Multilinear Models: Applications in Spectroscopy

Sue Leurgans; Robert T. Ross

Statistical Science, Vol. 7, No. 3 (Aug., 1992), 289-310.

Stable URL:
http://links jstor.org/sici?sici=0883-4237%28199208%297%3 A3%3C289%3AMMAIS %3E2.0.CO%3B2-1

Statistical Science is currently published by Institute of Mathematical Statistics.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/ims.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Sun Jul 31 04:18:14 2005



Statistical Science
1992, Vol. 7, No. 3, 289-319

Multilinear Models: Applications in Spectroscopy

Sue Leurgans and Robert T. Ross

Abstract. Multilinear models are models in which the expectation of a
multiway array is the sum of products of parameters, where each parame-
ter is associated with only one of the ways. In spectroscopy, multilinear
models permit mathematical decompositions of data sets when chemical
decomposition of specimens is difficult or impossible. This paper presents
aunified description of the models in an array notation. The spectroscopic
context shows how to interpret one initialization of the nonlinear least-
squares fits of these models. Several examples show that these models

can be applied successfully.

Key words and phrases: Multi-mode factor analysis, nonlinear least-
squares, PARAFAC, three-way arrays.

1. INTRODUCTION

We begin with an example. Figure 1 is a graph of
light absorption by pea leaves as a function of the
wavelength of the light. This light absorption is the
sum of the absorption by several different assemblies
of pigments, which are responsible for the capture of

light and its conversion into chemical energy. Accurate -

information about light absorption by the individual
assemblies is important in understanding photosynthe-
sis, but chemical separation of the assemblies would
alter the properties studied. This and related problems
motivate the biophysicist’s interest in mathematical
modeling of light absorption data.

Light absorption and emission can often be measured
under various conditions corresponding to different com-
binations of levels of several experimental variables
such as wavelength and concentration. It is convenient
to record the responses by using one subscript to de-
note the level of each independent variable and then
to arrange the observed values in a multiway array, to
be denoted Y below. If the experimental variables are
wavelength and concentration, then u, the array of
expected values of the elements of Y, is a multilinear
function of the wavelength and concentration parame-
ters of the pigment assemblies. (See Sections 2 and 3
for definitions and explanations.) Although multilinear
functions are nonlinear functions of the several sets of
parameters (one set of parameters for each experimen-
tal variable) and although nonlinear regression models
are generally intractable, some properties of multilin-
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ear models are tractable if there are three or more
experimental variables.

When two experimental variables are used, multilin-
ear models are bilinear models, and the underlying
spectra cannot be deduced from u unless only one
pigment assembly is absorbing light. However, if three
or more experimental variables are used, then the un-
derlying spectra for each experimental variable can
generally be deduced from u. (See Section 4.)

Statisticians have long employed bilinear models.
The relevance of spectroscopy to bilinear models is
implicitly recognized when the characteristic values of
a matrix are called the “spectrum” of the matrix. Bell-
man (1970) attributes the term to Hilbert. Multilinear
models are attracting more attention, and we hope that
our description of multilinear models in spectroscopy
will be another illustration of the advantages of
multilinear models. This specific context, in which the
models and their interpretations are well established,
may assist readers, as it has us, when they think about

arrays with more than two ways.
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In Section 2, we introduce spectroscopy. In Section
3, we present multilinear models and show that several
spectroscopic formulas imply multilinear models. The
parameters of bilinear models are not identifiable, but
the parameters of some of the trilinear models of Sub-
section 3.2 are identifiable. In Section 4, we review
several methods of estimation. Section 4.1 is an intu-
itive derivation of an explicit decomposition for some
trilinear models, a decomposition that represents the
identifiability remarks in 3.2. Section 5 contains several
examples.

2. INTRODUCTION TO SPECTROSCOPY

In this section, we use the symbols and nomenclature
used by chemists whenever possible. For further back-
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Fi16. 1. The absorption of light by pea leaves as a function of
wavelength.

ground from the perspective of analytical chemistry,
see Ingle and Crouch (1988). For a more mathematical
presentation and applications to biophysics, see Cantor
and Schimmel (1980). For a review of the use of multiple
experimental variables, see Ndou and Warner (1991).

Spectroscopy is the measurement of the absorption
of particles by a specimen, or the emission of particles
from a specimen, as a function of the energy of the
particles. The amount of absorption or emission as a
function of particle energy is known as a spectrum.
Information from the many kinds of spectroscopy used
by physicists and chemists underlies most of our under-
standing of the structure of atoms and molecules.

Common spectroscopy uses electromagnetic radia-
tion such as visible light. The particles are photons. The
wavelength of the radiation is inversely proportional
to photon energy, and wavelength is often used instead
of energy as the independent variable. Different kinds
of chemical spectroscopy use wavelengths ranging
from 1071 to 10** meters. The examples of spectros-
copy presented in this article all involve electromag-
netic radiation in the visible and near-visible range of
wavelengths, from 1077 to 1076 m.

"A typical specimen contains a very large number
(103 'to 10'¢) of each of several distinguishable light-
absorbing entities, or chromophores. The light-absorp-
tion process may be almost entirely confined to a small
part of a single molecule, and it is this part that is
regarded as a chromophore. A large molecule may have
several chromophores. For example, a small protein
may be composed of 100 chemically linked amino acids;
the protein is a single molecule, but for many purposes,
parts of the individual amino acids will behave as
independent chromophores.

When a beam of particles, such as photons, is di-
rected at a specimen, the increment in intensity (dI)
absorbed with an increment in distance (dx) is

(1) dl = —onl.dx

where gs is the absorption cross-section (cm?), n is the
number density (per cm?®) of the chromophores and I,
is the intensity of the beam at distance x into the
specimen.

In common applications of spectroscopy in chemis-
try, the specimen is a uniform solution of chromophores
held in a tube of width L (usually 1 cm). Integration
of dI/I in (1) with some unit changes gives what chem-
ists call Beer’s law:

(2) A[A] = —logiolIL /1) = e[A]cL

where A is known as the absorbance, I./1, is the frac-
tion of the intensity of a beam of light of wavelength
A that passes through the specimen, and ¢ is the con-
centration of chromophores. Figure 1 is a plot of the
absorbance due to the pigments in pea leaves. The fun-
damental property of the chromophore is ¢[A], the ex-
tinction coefficient, a quantity with units of (length X
concentration)”! which is equivalent to absorption
cross-section.

While the primary independent variable of spec-
troscopy is the energy or wavelength of the particles
absorbed or emitted, an experiment may involve addi-
tional independent variables. With multiple chromo-
phores f and wavelengths i and differing circumstances
j in which concentrations of the chromophores vary,
we have the bilinear equation

3) Ali, j1= zf]ﬁf[i]cf[j]L,

where ¢[i] is the extinction coefficient of chromophore
f at wavelength A; and c¢/[j] is the concentration of f in
circumstance j. We will see in Subsection 3.1 that the
parameters &[] and ¢/[j] are not identifiable without
reliable side conditions that restrict the parameter
space. There are over a hundred publications on the
bilinear analysis of absorbance as a function of wave-
length and of some variable which affects the relative

_concentration of the chromophores in the specimen.

Side conditions used include the positivity of concen-
trations and of extinction coefficients. The early work
on this and other chemical applications of bilinear mod-
els (often called factor analysis by chemists) is reviewed
in Malinowski and Howery (1980); the more recent
work is surveyed in biannual reviews of the chemo-
metric literature (Ramos et al., 1986; Brown et al.,
1988; Brown, 1990).

The absorption of a photon puts a chromophore into
a higher energy excited state. This excited state then
loses its extra energy and decays to the ground state,
usually in about 107° sec. Some decay can be accompa-
nied by light emission, usually of a kind called fluores-
cence. Chromophores that emit a detectable amount of
fluorescence are called fluorophores.

In fluorescence spectroscopy, the specimen is illumi-
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nated with light of wavelength A°*, and the consequent
emission of light is measured at wavelength A°". The
sequence of events that occur during such an experi-
ment is diagrammed in Figure 2. Incident light of
wavelength A°* is absorbed by the chromophore, caus-
ing the chromophore to gain an amount of energy equal
to the photon energy. Most of the additional energy is
taken up by a single electron that moves from one
orbital (probability pattern in space) to another that
has a higher average distance from the positively-
charged atomic nuclei and therefore has a higher en-
ergy. Because an electron has moved, the most stable
geometry of the atomic nuclei in the excited state
is somewhat different from that in the ground state.
However, the absorption event ocurs so rapidly (10~1°
sec) that the nuclei, which are far more massive than
electrons, do not have enough time to move. Following
the electronic transition, the nuclei shift their positions
to the more stable geometry in about 107! sec. As the
nuclei shift, the properties of the excited state become
independent of how it was created, so that the relative
probability of any subsequent event is independent of
how the excited state was created.

The amount of light emission measured is separately
linear in the number of photons absorbed and in the
fraction of photons absorbed that lead to emission at
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Fic. 2. Events leading to fluorescence. 1: Energy from light of
wavelength A°* moves an electron to an excited state. 2: Atomic
nuclei move to a more stable geometry. 3: With probability
(1 — @), the electron returns to the ground state without emitting
light. 4: With probability ¢, the electron returns to the ground
state emitting light distributed over wavelengths A°™.

wavelength A°". With multiple chromophores, we then
have the trilinear equation

(4) ult, j, k] = ;gf[i]”f[j]cf[k]

where c/[k] is the concentration of chromophore f in
circumstance &, &fli] is the relative absorption cross-
section of chromophore f at wavelength Af* and n/[j]
is the relative emission at the detection wavelength
As™. We will see that equation (4) is the PARAFAC
model (23).

Simple application of equation (4) requires that sam-
ple absorbance be small and that excitation not be
transferred between chromophores (e.g., that absorp-
tion of a photon by chromophore 1 not lead to emission
by chromophore 2); however, nonlinearity due to ab-
sorbance can be corrected, and energy transfer can
be treated with a different multilinear model. [See (7)
below.] The first application of a trilinear model to
spectroscopy was by Appellof and Davidson (1981),
who applied equation (4), with elution from a chroma-
tography column serving to vary concentration.

There are two ways to expand equation (4) to obtain
an additional independent variable. An expansion is
especially important if one of the three variables in
equation (4) is ineffective. For example, the relative
concentrations of different fluorophores may be fixed,
perhaps because they are all part of the same large
molecule.

The first method of obtaining an additional indepen-
dent variable is to treat the specimen in some manner
that differentially affects the total amount of light
emission from different fluorophores. Of all excitations,
only some fraction lead to light emission. This fraction,
¢, is the fluorescence quantum yield. The other excita-
tions are lost via nonradiative decay. The experimenter
can alter the fluorescence quantum yield by changing
the rate of nonradiative decay. Most often, one de-
creases the fluorescence by providing an additional
decay pathway. A chemical added to accomplish this
is known as a fluorescence quencher. As long as the
mean lifetime of the excited state remains much longer
than the “forgetting” time of thermal equilibration,
the amount of quenching will have no effect on the
distribution of emission wavelengths. We then have
the quadrilinear model

(5) uli, j, k,1]= ;Cf[ilsf[jlfﬂf[k]nf[l],

where ¢/[k] is the fluorescence quantum yield of fluoro-
phore f when subjected to treatment & and where c, ¢
and n are as defined previously. If relative concentra-
tion is fixed, (5) reduces to a trilinear equation. Some
examples of our use of this equation are presented in
Section 5.

All of the measurements described so far can be
obtained using steady illumination of the specimen and
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detection of light that ignores time as a variable. The
second method of obtaining an additional variable re-
quires measuring the rate of decay of the excited state.
In one form of time-resolved spectroscopy, the speci-
men is excited at time zero by a brief intense flash of
light, following which the light emitted by a particular
category of fluorophore decays as some function A(t).
In simple cases, A(¢) is a negative exponential function.
For a single chromophore, the intensity is the product
of five terms

(6) uli, j, k.1, m] = elilnl jlelklollTAlm],

where ¢, 7, ¢ and ¢ are as in previous equations, and &
is the relative population of the excited state at time
m. If concentration and quantum yield are constant,
(6) reduces to a trilinear equation, which was first
applied by Russell, Gouterman and van Zee (1988) and
Russell and Gouterman (1988a, b).

The other form of time-resolved emission spectros-
copy uses the equivalence of information from the
frequency domain. The exciting light is modulated at
different frequencies. Consequently, the emitted light
is modulated, but to a reduced degree and with a phase
lag, due to the time delay between excitation and
emission. Burdick et al. (1990) applied a trilinear model
to phase-resolved fluorescence measurements.

Up to this point, we have not considered the possibil-
ity of any effect by one chromophore on another. How-
ever, in biological specimens it is quite common for
the following sequence of events to occur: (a) light
absorption by chromophore f; with a probability equal
to Ap; (b) given light absorption by chromophore fi,
transfer of excitation and emission from chromophore
f> with probability @y, 7[k] under condition k; (c) given
emission from f,, emission distribution 7s[ j]. Thus

(7) uli, j, k] = ; ; Anli1Qr rolkInsl 7]
1 2
We will see in the next section that (7) is the T2
model, (26). Since the parameter matrices of a T2 model
cannot be identified, implementing mathematical anal-
ysis of specimens with energy transfer requires that
gensible side conditions be specified and imposed.

3. MULTILINEAR MODELS AND ARRAY FORMULAS

In this section, we present multilinear models and
introduce convenient abstract notation that empha-
sizes the array structure. The abstract notation aids
clearer understanding, because dummy summations
are omitted. In Subsection 3.1, we discuss the familiar
bilinear models and rewrite the model several times for
comparison with the higher-way formulas developed in
Subsections 3.2 and 3.3. In Subsection 3.2, we repeat
the bilinear development in the 3-way setting, and we
argue that some of the familiar matrix properties do
not extend to 3-way arrays. The final subsection is

formulation of multilinear models for arrays with an
arbitrary number of indices. Multilinear models from
Section 2 are identified.

The following terminology and notation will be used
in the rest of the paper. An N-way array, or an array
of order N with dimensions (I3, ..., Iy) is a set of
Iy = 1TY_,I, numbers arranged in an I, X - - - X Iy
table. If i, is an integer between 1 and I, (inclusive) for
eaich n=1,..., N, the (i, ..., iy)th element of the
array is denoted by A[iy, ..., in]. A single i, will be
called the index and refers to the i,th level of the nth
way of the array. The scalar upper limit (Z,) will not be
confused with the n X n identity matrix I,, because
the latter will be in bold face. A bold font [A] will
denote the entire array or a nonscalar subarray. A
vector is a one-way array, and a matrix is a 2-way
array. In formulas, vectors will be regarded as matrices
with one column. A subset of indices will be used to
denote a subarray: for example, A[i},] is the i;th row
of a matrix (thought of as a 1-way array or a column
vector). We shall use subscripts to refer to a finite
sequence of arrays, such as A, A;. We will exploit the
natural identification with a finite set of N-way arrays
with a single (V + 1)-way array, although we will
preserve the notational distinction.

We caution those readers who are familiar with ten-
sors that we are deliberately avoiding the word tensor,
because tensors commonly have structure that we do
not assume here or are identified with multilinear map-
pings of abstract linear spaces. The dimension vector of
classical N-way tensors typically consists of Videntical
numbers. Much of the theory is devoted to determina-
tion of the consequences of various symmetry or invari-
ance properties, such as those possessed by arrays of
moments or of Nth-order mixed partial derivatives.
The arrays we use do not exhibit any symmetry prop-
erties.

3.1 Bilinear Models for Matrices

The simplest truly multiway arrays are two-way
arrays or matrices. The simplest multilinear model, a
one-component bilinear model for a two-way array u,
requires that

8) uli,j1= olilBlj],

where a is an I-dimensional vector corresponding to
the first way and g is a J-dimensional vector corre-
sponding to the second way. The equations (8) show
that the I by J matrix u is a nonlinear function of the
two vectors a and f, given by

9) ﬂ=aﬂT=axﬂv

where equation (9) defines the outer product X. For
fixed a, the elements of u are linear functions of #. That
is, u is a conditionally linear function of f. Symmetri-
cally, for fixed B, the elements of u are linear in a. The

i=1,...,.5;j=1,...,J,
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matrix u is thus a bilinear function of a and g. If (8)
holds, then the rank of u is 1, and the ratios u[i, jI/
ul, j1 equal afi)/a[I] for all j’s provided that u[Z, j] # 0.
If y[I, j] = 0, then either all J y[, j'I's must be zero or
all I ufi, jT's must be zero. Therefore the vectors a and
B can be determined up to constant multiples from u
so long as u is not 0y, ;.

Many two-way arrays u have rank greater than 1.
An F-component bilinear model requires that u be the
sum of F one-component models, or that

F
(10) i, j1= 25 afi 13 71
f=1
Using outer product notation, (10) becomes
F
(11) 210X Br.
f=1

Letting A be the I X F' matrix whose columns are
ai, ..., ar and B be the J X F matrix whose columns
are fi,..., Pr, then the model can be rewritten in
matrix notation as (12):

(12) u=AB"

The rank of u will be F as long as the columns of A
and of B are linearly independent. The model can be
rewritten again to emphasize that every row u[i, ] is
the same linear function of A[i, ]:

uli, 1= AL, 1B,  i=1,...,L

Similarly, each column of u is given by a linear function
of the corresponding column of B”:

/‘[’J:':A-?TL]L ]=1,,J

That is, u is a conditionally linear function of vec(A)
and vec(B) that respects the matrix structure of A and
of B. Any formula for x4 of the form (12) is a bilinear
model.

The form (12) can be derived from conditional linear-
ity if the matrix structure of u reflects the structure
of A and B. That is, if the I X J matrix u is a function
of the I X F; matrix A and the J X F; matrix B such
- that for fixed B, each row of u is a linear function of
the corresponding row of A and each column of u is a
linear function of the corresponding column of B, then
there must exist a fixed F; X F; matrix C such that

(13) u=ACB”.

Note that if the matrix n satisfies n = N:ACBTN,,
where N; and N are fixed square matrices, then 7 is a
conditionally linear function of A and of B. However,
the rows (columns) of # will not be determined by the
corresponding rows of A (B) unless N; and N; are both
diagonal matrices. Therefore conditional linearity is a
much weaker hypothesis than multilinearity.

The formula (13) shows that u is linear in the matrix
C. Alternatively, (13) could be thought of as expressing

the matrix u as a linear function of the 4-way array
A X B defined by

(A X B)i, fi,J, f2] = Ali, il BLJ, fa):

We shall let {A X B} denote the 4-way array of dimen-
sion (I, J, F1, F5) obtained by exchanging the second and
third ways of A X B. (In formulas: {A X B}], j, fu.] =
(A X B), f1,7,)) Next we define A;*;A, to be the prod-
uct of the 4-way array A; with the 2-way array A,
given by
(14) A*s Ay = D AL, v, V1A, V]

v,V
Of course, A, and A; are conformable for *, multiplica-
tion only if the last two dimensions of A; form the
dimension vector of A,. The operation in (14) is some-
times called reduction of the last two indices of A; by
the first two indices of A,;. With these definitions, (13)
is seen to be equivalent to

(15) u=1{A X B}*,C,

so that the 2-way array u is written as the product of
a4-way array and a 2-way array, where the 4-way array
has a special form. These formulas will have convenient
extensions when describing multilinearity for higher-
way arrays. Equation (15) can be interpreted as ex-
pressing u as a linear combination of outer products of
the columns of A with the columns of B, with weights
given by entries of C.

This notation expresses the well-known nonidenti-
fiability of bilinear models compactly. The product of
any nonsingular F; X F; matrix R, (respectively Fy X F,
matrix R,) and its inverse can be inserted between A
and C (respectively C and B7) in (13) without changing
u. Using the associativity of matrix multiplication and
the equivalence of (13) and (15), the following equation
must also hold:

(16)  u={(ARy) X (BRo)}*:({Ri" X R '}*:C).

Since (16) is (13) with A replaced by A’ = AR, B' =
BR; and C replaced by C’ = {R7! X R3'}*,C and since
the matrices R; and R are arbitrary nonsingular matri-
ces, the matrices A, B and C cannot be identified
from u without side conditions. The most standard
mathematical conditions are the requirements that
F, = F,, that both A and B have orthogonal columns,
that the columns of A have unit length, that C be the
identity matrix, and that the lengths of the columns
of B be nondecreasing. Under these conditions, when-
ever u has a unique singular value decomposition, u
has a factorization of the form (11) that is unique up
to permutation and sign changes of columns. While
mathematically elegant, orthogonality conditions may
result in a factorization that is hard to interpret. For
example, if A and B are interpretable only if all of
their elements are nonnegative (as is usually true in
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spectroscopy), the requirement that the columns are
orthogonal is problematic.

The equation (3) has the form of the bilinear model
(10), where A[i, j] corresponds to uli, j], &[i] to afi],
and ¢[ jIL to B[ j]. Since parameters of bilinear models
cannot be identified without further conditions, spec-
troscopic interpretation of bilinear models will require
additional constraints.

3.2 Trilinear Models

The preceding subsection discusses many properties
of bilinear models. We shall see that several natural
extensions to 3-way arrays lead to different mathemati-
cal models when more than one component is present.
In particular, the family of trilinear models obtained
from multilinearity is different from the family ob-
tained by adding together 1-component trilinear
models.

A triad (Kruskal, 1977), or a decomposable array, is
a 3-way array that is the outer product of three vectors,
one for each way, so that

(17 u=aXxXpxXy,
or

uli.j, k] = ali] X BLj] X ¥ik].

Notice that all nonzero subarrays obtained by fixing
any index, that is, the arrays u[i,,], 4, j,] and 4, , k]
have matrix rank 1. The vectors a, # and y are identifi-
able from any two such matrices. It is very natural to
define the array rank of u satisfying (17) to be 1.

In (17) above, each element of u is a conditionally
linear function of & when B and p are fixed, of f when
a and y are fixed, and of y when a and f are fixed.
Moreover, the vector obtained by fixing any two indices
depends on the vectors for the corresponding way only
through the elements corresponding to the fixed indi-
ces. For example, u[i, j,] is determined by afi], A[ j] and
y, and is linear in each when the other two are fixed.
We now extend these hypotheses of separate linearity
to arrays u that are not decomposable. That is, the
hypothesis of trilinearity is that u is a conditionally
linear function of A (I X F;) given B (J X Fy) and I
(K X F3) such that u[i,,] depends only on A[i,], B and
I; that u is a conditionally linear function of B given
A and I such that [, j,] depends only on A, BJ j,] and
I; and that u is a conditionally linear function of I’
given A and B such that 4], , k] depends only on A, B
and ITk,]. )

Trilinear models are easiest to formulate if suitable
array operators extending *,-multiplication are de-
fined. A 6-way array A; is conformable for *s-multipli-
cation with a 3-way array A, if the last 3 dimensions
of the 6-way array are the dimensions of the 3-way
array. The *3-product A#3A, is the 3-way array

ArxzAg = D DDA, v, V, VA, v, V).
v v Y

It will be convenient to let {A} denote the array that
results when the ways of A are exchanged as follows:
{A}[, i3, i5, iz, i4,] = A[, iz, i3, i4, i5,]. If the 6-way array A
is an outer product of three matrices M;, M, and M;,
then the first three ways of {A} correspond to the rows
of M, M, and M; and the remaining 3 ways of {A}
correspond to the columns of the matrices. Proposition
B.1 states that trilinearity implies that

(18) #£=1{A X B X I'}xsC,

where C is an F; X Fy; X F; array, to be referred to as
a core array. The equation (18) is both an extension of
(15) to 3-way arrays and an alternative notation for
Kruskal’s triple product of A, B and I' with C. If either
A or B or I fails to be of full column rank, then C will
not be unique.

The trilinearity equation (18) can be written in terms
of outer products of the columns of the A, B, and I' as

19 u=212 2l 0n X B Xy Clfy, for fol.
h f2 fs

In this form, the trilinearity equation can be recognized
as a Tucker3 or T3 model, named in reference to Tucker
(1963). That is, (19) presents u as a weighted sum of
outer products of columns of A, B and I' with weights
given by the core array C. If A, B and I are unknown,
they cannot be identified from g, because it follows
from the associativity property of #;-products (Proposi-
tion C.1) that if M;, M, and M; are nonsingular F; X F,
Fy X Fy and Fs X F3 matrices, then

u=1{A X B X I'}*3C
(200 = {(AM)) X (BMy) X (I'Mj)}s*;
A({(MTY) X (M) X (M31)}#350).

That is, if the matrices A, B and I' can be transformed
by multiplication on the right, the array u is preserved

- if C is countertransformed appropriately. This noniden-

tifiability is just the 3-way analog of the nonidentifi-
ability of bilinear models (16), the nonidentifiability
that is referred to as the “rotation problem” in factor
analysis. To identify A, B, I and C, restrictions must
be added. Two kinds of restrictions are common: re-
strictions on the matrices and restrictions on the core
array. The countertransformation equation (20) implies
that the columns of A, of B and of I' can be selected
to form orthonormal sets.

Since orthogonality conditions do not arise in spec-
troscopy, we now consider restrictions on C. Recall
that if a matrix x4 has an F-factor bilinear model, then
the 2-way core matrix C can always be taken to be the
identity matrix. A 3-way analog of an identity matrix
is a “diagonal” 3-way “identity” array Ir r, » whose en-
tries are 1 when all three indices coincide and are 0
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otherwise. Therefore, a 3-way analog of the identifiable
form of the bilinear model would be

(21) /l={A XBXF}*;;IF_F,F,

where F = min(F}, Fs, F5). This model was introduced
by Carroll and Chang (1970) and by Harshman (1970)
and was named Canonical Decomposition (CANDE-
COMP) in the first paper and Parallel Factors (PARA-
FAC) in the second. The matrices A, B and I’ cannot
be identified solely from u, because u is unchanged if
a;, B and y; are multiplied by 3 scalars whose product
is one or if the columns of A, B and I are subjected to
the same permutation. Kruskal (1977) showed that
frequently these (trivial) nonidentifiabilities are essen-
tially the only nonidentifiabilities by proving (4 sets
of) sufficient conditions for identifiability, up to the
inherent trivial difficulties mentioned above. His proofs
do not explicitly decompose u. Subsection 4.1 below
contains an explicit determination of the parameters
under stronger conditions than Kruskal’s, but without
assuming that the columns of A, of B or of I' are
orthogonal. Indeed, if A, B and I" are chosen without
orthogonal columns, and if u is defined via (21), the
identifiability implies that orthogonality of the col-
umns of the parameter matrices cannot be imposed
without increasing F. Therefore, some T3 arrays with
F, = F, = F; = F do not have F-term PARAFAC ex-
pressions.

Two other representations for the PARAFAC model
are convenient. The first form is an explicit outer prod-
uct form:

F
(22) H= 250X B Xy
f=1
or
F
(23) uli, j k1= 2 o187 velk],
=1

where y; here corresponds to y:C[f,f, f] of (19). The
smallest value of F for which (22) holds is the array
rank of u. The second representation is a matrix repre-
, sentation that follows from (22).by fixing the third
index of u at k:

F
=l k1= 2 ar X Bryslk]
(24) f=1

= AA4,B7, =1,...,K,

where 4, is a F by F diagonal matrix whose elements
are yk), f=1,..., F. Equation (24) shows that an
F-term PARAFAC model implies that the K matrices
. are weighted sums of the same F matrices a; X g,
with weights y/[&].

Comparison of (22) with (19) shows that an F-term
PARAFAC model is a T3 model with F; = F; = F3and
no outer products in which f, f: and f; are not all

the same. In the spectroscopy setting, such a term
corresponds to the properties of two or three different
fluorophores. That is, the presence of several fluoro-
phores results in an interaction among the fluoro-
phores. A general T3 model permits all possible 3-way
interactions to be present. Another subclass of models
would permit all interactions among two ways and no
interactions with the other way, which we take to be
the third way. Such models are known as 72 models.
Mathematically, T2 models have core arrays of order
F; X Fy X (F1F2) in which every C[fi, f2,] has exactly
one nonzero element. If the F; = F\F, vectors yy,. ..,
yr, are reindexed to have the two subscripts f1 and f5,
then the core array can be absorbed into the y’s giving
the mathematical form below for a T2 model:

F) Fy
(25) u= 27 2,05 X B Xynp
f1=1 f2=1
or
Fi Fy
(26)  uli,j, k] = le le anli] X Bplil X va, nlkl.
1=1 fo=

The matrix form for a T2 model implies that
m=Ao,BY, Ek=1,...,K,

where the F; X Fy; matrices @, will not be diagonal
unless a PARAFAC model holds. If u satisfies a T3
model with F3; < K, then g, can be represented as
above, where the matrices @, are not free to vary,
but must be linear combinations of the F3; matrices
corresponding to fixing a level of the core array C:

F3

D, = Z ))fg[k]C[, vf3]'
f3=1

This description of a T2 model uses an implicit core
array. However, if a new F; X Fy; X K core array I'* is
constructed by setting I'*[fi, f2, k] equal to ys,, r[k] of
(25), then

K
Y= 22 Iel, RMC*(fu, fo, B

k=1
and (25) is just
u=1{A X B X Ig}%s I'*,

So u satisfies a T2 model if a T3 model holds with
I' = Ix. It follows from (20) that the matrices A and B
and the core array I'* cannot be identified for T2
models.

The element-by-element forms of the PARAFAC and
T2 models have exactly the same form as the trilinear
models introduced in Section 2. Equation (23) is just
(4), where &f[i] replaces af[i], /[ j] replaces B¢ j], and
cs[k] replaces y/k]. Consequently, equation (4) is an
F-term PARAFAC model with parameter matrices ¢,
and c¢. Equation (7), describing fluorescence measure-
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ments on a specimen with excitation transfer, is (26)
with Ay [i] replacing agli], 7,[j] replacing Br,[j] and
Q. r[k] replacing s, ,[k]. That is, (7) is a T2 model with
parameter matrices A and = and core array Q.

3.3 General Multiway Arrays

All of the models for 3-way arrays can be extended
to N-way arrays. Lastovicka (1981) discusses 4-way
extensions of T3 models, and Kapteyn, Neudecker and
Wansbeek (1986) discuss N-way extensions, using ma-
trix notation. Carroll and Chang discussed CANDE-
COMP models for r-way arrays, as well as for 3-way
arrays. We outline N-way array notation, and indicate
some spectroscopic applications. For more properties
of the N-way product, see Leurgans (1991).

The multilinearity hypothesis is that an N-way array
u is a separately linear function of V parameter matri-
ces Ay, ..., Ay with the property that the separate
linearity respects the array structure. The i,th row of
the nth matrix A, is assumed to affect only those
elements of u with nth index equal to i,. It can be
shown that the multilinearity hypothesis implies that
41 must be the weighted sum of N-way arrays that are
the N-fold outer products of one column of each of the
matrices A,, n =1,..., N, to be abbreviated by

2= {X=1A,}xnC,

where C is the fixed N-way core array of coefficients.
If the core array is unrestricted, the matrices A, will
not be identifiable, because the *xy-product is associa-
tive, so the core array can be counter-rotated if the
matrices A, are multiplied on the right by nonsingular
matrices.

For general N = 2, the array C cannot be forced to
be diagonal, and assuming special hypotheses corre-
sponds to considering special submodels. The only sub-
model that has received much attention is the N-way
PARAFAC model, in which the elements C are assumed
to be 0, unless all N indices are the same. These models
can be written as

F
27) u=2aX - XaMe,

, =
where ¢ denotes the element of C with all indices equal
to f and af = A,[, f]. Fixing all indices of x except for
the first two ways, (27) implies

(28) l‘[y 9i39 e viN] = AlDi3

where the F X F diagonal matrix D;, ..., ;y has fth diag-
onal element equal to c/ITh=3 A,[i., f]. But (28) just
implies that a 3-way PARAFAC model holds for an
I, X I, X (TTA_31,) 3-way array. Since the parameters
of a 3-way PARAFAC model are identifiable (up to
isolated singularities), the parameters of N-way PARA-
FAC models are identifiable, and many of the methods

T
iNA29

.....

for 3-way PARAFAC models can be extended to more
ways.

Arrays with more than 3 ways occur in spectroscopy.
Equation (5) is a 4-way PARAFAC model. Another
4-way PARAFAC model was considered by Durell et
al. (1990). Equation (6) is a 1-term 5-way PARAFAC
model.

4. ESTIMATION OF THE PARAMETERS OF
PARAFAC MODELS

Least-squares estimation of the parameters of a
PARAFAC model requires minimizing the quadratic
function of the vectorized residuals

Q(A, B, I') = | vec(Y) — vec(u) |1

The criterion @ is a nonlinear function of (A, B, I'), and
is unchanged when columns of A, B and I are subjected
to the same permutation. This permutation invariance
of @ guarantees that @ has many local minima. There
is no closed form solution to the least-squares optimiza-
tion problem, so iterative algorithms are generally em-
ployed. The observation above that multiple minima
should be anticipated suggests that good initializations
are important. (Our numerical experience strongly sup-
ports the importance of initializations.) Gnanadesikan
and Kettenring (1984) pointed out that one way to
initialize algorithms is to find a method that recovers
the parameters in the absence of noise. In our context,
the array u of (22) needs to be decomposed into its
constituent parts. The first subsection discusses this
problem and gives an intuitive explanation of the si-
multaneous decomposition presented in Sanchez and
Kowalski (1988a, b, 1990) and in Burdick et al. (1990).
The decomposition is also closely related to the alge-
braic decomposition of Sands and Young (1980). The
explanation is similar in spirit to that of Sanchez and
Kowalski (1988b).

A recursive approach is suggested by the observa-
tion that the model is the sum of F terms of the same
form. Thus, it seems natural to fit the model by fitting
a “leading” triad, subtracting it off, fitting another triad
to the residuals, and so on. The second subsection
demonstrates that even in the absence of noise, F-term
PARAFAC models cannot be fitted by fitting a se-
quence of 1-term models. Our simple demonstration
indicates that PARAFAC models should not be fitted
recursively, but all parameters should be estimated
simultaneously.

4.1 Simultaneous Estimation of F PARAFAC Terms

Consider an array u satisfying (22) and ask whether
it can be decomposed intc a unique triple (A, B, I).
From the discussion below (21), some Parameterization
Conventions must be imposed. One natural convention
used by Leurgans, Ross and Abel (1992) is that the
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columns of A and of B have length 1. Kruskal (1977)
gave several sets of conditions under which a decompo-
sition is unique. Since the models of greatest practical
importance are those with F' = 2, 3 or 4, we concentrate
on an explicit decomposition feasible under the strong-
est of Kruskal’s uniqueness conditions. The decomposi-
tion has an intuitive explanation in the spectroscopic
setting. We provide this explanation in four steps.
First we argue that if the properties of the fluorophores
are known, then their concentrations can be deduced
from subarrays of u. The second step is the fact that
the model implies that the expected fluorescence inten-
sities are transformed linearly when the chemical condi-
tions change and excitation wavelength is fixed. The
third step is the verification that the columns of B
are eigenvectors of the matrix representing this linear
transformation. The final step is the construction of
the matrix directly from 4. We shall show that the final
step is an easy consequence of properties of Moore-
Penrose generalized inverses. The equivariance of the
models under permutations of the ways of the array
implies that A and I' can be identified under similar
conditions.

For this subsection, it is convenient to reparameter-
ize so that all F vectors for each way have unit length.
Therefore we now include a scalar parameter ([f] in
the fth term of (22) and thus the model we consider
for the expected fluorescence intensity at excitation
level i, emission level j, and chemistry level & is

F
29) uli, j, k] = ; aE1BA i 1yARKL f),

i=1,...,.I;j=1,...,J; k=1,...,K,

where [l = [l = llyl = 1,f =1, ..., F. The parame-
ter a[i] is proportional to the fraction of incoming light
at wavelength i absorbed by fluorophore f, B[j] is
proportional to the fraction of emissions from fluoro-
phore f emitted at wavelength j, y/[k] is proportional
to the fraction of photon absorptions by fluorophore f
that yield fluorescence under chemistry conditions &,
([f] is the scaled concentration of fluorophore f in
appropriate units, and F is the number of fluorophores.
(The scaling of the concentration is multiplication of
the concentration by physical constants such as the
average extinction coefficient and the average quantum
yield.) We assume that all fluorophores will fluoresce
under some of the conditions, or that a[i]5:[ jlys[k] # 0
for some i,j, k and every f. This property implies that
the ([f]'s are identifiable: The concentration of com-
pounds that do not fluoresce under any of the condi-
tions employed will not be relevant to the experiment.

Consider the IK J-vectors uli, , k] containing the ex-
pected fluorescence intensities at the various emission
wavelengths when excitation (i) and chemistry (k) are
fixed. We shall refer to this vector as the (i, k)th emis-

sion profile. We first argue that if the properties of the
fluorophores (A, B and I') are known, then the scaled
concentrations ¢ can be deduced from any emission
profile to which all fluorophores contribute.

We use the equation for { to show that the effect on
the emission profiles of changing the chemical condi-
tions is a linear transformation of the emission profiles.
That is, if & # &/, then u[i,, k'] is a linear function of
uli, , k). Moreover, we demonstrate that the linear func-
tion is the same for all excitation levels i, so the linear
transformation corresponds to a matrix 7, 5. The trans-
formation matrix 7z, depends on B and I, properties
of the fluorophores. We will argue that the columns of
B are eigenvectors of every transformation matrix, so
that if a transformation matrix can be deduced from u
alone, then the columns of B can be determined from
4. The final step in our explanation is therefore the
derivation of the transformation matrix from u.

The model (29) implies that each element of u is a
linear function of {. Consequently, all subsets of vec(u)
are linear functions of {. For example, u[i, , k] satisfies

F
(30) uli,, k1= 2 BrafilyARIC[ f1= BD; i,
f=1

where D; ; is the F by F diagonal matrix whose fth
diagonal element is a[i]y/[k]. The matrix BD; is the J
by F matrix that maps ¢ into u[i,, k]. Since u is the
expectation of an observable array, while { is not the
expected value of a fluorescence intensity, the con-
centration vector ¢ needs to be deduced by solving
equation (30). The equation can be solved uniquely
whenever the rank of BD;; is F < I, or when the F
columns of B are linearly independent and D;; is non-
singular. The condition of linear independence can be
interpreted as a requirement that no two different
mixtures of fluorophores have the same fluorescence
intensities at all emission wavelengths: no mixture can
be substituted for any other mixture without some
change in the expected fluorescence intensities. The

_ nonsingularity condition is that a/i]y/k] be nonzero

for every f, or that every fluorophore fluoresces at the
fixed excitation { and chemistry k. If these conditions
hold, then

(31) C = Di,_kBJrﬂ[iv ’ k]’

where the Moore-Penrose generalized inverse of B is
B = (B"B)"'B”. Observe that if y is a hypothesized
value for u[i, , k], any component of y orthogonal to the
column space of B will be mapped to { = Or by (31).
We emphasize that (31) shows that the true concen-
trations ¢ are a known linear function of the emission
profiles for fixed i and k. If equation (31) for i and % is
substituted into (30) for i and %/, it follows that

(32) uli,, k'l = BD; v D7 }B'uli, , k]
(33) = T,k ,u[iy ’ k]’
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where the J X J transformation matrix 7 » maps
the emission profiles under chemistry % to those for
chemistry &’ when excitation level i is fixed and im-
plicit. However, the product of the diagonal matrices
in (32) is a diagonal matrix with fth diagonal element
ali 1yl Voslilysk) = yflk’)/y/k], aratio independent of
i. Defining D, to be the diagonal matrix with fth diago-
nal element y/[k], the transformation matrix is

(34) 7,.» = BDyD; 'BY,

where the implicit excitation level i can be ignored.
Therefore, the model (29) implies that changing chemi-
cal conditions induces a linear transformation of the
emission profiles, and that the linear transformation is
the same for every excitation wavelength. Note that
(34) holds even when y/[k’] = 0 for some values of f.

We now explain how the spectra # can be obtained
from the transformation matrices. Multiplying equa-
tion (34) on the right by B gives

(35) ‘L'k_ka = BDk'Dk_l.

Since the matrix DD, ! is diagonal, (35) establishes
that the columns of B are eigenvectors of 7 » with
eigenvalues y;[k’]/y/[k]. The spectroscopic interpreta-
tion of this property is that if only one fluorophore
is present, then the vector of expected fluorescence
intensities always has the shape of the spectrum of
that fluorophore; only the overall intensity can change
with chemistry. If any transformation matrix has F
distinct nonzero eigenvalues, then every column of
B can be deduced up to scalar multiples from that
transformation matrix.

Therefore the emission spectra can be deduced from
the transformation matrices, matrices that were de-
fined as functions of the emission and chemistry spec-
tra (34). We now show that the transformation matrix
s, 1 is determined by the matrices ul,, #’] and 4, , k].
Intuitively, if the pairs of expected fluorescence vectors
uli,, #’] and ufi,, k] are known for many i =1, ..., I,
then the transformation matrices 7, satisfying (33)
can be determined directly from u. It will follow that
the emission spectra B can be deduced from u even if
A and I' are unknown. '

To establish this claim mathematically, observe that
(34) implies trivially that

Thp = BD, 1Dy 1Bt,
If the excitation spectra are linearly independent, then

AT(ATt = I, so substitution for Ir in the equation
above gives

Thp = BDkAT(AT)TDk_ 1Bt,
When the columns of A and of B are linearly indepen-

dent and D, is nonsingular, Corollary 5 of Theorem
2.16 of Pringle and Rayner (1971) states that the

Moore-Penrose inverse of (BD,A”) is the product of the
Moore-Penrose inverses in reverse order, so that

tow = (BDyAT)BDAT)' = ul(u])t,

and 7;, » can be determined directly from x even when
neither A and B are known.

We comment on two characteristics of this decompo-
sition. The decomposition collapses if the third way
has only one level because two or more chemistries
must be observed if the effect of changing chemistry
is to be deduced. Therefore, the decomposition does
not contradict the known nonidentifiability of bilinear
models. Secondly, we note that the array rank of u is
determined during the decomposition, because F will be
the number of non-zero eigenvalues. All F columns of
A, B and I are recovered simultaneously: the columns
are not derived sequentially. Indeed, in Subsection 4.2
we show that sequential fitting is only possible if two
of the parameter matrices have orthogonal columns.

To adapt this decomposition to initialize cycling-
least-squares (or other iterative) algorithms, the array
Y can be substituted for u, giving sample transforma-
tion matrices

#w= YE(YT),

These matrices are square, but they are seldom sym-
metric, so their F leading eigenvalues may contain
complex conjugate pairs when F > 1 if (29) does not
hold exactly. Essentially, Leurgans, Ross and Abel
(1992), Burdick et al. (1990) and Sanchez and Kowalski
(1988a, b, 1990) replace (Y7)! with (Y%)!, where Y =
YK Y. Since sample discrepancies with (29) generally
introduce additional nonzero eigenvalues, all three pa-
pers use variants in which the matrices Y, are linearly
transformed to matrices with F rows and columns,
so that the resulting analogs of the transformation
matrices are F X F. If (29) holds exactly, then the
parameters will be recovered. The requirement that
each fluorophore have some emission for each chemis-

_try can be weakened to the requirement that each

fluorophore have some emission at some chemistry.
See Leurgans, Ross and Abel (1992) for even weaker
conditions, and for some discussion of our experience
using these relationships to initialize least-squares cal-
culations.

4.2 Recursive Estimation and 3-way PARAFAC Models

One useful property of real matrices is that the
least-squares rank-P approximation to a matrix can be
found by determining P rank-1 approximations. For
example, the best rank-2 approximation is the sum of
the best rank-1 approximation to the original matrix
and the best rank-1 approximation to the matrix ob-
tained by subtracting the first rank-1 approximation
from the original matrix. The fact that rank-P approxi-
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mations can be constructed recursively is a conse-
quence of the singular value decomposition and is
sometimes called the Eckart-Young Theorem (Eckart
and Young, 1936).

The simplest 3-way generalization is rank-1 least-
squares approximation of rank-2 arrays. In analogy
with the matrix problem, we ask whether a rank-2 array
is always the sum of the best rank-1 approximation to
the rank-2 array and the best rank-1 approximation to
the array difference of the original rank-2 array and
the first rank-1 approximation. Equivalently, the ques-
tion is whether the array difference has rank-1.

If Kruskal’'s conditions hold, then the rank-2 array
has a unique representation as the sum of two rank-1
arrays. Therefore the array difference can only have
rank 1 if the array difference is one of the rank-1 arrays
in the original representation, which would force the
best rank-1 approximation to be the other rank-1 array
of the representation. The proposition below states
that if the best rank-1 approximation coincides with
one of the rank-1 arrays of the original representation,
then at least two of the pairs of vectors in the original
representation are orthogonal.

ProrosiTioN 4.1. Suppose (a1, az), (81, B2) and (y1, p2)
are pairs of linearly independent nonzero I, J, K vec-
tors, respectively. Define the 3-way array u by

,u=a1><ﬂ1><y1+a2><ﬂ2><yz.

If

inf [g—aXpXyl|

o B,y
is achieved by (&, B, %) = (ap, By y)), for f=1, then at
least two of the three pairs of vectors (a1, ag), (B1, B2)
and (y1, y2) must be orthogonal.

Proor. The conditional linearity of x4 implies that
the solution to the minimization must simultaneously
solve the following three normal equations:

Z(ﬂ[, J k1= &/?[j])"[k]>l?[jb"[k] =0y,
Ik

3 i, 11— ati1B30R1 i) = O

ik

Z(n{i,jl - d[i]/?[j]f')&[i]/?[j] = Ok

LJ

If ¢ = a;, p = p1 and § = y,, then substitution in the
first equation results in the equation

Z<a2ﬁ2[j])’2[k]>ﬁ1[j]71[k] =0

Jk

Collecting terms in j and in & shows that

a2<; Balj1Bilj ]><; Yz[k])’1[k1>

= ay(B"B)[2,1](I''T)[2,1] = 0.

Since the vector a; is assumed to be nonzero, the inner
product of #; with B, or of y; with p, must be 0.
Similarly, the second and third equations imply that
either a; must be orthogonal to a; or both (8;,8:) and
(y1, yo) are orthogonal pairs of vectors. The conclusion
follows. [

This proposition shows that unless orthogonality
conditions can be imposed, fitting PARAFAC models
with fewer terms than are actually present cannot
recover the parameters of the larger model. Since the
orthogonality conditions are tenable in few spectro-
scopic contexts, the initialization methods of Subsec-
tion 4.1 are to be preferred to increasing F' and using
the parameter estimates from the (F — 1)-term PARA-
FAC model to initialize the F-term model.

5. EXAMPLES

We present three examples: one with theoretical
arrays, one with real data from a wet chemistry simula-
tion, and one with data from biological specimens. In
each of these applications, the data are fluorescence
intensity as a function of three independent variables:
excitation wavelength, emission wavelength and the
concentration of a fluorescence quencher, so that the
fluorescence from each component declines with in-
creasing concentration. The mathematical example
shows that when 3-way trilinear models hold, separate
bilinear models, as implemented by separate singular
value decompositions, may not reveal the underlying
multilinear structure. The second is a wet chemistry
simulation: the properties of 3 dyes were recovered
when the dyes were mixed. The third example demon-
strates the use of multilinear models to resolve the
properties of components within a biological system:
the components are individual amino acids within a
protein.

5.1 Example 1: A Three-way Array without Noise

We started with 3 matrices A, B and I, chosen
to be typical of excitation, emission and quenching
spectra, of dimension 20 X 3,25 X 3 and 5 X 3, respec-
tively. The columns of each matrix are plotted against
level number in Figure 3. The columns of A and B have
been scaled to have Euclidean length 1. These vectors
for the first two ways are unimodal and positive, with
the peak for the second factor being between the peaks
for the other two. The vectors for the third way are all
decreasing and roughly linear. The inner products of
the vectors for each way in Table 1 quantify these
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Fic. 3a. Excitation and emission spectra for three factors in mathematically synthesized system.

observations: the inner products for the first two ways
are 0.01 for factors 1 and 3, are near 0.4 for the factors
1 and 2, and near 0.3 for the factors 2 and 3. The
columns of I" are less distinct: all of the inner products
for the third way exceed 0.9.

We then computed the 20 X 25 X 5 array u from
(22). Figure 4 shows perspective plots of the elements
of u1, u3 and us against the levels of the first and second
ways. Each picture shows three clear bumps. Each
bump is from one of the triads, or of the three values
f=1,2,3. The relative and absolute heights of the
bumps vary with %, the level of the third way. The
equation (24) guarantees that the 5 matrices u can all
be decomposed as the product of a 20 X 3 matrix, a

3 X 3 diagonal matrix and a 3 X 25 matrix using the
same 20 X 3 and 3 X 25 matrices.

These product decompositions of the 5 matrices are
not unique: the matrices u;, all have rank 3, and must
therefore have singular value decompositions U,D; V7,
where the U,’s are 20 X 3 matrices with orthogonal

_columns, the D;’s are 3 X 3 diagonal matrices, and the

V's are 25 X 3 matrices with orthogonal columns. The
numerical accuracy of our calculations is supported by
the singular values for the 5 matrices u: given in
Table 2. These singular value decompositions are also
product decompositions of the form (24), except that
the 20 X 3 and 25 X 3 matrices are constructed inde-
pendently for each k. Recall from Table 1 the columns

. TaABLE 1
Inner products of scaled vectors for Example 1, a three-way array without noise

Excitation (first way) I = 20 (@)

Emission (second way) J = 25 ()

Quenching (third way) K = 5 (y)

1.000 - - 1.000 - - 1.000 - -
0.380 1.00 - 0.409 1.000 - 0.972 1.000 -
0.014 0.306 1.000 0.015 0.306 1.000 0.932 0.990 1.000
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Fic. 3b. Chemistry parameters for three factors in mathemati-
cally synthesized system.

of A are not orthogonal, so the 20 X 3 matrices of left
singular vectors will not coincide with A. Each panel
of Figure 5 displays a column of A or of B with the
appropriate columns of U, or V,. Each row of the figure
is for a different triad. The line in each panel connect-
ing asterisks is the theoretical spectrum obtained from
A or B. The other lines are columns of U, or V,, for
" some k. '

The columns from the singular value decompositions
are different from the true spectra, so recovering multi-
plicative decompositions for each matrix u does not
reveal the underlying multilinear model, even in the
absence of noise. The first left singular vectors do have
positive elements, but they are shifted toward the
second and third columns of A. The sets of second and
third singular vectors have negative lobes forced by
the requirement that singular vectors by mutually or-
thogonal. The first two singular vectors for the fifth
level of the third way, which is the level with smallest
elements of D, are nearer to the first two columns of
A than the other singular vectors are.

Quenching Level 1

Vi)
SN

Fi1c. 4. Expected intensity as a function of emission and excita-
tion wavelengths for three levels of chemistry for mathematically
synthesized system. (A) Quenching level 1. (B) Quenching level
3. (C) Quenching level 5.
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TABLE 2
Singular values of fluorescence matrices for 5 quenching levels corresponding to fixed levels of the third way

Quenching level (k)

Singular
value 1 2 3 4 5
1 6.671 X 10* 6.106 X 10* 5.606 X 10* 5.100 X 10* 4.485 X 10*
2 4.337 X 10* 3.560 X 10* 2.842 X 10* 2.160 X 10* 1.479 X 10*
3 2.194 X 10* 1.870 X 10* 1.506 X 10* 1.119 X 10* 7.300 X 103
4 1.5 X 1071 7.9 X 10712 6.3 X 10712 5.4 X 1072 6.1 X 10712
Ratio of first singular value to third singular value
3.04 3.27 3.72 4.56 6.14

Example 1, a three-way array without noise.

Since the singular vectors vary with &, although A
and B do not, separate singular vector decompositions
do not detect the shared structure of the 5 matrices
M. Moreover, we now show that the singular vectors
from u;, cannot be used to decompose uy for &' # k.
Observe that the coefficients y/[k] could be recovered
from m, A and B by regressing the 25 % 20 = 500
elements of u; on the three predictor variables deter-
mined by a; X f, f=1,2,3. Formally, let Y, be the
vector obtained by stacking the columns of x4 one
above the other, so that Y, = vec(u:). Take X to be the
500 X 3 matrix whose fth column is vec(f; X a;). By
the construction of x, the multiple correlation of Y,
with the columns of X is 1, for each k. To investigate
how well the decomposition estimated from one level
of the third way (k') can reconstruct the matrix for
another level of the third way (&), we computed R7,,
the multiple correlation coefficient of Y, with the three
columns of X, defined by X[, f]= vec(Vi[,f] X
U 1D, f=1,2,3.

These multiple correlation coefficients are provided
in Table 3. The only multiple correlation coefficients
that equal 1 are the diagonal elements of the table,
elements that correspond to using the singular vectors
from level &’ to fit the matrix from the same level %'
The quality of the prediction of Y; from the singular
vectors of level &’ decreases as k moves away from %'
The worst fit for each singular value decomposition
k' is marked with an asterisk. The smallest multiple
correlation coefficient is seen to increase with 2’.

We see from this mathematical example that a trilin-
ear model can recover structure that is not revealed
when separate bilinear models are fit.

few entries were missing because the excitation and
emission wavelengths are too close together to be able
to measure fluorescence accurately. We have extracted
the 16 X 15 X 6 array that corresponds to excitation
wavelengths from 440 nm to 560 in steps of 20; emis-
sion wavelengths from 570 to 610 in steps of 5, from
620 to 640 in steps of 10 and to 700 in steps of 20; and
quenching levels 0, 15, 30, 50, 75 and 100 millimolar
concentrations of potassium iodide.

Figure 6 shows perspective plots of the fluorescence
data. There are several bumps visible, and their relative
heights change with quenching level, but the exact
number of bumps is less clear than in Figure 3. For
fixed quenching level, the 6 induced matrices M, are
essentially rank 3 matrices, because the ordered singu-
lar values given in Table 4 settle down after the third
singular value. The decrease is much less striking than
with the mathematically synthesized data of Example
1. The singular vectors for the 6 arrays are displayed
in Figure 7. While the 6 sets of vectors are remarkably
similar, they are not identical. The multiple correlation
coefficients of the responses observed at quenching
level & with the predictors induced by the singular
vectors obtained from quenching level &’ are shown in
Table 5.

We see that the multilinear model fits the laboratory
array nearly as well as the multilinear model fits the
mathematically synthesized array.

TABLE 3
Multiple correlations of fluorescence at level k with
predictors from singular value decomposition at level k'

Quenching level (k)

5.2 Example 2: A Mixture of Dyes B! 1 2 3 4 5
This example shows that the method works in a 1 1.000 0.992 0.966 0.918 *0.843
demonstration system. Three dyes were mixed. Fitting 2 0.994 1.000 0.993 0.967 *0.918
the PARAFAC model to data from the mixture accu- 3 0.979 0.994 1.000 0.993 *0.967
4 *0.960 0.980 0.994 1.000 0.993

rately recovered the properties of the individual dyes.
The original data from Lee (1988) (see also Lee, Kim
and Ross, 1991) form a 25 X 28 X 6 array, in which a

Example 1, a three-way array without noise. The asterisk marks
the lowest multiple correlation in each row.
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Fic. 5. Excitation and emission spectra for mathematically synthesized system with singular vectors from each level of chemistry

superimposed.
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dyes described in Section 5.2.
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TABLE 4
Singular values of fluorescence matrices for 6
quenching levels (k) corresponding to fixed levels
of the third way

Quenching level (k)
value 1 2 3 4 5 6

1 4.8387 3.0538 2.9512 2.8284 2.4325 2.1724
2 0.5661 0.3286 0.2776 0.2240 0.1482 0.1101
3 0.0474 0.0398 0.0366 0.0377 0.0337 0.0271
4 0.0039 0.0050 0.0041 0.0035 0.0043 0.0035
5 0.0034 0.0031 0.0026 0.0027 0.0030 0.0029
6 0.0026 0.0026 0.0023 0.0021 0.0028 0.0019

Example 2, mixture of dyes.

TaBLE b
Multiple correlations of fluorescence at level k with
predictors from singular value decomposition at level k’

Quenching level (k)

4 1 2 3 4 5 6

1 1.0000 0.9499 0.9527 0.9265 0.8810 *0.8515
2 *0.9508 1.0000 0.9994 0.9973 0.9851  0.9732
3 *0.9548 0.9994 1.0000 0.9971 0.9831 0.9700
4 *0.9312 0.9973 0.9971 1.0000 0.9941 0.9852
5 *0.8900 0.9855 0.9837 0.9942 1.0000  0.9980
6 *0.8612 0.9735 0.9708 0.9855 0.9980 1.0000

Example 2, mixture of dyes. The asterisk marks the lowest multi-
ple correlation in each row.

5.3 Example 3: Components of a Biological System

Of the twenty amino acids most common in proteins,
only tryptophan and tyrosine give off easily measur-
able amounts of fluorescence. In the experiments de-
scribed here, excitation and emission wavelengths were
chosen so that tyrosine fluorescence would not be ob-
served, leaving tryptophan as the only expected source
of fluorescence. A small protein may have two or three
tryptophans, each of which has unique properties
whose resolution provides information about its loca-
tion in the protein. Alcohol dehydrogenase, the catalyst
for the first reaction in the breakdown of alcohol, con-
tains two tryptophans. Figure 8 shows the resolution
of fluorescence from this protein into three compo-
nents. Two correspond to the two tryptophans. One of
them (amino acid number 15) is at the surface where
it can be quenched by iodide; the other (number 314)
is in the center of the protein, where it cannot be
reached by the quencher. The third component was
unexpected, and is due to impurities (Thampi, 1991).

This example demonstrates the resolution into three
components of the fluorescence from amino acids in a
protein. These spectra provide information about the
structure of the intact protein, so that chemical separa-
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Fi1G. 8. Resolution of fluorescence from the protein horse liver
alcohol dehydrogenase into three components, identified as
Tryptophan-314 (triangle), Tryptophan-15 (square), and impurity
(circle).

tion of the amino acids would have destroyed the sys-
tem being studied.

6. CONCLUSION

Trilinear models can be used successfully to study
complex specimens. Our interest in biological systems
has caused us to emphasize mathematical resolution
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of components that cannot be separated chemically.
Analytical chemists are also interested in using multi-
linear models to resolve spectra, in order to save the
time and expense of chemical separation (Burdick et
al., 1990). Kroonenberg (1983, 1991) cites other applica-
tions.

Figure 1 showed the absorption due to the photosyn-
thetic pigments in a pea leaf. Here also, chemical sepa-
ration would alter important properties of the system
being studied. Our resolution of pea pigment fluores-
cence into two components was the first application
of a trilinear model to the fluorescence spectra of a
biological system (Ross et al., 1991). Our current work
on photosynthetic pigments aims to resolve additional
components, with excitation transfer between compo-
nents represented by a T2 model.

Statistically, trilinear models behave differently from
bilinear models. As seen in Section 4, although the
parameters of some trilinear models are identifiable,
the parameter estimates change when F increases. By
contrast, the parameters of bilinear models are not
estimable without mathematical constraints. And with
these constraints, recursive estimation of the parame-
ters as F increases is possible. Therefore the intuitions
gained from work with bilinear models cannot be
trusted as guides for multilinear models. The formal
tractability of multilinear models should provide good
test models for nonlinear least-squares theory. The
attention given to multilinear models will increase; we
hope this exposition will provide an especially concrete
example of their value.

APPENDIX

This appendix contains three mathematical proposi-
tions referred to in the body of the paper. The state-
ments and proofs are extracted from Leurgans (1991).
The bilinear proof is in the first section. In the trilinear
section, Lemma B.1 is used in the proof of Proposition
B.1. The final section contains an explicit proof of a
associativity property.

_A. Bilinear Results )

This section contains a self-contained argument that
if every row of u is a conditionally linear function of
the corresponding row of A and every column of x is
a conditionally linear function of the corresponding
row of B, then (36) holds. The notation here anticipates
the notation for higher-way arrays.

ProrosiTion A.1. Ifuis I XJ, Ais I X Fiand Bis
J X Fs, and if

uli]=MAL), i=1,..., 1,

:a[’j]=M2'B[j’]’ j=1)"~y Jy
where M, is a matrix function of B (independent of A)

and M, is a matrix function of A (independent of B),
then there exists a conformable matrix C such that

(36) u=ACB".

Proor. We first construct a matrix factorization for
4 in terms of a matrix for each way and then show that
we can deduce a factorization in terms of A and B.

Let R; (respectively R,) be the dimension of C(u)
(C(uT)), the column space of u (of u”). By the definition
of rank, there is an I by R; matrix A whose R, linearly
independent columns span C(u). If A" denotes the
Moore-Penrose generalized inverse of A, then AA" is
the matrix that projects vectors in ®R7 into C(u). Since
the columns of x are automatically in C(u), AA" pre-
serves the columns of 4, so that

AAu=p.
Similarly, a J X R; matrix B exists whose linearly
independent columns are a basis for C(u?), and BB'-
u” = u”. Combining these two equations gives A ATuB'”-
BTu = u. Setting C = ATuB'", the displayed equation
gives a matrix factorization for u:

(37 u=ACB”

The conclusion will now follow once A and B are written
in terms of A and B.

To write B in terms of B, observe that the second
hypothesis is that the columns of u are linear combina-
tions of the columns of B”. Since the column space of
a matrix is the set of linear combinations of its col-
umns, the hypothesis is that the columns of x4 belong
to the column space of B%, which implies that C(BT”)
contains C(u). But the construction of B guarantees
that C(u) = C(BT), so each column of BT must be a
linear combination of columns of B, or that

E T = X BBT,
where the R, X F; matrix Xp contains the coefficients
for the linear combinations. A similar argument applied

to C(u”) shows that there exists an R; X F; matrix of
coefficients X4 such that

Z = AXA.

Substituting for A and B in (37) and setting C =
X4CX% completes the proof. [

B. Trilinear Results

LemMA B.1. Let 9 be a nonempty family of
I X J X K arrays. Let C: denote the linear subspace of
R! generated by {u[,j,k,j=1,...,J; k=1,..., K;
ue M}, let Codenote the linear subspace of ®’ generated
by {uli,,kRl,i=1,...,[k=1,...,K;uedM}, and let C;
denote the linear subspace of ®% generated by {uli, j,],
i=1,...,Lj=1,...,J; ueM}. Let A be any I X R,
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matrix whose R, linearly independent columns are a
basis for Ci, let B be any J X R, matrix whose R,
linegrly independent columns are a basis for Cq, and
let I be any K X R3 matrix whose R; linearly indepen-
dent coiumns are a basis for Cs. Definean R; X Ry X R3
array C in _terms of the Moore-Penrose generalized
inverses of A, B and I by
C={A" B!, .

Then every array u € M satisfies

Proor. Although this lemma is equivalent to the
statement that the R1R:Rs vectors A[, 1] X BJ, rs] X
I'[, rs] form a basis for the span of 9, we provide an
explicit proof based on an associativity property of
xg-multiplication, a property established for *y-multi-
plication in Proposition C.1 below.

First observe that the I X I matrix AA" projects R’

into @;. Since all vectors 4, j, k] belong to C,, they are
invariant under projection:

AAMl,j k1= uljkl, j=1,...,J;k=1,...,K.

The JK equations above can be written as one equation
using *3:

(38) {AAY X I; X Ixpespu = pu.

By the same arguments, BB' uli,, k] = uli,, k] and
IT" pli,j)] = pli,j)], or

(39) {I; X (BB") X Ix}spu = p
and
(40) (I X Iy X (T} = p.

Substituting (39) and then (40) for # in the left-hand
side of (38) gives

{(KKT) X IJ X IK}*3({II X (EET) X IK}*g
({I; X Iy X (TT}*s ) = .

But two applications of the associativity property re-
duce the three #s-products to one:

{(AA") X (BB") X (IT}*sp = p.
Appiying associativity again to move the generalized

inverses out of the 6-way array and into the 3-way
array gives

{A X BXT}*3({At X Bt X T} p) = .

The lemma now follows from substitution. [

ProposiTioN B.1 If u is a separately linear function
of A, B and I such that u[i,,] depends on A only
through Ali,), ul,j,] depends on B only through BJ j,],
and u, , k] depends on I' only through I'[k,], then there
exists a fixed F1 X Fy X Fs array C such that

u={A XBXTI}*;C
for all u € M.

Proor. By Lemma B.1, u = {A X B X I'}*3 C, where
T is a basis for @3, which contains all of the vectors
Mz, j,]. But the parallel conditional linearity hypotheses
imply that u[i,j, k] = I'lk,]"v, where v is an F3; X 1
vector function of A[i,] and BJ[ j,]. Stacking the K
equations gives u[i,j,] = I'v, which shows that each
vector ufi,j,] is a linear combination of columns of I,
so that C; must be a subset of C(I'). Since the columns
of I' are thus a basis for a subspace of the span of the
columns of I', there must exist an Fs X R3 matrix X,
such that I = I'’X,. Similarly, B= BXp and A = AX,,
so that substitution in the expression for u gives

#={lAX,) X (BXp) X (I'X)}*; C.

By the associativity properties of #s-multiplication, if

the array C is set equal to {X4 X Xp X Xt}*3 C, then
u=1{A XB X I} C.

The array C cannot depend on A, B or I, because
otherwise one of the conditional linearity hypotheses
would fail. O

C. Associativity Property

The *y-product of exchanged outer product arrays
and N-way arrays has a useful associativity formula:
If an N-way array A; is equal to the *y-product of a
2N-way exchanged outer product array and a second
N-way array A, then the *y-product of a second
2N-way array with the first N-way array A; is equal
to one *y-product of a third exchanged outer product
array with A. The matrices of the third outer product
array are the ordinary matrix products of the corre-
sponding matrices from the two exchanged outer prod-
uct arrays. The extension of Proposition C.1 to arrays
A with order greater than N is an immediate corollary.

_The lemma is the key to the proofs that multilinearity

is equivalent to a *y-product form.

Prorosrition C.1 (Associativity of *y-Products). If
each pair of matrices (M, N,),n =1, ..., Nis conform-
able for matrix multiplication and if {X3=1 N,} is con-
formable for *y-multiplication with the N-way array A,
then

{an=1 Mn}*N({XiLl N.}xnA)

(41)
= {X35i(M, No)py A.

Proor. The proof is an exercise in notation and in
the distributive properties of addition and multiplica-
tion of real numbers. Let the dimension of N, be (J,,
K,). The lemma will be established by evaluating each
side of (42) at a typical N-tuple of indices.
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We begin by evaluating the formulas for the 2N-way
arrays of the left-hand side at a typical N-tuple of
indices. A typical element of the exchanged product of
the matrices M, is

N
(42) {x£1v=l Mn}[ilv ceey iN9j19 LRI vjN] = IIMn[inyjn]y
n=1
and the exchanged product of the matrices N, is
N
{(XNar N}y - - < odms Ry o v oy bl = TT Nl Bl
n=1

So the second *y-product on the left in (42) has the
general form
{an=l N, n}*N A

(43) = > (XN ... k... k]

- Alky, ..., kNl
and typical element
({an=1Nn}*NA)[j1v e vjN]
K Ky / N
=32 < I N,,[jn,kn]>A[k1, R % R
k1=1 kN=1\ n=1

Writing out the definition of the left-most #y-product
in (41), the (i1, . . . , i) element of the left-hand side is

J JN
Z e Z ({xﬁtv=l n}[ilv “ e ey iijlv e yjN])
a1=1 JjN=1

({an=an}*NA[jlv “ e 9jN])~
Substitution of (42) and (43) in the equation above
gives

-

% T JZN<]1.-VIMn[imjn]>

Jj1=1 JN=1\n=1

Ky KN , N
’ Z t Z < H Nn[jnv kn]>A[k1, oo ,kN].
k1=1 kN=1 \n=1

Moving the product of elements of the M,’s inside the
summation in the vector of indices k yields

3 >(( "I=N11 Mn[in,m)(nf:ll Nl bl Al . ).
Now we combine the two products (IT) into one:
5 ;(ﬁ Mol 5Nl Alhs -
Interchanging the product ir} n and the sum in j gives

N JN
Z( H( 2 Mn[in,jnwn[jn,knl»A[kl, ooy kal

k \n=1\jz=1

Since the summation in j, is just an explicit formula
for the (i,, k.) element of the matrix product M,N,, the
expression above reduces to

N
Z( H(MnNn)[im kn]>A[k1 c ey kN].

k \n=1

The product in 7 is an element of the exchanged N-fold
outer product of the matrices (M, N,), giving

DX AMLN i, - . kn]A[kRy, .. . RN
k

ik, .

This last expression is the right side of (41), so the
proof is now complete. [
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INTRODUCTION

, Complicated multivariate models,-and certainly the
models used in multidimensional scaling, are most of-
ten used for exploratory purposes. The paper by Leur-
gans and Ross covers one of the fortunate, but rather
exceptional, situations in which we can derive the form
of the model from prior scientific knowledge. Another,
similar, situation is the conformation of molecules us-
ing scaling techniques, and the seriation of artifacts in
time or of genes along a chromosome. In this class of

Jan deLeeuw is Professor of Mathematics and Psychol-
ogy, Director of the Social Statistics Program, Depart-
ment of Mathematics, University of California, Los
Angeles, 405 Hilgard Avenue, Los Angeles, California
90024-1555. e-mail: deleeuw@laplace.sscnet.ucla.edu.

Matrices with Applications to Statistics. Hafner, New York.

Rawmos, L. S., BEeBg, K. R., Carey, W. P., SancHEZ, E., Erick-
soN, B. C., WiLson, B. E., WanceN, L. E. and KowaLski,
B. R. (1986). Chemometrics. Analytical Chemistry 58 294R-
315R.

Ross, R. T., Leg, C.-H., Davis, C. M., Fayyap, E. A. and Leur-
GaNs, S. E. (1991). Resolution of fluorescence spectra of plant
pigment-complexes using trilinear models. Biochimica et Bio-
physica Acta 1056 317-320.

RusseLL, M. D. and Goutrerman, M. (1988a). Excitation-emis-
sion-lifetime analysis of multicomponent systems —I. Princi-
pal component factor analysis. Spectrochimica Acta 44A
857-861.

RusseLL, M. D. and GoutermaN, M. (1988b). Excitation-emis-
sion-lifetime analysis of multicomponent systems—II. Syn-
thetic model data. Spectrochimica Acta 44A 863-872.

RusseLL, M. D., GourermaN, M. and vaN ZgEg, J. A. (1988).
Excitation-emission-lifetime analysis of multicomponent sys-
tems—III. Platinum, palladium and rhodium porphyrins.
Spectrochimica Acta 44A 873-882.

SancHEzZ, E. and KowaLski, B. R. (1988a). Tensorial calibration:
I. First-order calculations. Journal of Chemometrics 2 247-
263.

SancHEz, E. and KowaLski, B. R. (1988b). Tensorial calibration:
I1. Second-order calibration. Journal of Chemometrics 2 265-
290.

SancHEzZ, E. J. and KowaLski, B. R. (1990). Tensorial resolution:
A direct trilinear decomposition. Journal of Chemometrics 4
29-45.

Sanps, R. and Young, F. W. (1980). Component models for
three-way data: An alternating least squares algorithm with
optimal scaling features. Psychometrika 45 39-67.

TrawMmpI, S. (1991). Resolution of intrinsic protein fluorescence
using multilinear analysis. Master’s thesis, Ohio State Univ.

TucKER, L. R. (1963). Implications of factor analysis of three-way
matrices for measurement of change. In Problems in Measur-
ing Change (C. W. Harris, ed.) 122-137. Univ. Wisconsin
Press.

‘applications, the physical information we have tells

us that a multilinear model is appropriate—only the
coefficients (mixtures) and dimensionality (number of
components) are unknown and must be estimated.

OTHER AREAS

Leurgans and Ross discuss the multilinear models
pretty much in the context in which they use them.
Thus, it looks a bit as if these models were created for
spectroscopy. This is perfectly appropriate in a paper
such as this, which concentrates on a particular field
of application. But to give a somewhat wider perspec-
tive, I'll list a number of other areas, both mathemati-
cal and nonmathematical, in which multilinear models
have been studied or applied.

1. Efficient computation of matrix products and



