension to k modes 
follows immediately from this. As in Section 3, the universal property of the 
tensor product is also used to obtain the singular values of multiway data X. 

Let s x : E* X F* X G* -+ R be the trilinear map defined by 
S,(eT,fj*, gf) = Xijk with {e*),,,,.(~),,4(gk*}1,..p being the dual canoni- 
cal bases of the three spaces: 

(23) 

Then for all cr*, /3*, y* of E*, F*, G*, 

Sx(a*,P*,y*) = Sx( Cqe”, CPjflT EYk&) = C"iPjYkXijk 
i j k ijk 

= ix< a* N p* 8 y*) = X..(a* 8 P* 8 y*). (24) 

x” is the vectorialization of the data X (a three-way array) and is thus seen as 
a tensor of E 8 F @ G. 



SINGULAR VALUE DECOMPOSITION 317 

PROPERTY 3. 

(i) The derivation of the first singular value may be expressed as 

= In= (a @ P @ Y, X)E~FW 
IldPz= 1 
II Pllr;= 1 
Ilrllc= 1 

= ,ra~,al,Lx..(“@P@ 741 =x-t@@ cp@ 4). (25) 
IIPllr;= 1 
llrllc= 1 

(ii) The tensor solution is unique up to an orthogonal transformation 
leaving X invariant. 

Proof. The proof is basically the same as for Property 2, as a continuous 
linear map is maximized on 

{a 8 P 8 ~lllc4l~ = 1, IIPIIF = 1, llrllc = I} = (-~~1141~mx = I}. (26) 

which is a closed set within a compact set and therefore itself compact, 
yielding the existence and uniqueness of the solution with the same restric- 
tion as for two modes expressed in Property 2($. ??

For the second and further solutions. it can be written: 

PROPERTY 4. The problem for the second singular value can be written 

and has a solution. 
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Proof. A continuous linear map is maximized over the intersection 
between a compact set and a closed subspace, which is therefore a compact 
set. Thus the solution for the second singular value exists. 

In order to totally control the orthogonality constraint, the following 
decomposition of the whole space is used: 

so the projection of X on E @ F @ G is 

= x. (2% 

The equality (29) is due to the fact that the contracted product of two 
elements of the first solution gives the third, normalized to (T. The projection 
onto any of the three subspaces in (28) built with two elements of the first 
solution and the orthogonal space of the third is then null. 

LEMMA 1. Let T be a subspace of E Q F Q G. Then 

max X..((Y@/~@~)= max PTX..((Yf3@Py). (30) 
IldE= 1 llallE= 1 
IlPllF=I IIPIlF=l 
Ilyllc=1 Ilrllc= 1 

a@fi@y~T 

Proof. The proof is immediate, based on the fact that the projection 
onto T is a self-adjoint operator. W 

According to the preceding lemma and Property 4, a possible second 
solution may be obtained by adding the orthogonahty constraint of the 
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orthogonal-tensorial space of the first solution, i.e. T = $ ’ B p ’ 8 4 ’ . This 
type of tensor solution will be called a k-mode solution (here S-mode). 

Other possible solutions may be obtained by projecting onto one of the 
three remaining subspaces. These solutions linked to the first (a k-mode 
solution) are more easily obtained by deriving the singular values over k - 1 
modes after a contracted multiplication by one of the elements of the first 
triplet solution. This type of solution has been termed the I/J (or q or $1 
associated solution to the first k-mode solution. 

To seek out all the singular values, the two types of possible solutions are 
thus sought: 

(1) the k-mode solutions, obtained by projection onto an orthogonal- 
tensorial space (the first is the whole space) and maximization of S by the 
algorithm described below; 

(2) the associated solutions of each k-mode solution, obtained after a 
contracted product by an element of a k-mode solution and derivation of 
singular values of an order k - 1 tensor. 

PROPERTY 5. The second singular value (and the others in decreasing 
order) will be the scalar product of X with: 

(i> either a possible k-mode solution or an associated solution, or 
(ii) a unitary combination of some such possible solutions (this will rarely 

happen because it must be a rank one tensor combination of orthogonal 
tensors, which occurs only when a factorization may be carried out-i.e., two 
elements of the two or more possible solutions are equal). 

Proof. The argument is left to the reader. W 

REMARK 4. The singular values obtained with k-mode solutions are in 
decreasing order, but, for example, it might happen that a singular value 
obtained with an associated solution of the first k-mode solution is bigger 
than the singular value obtained with the second k-mode solution. That is the 
reason why the previous property employs the word “possible.” 

5. ALGORITHM FOR THREE-MODE OR k-MODE SINGULAR 
VALUE DECOMPOSITION 

For three modes, the research algorithm RPVSCC for the first solution is as 
follows: 

Initialization: q, PO, yO: 
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Iteration 72 + 1 has three steps: 

1. (X.. A) 4l = L&n+l%+li 

2. (X.. 7%) . . a,+1 = k+, P,,l> 

3. (X.. %+J -P,+i = y%+CYn+l* 

(31) 

For k modes, after initialization the jth step of iteration rr + 1 is 

The initialization chosen, which leads to quick convergence, is the Tucker1 
solution (for definition of the Tucker-1 model, see Remark 7). At convergence 
“Us = %[ = ‘Us, and a criterion to stop the algorithm might be based on this 
fact, or simply on the distances for each component between successive steps. 
For three modes, the RPVSCC is in fact equivalent to the TUCKALSB algorithm 
of Kroonenberg and De Leeuw (1980) with a single component in each 
mode. Thus, it has the properties of convergence as established by those 
authors. and the same considerations can be made for k modes. 

PROPERTY 6. 

(i) The steps of the REVSCC algorithm come from the Lagrange problem 
associated to the function S, : 

L((Y,p,y,%,%,%) =X..( fx QD p @ r) - +(llalG - 1) 

-1 O~(lrpll; - 1) - g#4l:: - l), (33) 2 

where “cr , ST , and ‘2~ are the Lagrange multipliers, with an analogous 
expression for k modes. 

(ii) The Hessian of the normal equation for (i> is, for each parameter, a 
negative diagonal matrix, proportional to the identity. 

(iii) Properties (i) and (ii) are valid for k modes. 

Proof. For example, by simple calculus the first derivative with respect 
to (Y can be written 

$+,wu,wu) =X..(Pca 7) -%a; 
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equating to zero gives (i). The proofs of the other assertions, as easy as for (i), 
are left to the reader. ??

We thus obtain a SVD in two major steps by the recursive SVD-k 
algorithm below: 

A. Find the k-mode solutions in two iteration steps: 

1. RPVSCC; 

2. Projection of the tensor in step 1 (X or a projection of X) on the 
orthogonal-tensorial space of the solution calculated in step 1. 

B. Find solution associated with the k-mode solutions: 
for each k-mode solution, 

for each component of the solution, 

1. contracted product with this component; 
2. SVD-(k - 0.’ 

The SVD of an order k tensor can be written as follows: 

for the tth tensor the solution will occur 
no more than k - 2 times if the solution r is a k-mode 
solution (so t is said to be associated to r), 
no more than k - 1 times (before factorization) other- 
wise; 
(occurs at least once): if it occurs k times and r is a 
k-mode solution, then t is another; 
then either solutions t and r are solutions associated to 
the same k-mode solution, and this will happen no more 
than k - 2 times, or they are associated to different 
k-mode solutions, no more than k - I times. 

‘All the solutions are not to be retained, because of the duplicates generated by this 
procedure. Because of processing time problems, their removal may be effected in B.l: form the 
contracted product with each tensor of order 1,2,. , k - 2, coming from the k-mode solution, 
and then project on the orthogonal-tensorial space of the rest of this solution. 
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REMARK 5. 

(1) Yoshisawa (1987) has described research on the k-mode solutions, but 
combining the elements of these solutions to build something like associated 
solutions, this author thus develops a model like a Tucker model for k modes. 

(2) Denis and Dhome (1989) have shown, under the name “rocket 
form,” the SVD for three modes, but they try to describe it as a Tucker 
model, referring to the core matrix, thus forgetting that this decomposition 
gives an optimal basis for the whole tensor space but not for each of the three 
spaces. The decomposition is in fact somewhere between the Parafac- 
Candecomp model and the Tucker model. 

6. APPROXIMATION OF A TENSOR: PTA-k 

The PCA-3 of Kroonenberg via the TUCKALS3 algorithm does not permit 
either the definition of the SVD or nested solutions in the models. Here a 
generalization of the Eckart-Young (1936) theorem is proposed through a 
new tensor rank conception which is more appropriate for geometric descrip- 
tion. 

The Definition of the tensor rank adopted by Kruskal (1977) and other 
authors and described by Franc (1992) is: 

DEFINITION 2. The rank of a tensor is the minimum number of decom- 
posed tensors of which the sum is this tensor. The decomposed tensors may 
be built with unit vectors multiplied by coefficients. 

Franc (1992) referred to difficulties in the calculation of the tensor rank 
and provided some majorizations. The SVD-k introduces new definitions of 
tensor rank. 

DEFINITION 3. .The orthogonal rank of a tensor is the minimum number 
of decomposed tensors which are two by two orthogonal, the sum giving the 
tensor. The decomposed tensors can be built with unit vectors multiplied by 
coefficients. 

DEFINITION 4. The free orthogonal rank of a tensor is the minimum 
number of decomposed tensors (the sum giving the tensor) which are two by 
two orthogonal and where two vectors of the same space from two different 
decomposed tensors are either orthogonal or equal. 
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Thus for a given space, all involved vectors (without ties) constitute a free 
orthogonal system. For example, with E 8 E @ E, let a and b be two unitary 
orthogonal vectors of E; then let 

The first expression for Y gives its free orthogonal rank 3. The second 
expression gives its orthogonal rank 2. 

By construction the SVD-k will give the minimal decomposition accord- 
ing to the orthogonal rank. If not, some tensorial factorizations will provide it 
(Property 5). In rare cases, as in the previous example, the SVD-k will give 
the free orthogonal rank. 

PROPERTY 7. 

(i) For a tensor of order tu,o all the ranks are equal, and in general, 

rankX<rank, X<rankLLX. (35) 

(ii) If in the SVD-k th ere are only k-mode solutions, then all ranks are 
equal. 

(iii)(a) lf in a SVD-k of orthogonal rank q, u decomposed tensors are 
subtracted an orthogonal rank q - u is obtained. 

(iii)(b) Zf in a decomposition of free orthogonal rank q, u decomposed 
tensors are subtracted, a free orthogonal rank q - u is obtained. 

Proof. The proof is left to the reader. ??

Now it is possible to generalize Theorem 1 to the case of a tensor of order 
k > 2. 

THEOREM 2 (Eckart and Young generalized by the orthogonal rank). The 
best orthogonal rank r (r < q) approximation of an orthogonal rank q tensor 
X of order k is given by the sum of the r-first tensors in SVD-k: 

min 11X - Z(I” = C q2, 
rank :Z=r \tr>.(X) 

(361 
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where (1. )I is the norm defined by the inner product, rank I is the orthogonal 
rank, and I> .(X) is the subset of m&indices not corresponding to the r 
highest singular values; the minimum is 

Proof. The SVD-k decomposition gives a basis (a free system which can 
be completed) of the whole space E, 8 E, @ **- @ E,. Let g, be the unitary 
transformation leading. to the change of basis; then for all Z of orthogonal 
rank r. 

IX - a2 =IMx - WI” =IIgcTw - gAZ)l12 

= c [a, -gmslz + c g,(z): (38) 
S~Z,,(X) s=Z=“(X) 

> c q2. 
Sol>, 

The inequality is obtained from rank i 
erty 7 implies the choice of r values 
singular values of X, and so 

Z = rank I g@(Z), and (iii) of Prop- 
of gF(X>,, the best are the r first 

REMARK 6. 

(1) An equivalence between this theorem and the SVD-k algorithm, 
which is a step by step search, can be seen from the lemma given in the 
appendix. 

(2) Note that the higher singular values are not always the first k-mode 
solutions, because the singular value of an associated solution to the sth 
k-mode solution can be greater than the singular value of the (s + I)th 
k-mode solution. 

(3) It is possible to give a theorem for the free orthogonal rank, but there 
is no proof of existence of the free orthogonal rank decomposition and no 
method to find it, should it exist. 



SINGULAR VALUE DECOMPOSITION 325 

DEFINITION 5. The orthogonal rank r approximation supplied by Theo- 
rem 2 is called PCA-k of order r by SVD-k, or principal tensor analysis on k 
modes of order r (PTA-k of order r), or just PTA-k, because of the existence 
of nested solutions. 

This name can be justified by the following properties, which gives some 
comparisons between certain three-mode methods. 

PROPERTY 8. To compare thejrst solution given by Tucker 1, TCCKALS3. 
and PTA-3 let the three criteria be 

criterion CP (principal component): scalar squared maximum for X . . +!I. 
X . . cp, and X . . 4; 

criterion TDP (principal decomposed tensor); scalar squared maximum for 
X..($@ cp>, X..($@ 4), andX..((p@ 4); 

criterion VS (singular value): maximum for X . . ( * @ cp @3 $>. 

Then: 

(i) The Tucker1 solution only verifies CP. 
(ii) PTA-3 solution verifies TDP, VS, and CP with the supplementary 

constraint being of orthogonal rank 1. 
(iii) Tuckals3 solution (where s, t, u > 1 are given) does not vetify any 

criterion and could be a compromise among the three. 

PROPERTY 9. 

(i) The traces of the variance operators (i.e. the sums of the eigenvalues) 
on each mode are equal. 

(ii) Zf there are only k-mode solutions in the SVD-3, then we have also 
equality of the eigenvalues, and Tuckerl, PCA-3, and PTA-3 are equivalent. 

Proof. The proofs are straightforward. W 

REMARK 7. 

(1) Note that Tucker 1 solutions are built with the diagonalization of the 
variance operators on each mode (i.e. associated to three PCAs of rearranged 
arrays); see Kroonenberg and De Leeuw (1980). 

(2) If the above methods do not verify the same criteria (CP, TDP, or 
VS) they are still not very different, as seen in Property 9, where (i) was 
noticed earlier by Jaffrenou (1978). 

(3) Note that the first solutions of the PTA-3 and Candecomp are the 
same, and this is true for k modes as well. 
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7. GENERATING MULTIWAY DATA ANALYSIS BY PTA-k 

As with PCA, in PTA-k the series of squared singular values gives an 
additive decomposition of the inertia or total variance (if the tensor is 
centered): 

x.. x = Tf= c(,,)2. (40) 

This series can be explained as a percentage of inertia. Examining and 
choosing some of the highest principal tensors by means of these percent- 
ages, we have a good summary of the data which enables graphic representa- 
tions and modelization. 

With metrics D,, . . . , D, on the spaces, by the tensorial structure it is 
easy to see that, to use a program with identity metrics, it can be operated as 
follows: 

(1) transform X by 

(D’/2 @ . . . @ D:/-"1 @ D;'") . . X, (41) 

(2) perform the SVD-k, and perform the inverse transformation on each 
solution. 

Usually, before computing PCA, the triplet to be analyzed should be 
chosen: the matrix analyzed (which is the data or a transformation of them), 
the metric on rows, and the metric on columns. With PTA-k a (k + l)-tuple 
should be chosen, (the tensor analyzed being the data or a transformation of 
them) and the k metrics on all of the data entries. 

Thus, PTA-k is like PCA, a standard method to produce other multiway 
multidimensional methods. It enables the generalization of CA, MCA, or 
PCAIV (PCA according to instrumental variables), or other PCAs under 
linear constraints. Some of these generalizations are explained in Leibovici 
(19931, and a program in SAS/IML has been written to carry out PTA-k 
with metrics. Some examples for the analysis of a longitudinal epidemiological 
study are also given, with a brief comparison of results between PCA-3 and 
PTA-3. 

Graphical representations might be read jointly in view of relations within 
solutions. These relations are the k steps of the RPVSCC algorithm, and they 
constitute a generalization of transition formulae. Care should, however, be 
taken in dealing with representations. For example, in a tensor solution, if 
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two vectors are changed to their opposites, the tensor remains the same. 
Some supplementary criteria on solutions and data are recommended to fix 
the solutions. 

8. DISCUSSION AND CONCLUSIONS 

PTA-k is similar to a generalization of PCA, retaining its best properties, 
as a result of a generalization of singular value decomposition to a k-way 
array. Tensorial formalism has been very efficient in obtaining these results. 
The orthogonal rank, defined here, seems to be well adapted for a descriptive 
statistical approach, as interest is focused on decomposition. The classical 
concept of tensor rank could be more suitable for modeling or computing, as 
for example the calculation of a matrix product with a minimum of multiplica- 
tion. Unfortunately, evaluation of this rank is a difficult problem still open to 
debate; Franc (1992) has retraced historical results concerning majorizations 
of tensor rank, in establishing new ones. 

Following each definition of tensor rank, a different generalization of the 
SVD might be obtained. One which could incorporate all the two-mode 
properties is the free orthogonal rank, but that decomposition does not seem 
to exist in general. It may be thought that this rank concept is too focused on 
decomposition and not enough on modeling. Nonetheless, the PCA-3 of 
Kroonenberg and De Leeuw (1980) is of this type, as well as the Kaptein 
model (Kaptein et al., 1986; Wansbeek and Verhees, 1990) as a strict 
generalization of PCA3 to k modes. In them there is not necessarily an 
optimum for the free orthogonal rank, but there is a particular “construction” 
of it, i.e. in fixing approximations in each space. With the classical rank, the 
Parafac or Candecomp model is more focused on modeling: the classical rank 
is smaller than the others. Then, between the two latter ranks, there is the 
SVD-k developed in this paper, which considers the orthogonal rank. This 
decomposition leads to the PTA-k as the SVD does to the PCA. Note that if 
you keep only the k-mode solutions in SVD-k, you have the orthogonal 
Parafac model, but in its complete form. Here another rank could be defined: 
the orthogonal tensorial rank (i.e., the decomposed tensors are orthogonal 
according to the orthogonal tensorial space). It is important to note that many 
tensor ranks may be elaborated, but they do not always exist; however, 
approximations according to them can be made. Here it is proved that the 
orthogonal rank exists, and as consequence the orthogonal tensorial rank does 
not alwavs exist. 
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APPENDIX 

LEMMA (Additive optimization). In a Hilbert space, the squared norm 
approximation of an element by an additive mup of parameters is equivalent 
to optimization step by step, if an orthogonality constraint is imposed on the 
parameter. 

Proof. Without loss of generality, summation is chosen as the additive 
map: 

IIX - 01 + t2w 
= I( x - td - tz> II2 
= 11.x - t,l12 - 2((X - t,),& + llt,l12 

= IIX - t,l12 + llXl12 - 2(x, &AI + z(t,, &>H + llt,l12 - IlXl12 

= IIX - t,l12 + IIX - t,l12 - IlXl12 + m,, t&z. 

Therefore, minimizing the left-hand side, under orthogonality of the two 
parameters t, and t,, is equivalent to minimizing with respect to each 
parameter with this orthogonahty constraint. It is then possible to optimize 
step by step. ??
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