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Abstract 

Liang, Y.-Z., Kvalheim, O.M. and Manne, R., 1993. White, grey and black multicomponent systems. A classification of mixture 
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1. INTRODUCI’ION measurement techniques has thus become a new 
challenge for the analytical chemist. 

Classical methods for mixture analysis are The calibration [l] and resolution [2] of multi- 
based upon univariate (scalar) data. If there ex- component systems are two of the most impor- 
ists a quantitative numerical relationship between tant research areas in chemometrics. The meth- 
the variation of the concentration of a particular ods developed differ both with respect to aim and 
analyte and a chemical or physical signal, then performance. A method that is excellent for a 
this can be used for accurate assessment of the certain purpose, under certain conditions and 
concentration of this chemical species. Unfortu- assumptions, may be useless when the aims of the 
nately, such relationships are rarely encountered analysis, the assumptions and/or the experimen- 
in the analysis of complex real-world samples. tal conditions change. Thus, in order to evaluate 
This has lead to the use of various spectroscopic multivariate resolution methods from the point of 
techniques where the chemical composition of a view of analytical chemistry, it is necessary first to 
sample is mapped as a spectral profile. Some classify the different mixture problems. We must 
techniques even generate data in matrix form. ask questions like: (1) Is the aim to quantify all or 
Well-known examples of the latter are hyphen- just some selected analytes in the mixture? (2) Do 
ated chromatography (liquid chromatography with we have to account for the possibility of the 
diode array detection (LC-DAD)), emission-ex- presence of unknown (or even unmodelled) inter- 
citation fluorescence spectroscopy and multipulse ferents in the mixtures? (3) Do we have access to 
nuclear magnetic resonance spectroscopy. The concentrations and reference spectra of a training 
development of numerical methods for extracting set of standards (pure chemical species or mix- 
relevant information from multivariate chemical tures) or not? 
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2. CLASSIFICATION OF MIiKTURE PROBLEMS AND 
METHODS 

Mixture samples commonly encountered in an- 
alytical chemistry fall into three categories which 
we, following Chinese usage, shall call white, grey 
and black multicomponent systems. 

The multicomponent systems which we label 
white have the following characteristics: the spec- 
tra of the chemical species present in the sam- 
ples, or, spectra from samples that contain possi- 
ble coexisting interferents in addition to the de- 
sired species, are all available. In addition, the 
concentrations of all the desired analytes must be 
known for the training set samples. The aim of 
mixture analysis of white systems is to determine 
quantitatively the concentrations of some or all 
chemical species. Methods for this kind of analy- 
sis are relatively mature and do almost always 
provide excellent results 111. Exceptions are ill- 
conditioned [ll and seriously nonlinear systems 
E31. 

We give the name black systems to those ana- 
lytical systems for which there is no a priori 
info~ation regarding the chemical composition. 
The aim may nevertheless be to determine simul- 
taneously spectra (resolution) and concentrations 
(quantitation) of all coexisting chemical species. 
After the introduction of the self-modeling curve 
resolution (SMCR) technique [4], several meth- 
ods for resolving this type of analytical systems 
have been developed. Most of them are based on 
instrumental techniques giving data of matrix 
form, e.g. hyphenated chromatography. In the 
quantitation step, one needs samples of known 
~ncentrations for the resolved chemical compo- 
nents. Effectively, this strategy transforms the 
black system into a white or grey system, depend- 
ing on whether the system is fully or only partly 
resolved. 

Grey analytical systems embrace the area be- 
tween the two kinds defined above. The basic 
characteristic of these analytical systems is that 
incomplete knowledge is available regarding the 
qualitative chemical composition. The aim of the 
analysis is to determine quantitatively the desired 
analytes in the presence of unknown coexisting 
interferents. Thus, spectra or models for the de- 

sired analytes are available, but no information 
regarding possible inte~erents in the samples. 
The difference between white and grey lies in 
their ability to handle interferents in prediction 
samples. For white systems only modelled inter- 
ferents in the training set can be accounted for, 
while grey systems are not constrained by this 
limitation. Grey systems are frequently encoun- 
tered in the analysis of real-world samples. Sev- 
eral powerful multivariate calibration methods 
have been developed both to cope with vectorial 
data (each sample being represented by a spec- 
trum, for instance) [51 and with bilinear data of 
matrix form (each sample being represented, for 
example, by a matrix of chromatographic elution 
profile time spectra) 16-l 11. 

The classification of mixture problems given 
here is based solely on the amount of a priori 
spectral information available for the multicom- 
ponent system under investigation. Indeed, the 
partition into three categories of multicomponent 
systems defined above can be motivated simply 
as: (i) white systems are those for which spectral 
information exists for all the chemical species 
present in the systems; (ii> grey systems are those 
for which partial spectral information is available; 
and (iii) black systems are those for which no 
spectral information about the pure species is 
available. 

The division between white and grey systems 
can also be made on the basis of a priori knowl- 
edge about the interferents. Thus, for a white 
system, the spectra of the interferents are known 
(or modelled), while for a grey system they may 
be completely unknown. 

The classification above will form the frame- 
work for our discussion of available methods of 
multivariate analysis. The situation is sketched in 
Fig. 1. The vertical axis in Fig. 1 presents the 
degree of complexity with respect to the data 
(from scalar via vectorial to matrix form), while 
the horizontal axis accounts for the degree of 
complete of the multi~m~nent systems (from 
white via grey to black). Multivariate methods 
included in the same frame provide almost the 
same functionality with respect to a particular 
kind of multicomponent system. Unshaded frames 
are used for methods which can provide unique 
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Fig. 1. The relationship between the degree of complexity of 
analytical system (from ‘white’ to ‘black’) and data type re- 
quired. The mult~va~ate calibration and resolution methods 
included in each frame have almost same functionality with 
respect to one kind of analytical systems. Methods encircled 
by unshaded frames can provide unique solution in the math- 
ematical and chemical sense. Shaded frames indicate methods 
that provide unique solution for certain speciai cases and/or 
only possible solutions or solution regions. 

solutions in a strict mathematical and physical 
sense. Shaded frames indicate methods that pro- 
vide resolution for certain special cases and/or 
possible, but not necessarily unique, solutions or 
solution regions. Fig. 1 implies that for unique 
solution of a given multicomponent system the 
order of data needed depends inversely on the 
spectral information available a priori. Common 
abbreviations used for the methods and corre- 
sponding references cited in Fig. 1 are given in 
the Appendix. 

3. CALIBRATION METHODS FOR WHIE SYSTEI& 

With a priori spectral information about all 
chemical species existing in the samples, regres- 
sion techniques may be used for dete~ination of 
concentrations. Multivariate data obtained from 
spectral analysis can usually be approximated as 
linear systems 111: 

N 
yT= ~c&eT (14 

i=l 

where yT is the response vector of M sensors 
(wavelengths) due to N known analytes with 
known sensitivity coefficient (spectral) vectors (ST, 
i=12 , , . . . , N} present at concentrations {ci, i = 

12 , ,***, N}. The residual vector eT contains mea- 
surement noise. Note that T implies transposi- 
tion, i.e. vectors into row vectors. 

The concentrations can be collected in a vec- 
tor c and the spectra in a matrix S: 

yT = cTST + eT (lb) 

For a univariate calibration model, Eqns. la 
and b reduce to a scalar equation as follows, 

iv 
y = C CjSi + e 

i=l 

It is obvious that N unsown ~ncentrations ci 
cannot be estimated from one equation. Only 
when one of the analytes, say j, has a very high 
sensitivity coefficient compared to the others, can 
Eqn. 2 provide an estimate of that analyte: 

Y I=: Cjsj+e (3) 

This defines j as a selective sensor (wavelength) 
for that analyte. The search for chemical or phys- 
ica1 measurement methods of high selectivity for 
a given analyte has haunted analytical chemists 
for decades. 

The difference between a univariate and a 
vector calibration model (Eqn. 1) can be illus- 
trated in geometric terms. Fig. 2 implies that the 
vector calibration model can increase the compo- 
nent selectivity significantly and this is, in our 
opinion, one of the two main advantages of the 
vector calibration technique compared to the 
classic (scalar) calibration techniques E121. (The 
other main advantage is the possibility of detect- 
ing a sample as atypical, i.e. an outlier [l].) De- 
pending on the choice of e~er~ental design the 
vector calibration methods for treating white ana- 
lytical systems can be divided into four categories 
[13]: (9 direct calibration methods, (ii> indirect 
calibration methods; (iii) generalized standard 
addition methods; and (iv) generalized internal 
reference methods. 
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Fig. 2. Geometric illustration for univariate (scalar) and multi- 
variate (vectorial) calibration. (a) The univariate calibration 
model cannot identify or distinguish the three chemical 
species, a, b and c in a mixture sample. We observe simply 
the sum of the species and no resolution or quantification in 
terms of single species is possible. (b) The unit vectors a, Zr 
and c represent the spectra of three chemical species in 
multivariate space. Each species has a unique (and different) 
vectorial presentation in multivariate space, and, thus, the 
mixture sample (c,a + c,b + c,c) can be resolved and quanti- 
fied by using multivariate calibration methods. 

3.1. Direct calibration methods 

Direct calibration methods assume that spec- 
tra are available for all chemical species existing 

TABLE 1 

Matrix representations of indirect vector calibration methods l 

K-matrix method P-matrix method 

Beer-Lambert law x=cs= C=XPT 

Calibration c=x = c=cs= x=c = XTXPT 
ST = (CC=)-VX PT = (XX=)-‘XV 

Unknown x=cs= C=XPT 
xs = cs=s 
c = XS(S=S)- l 

Improvement of PCR and PLS by means of orthogonal decomposition of measurement matrix X 

PCR PLS2 PLSl 

X = IJGP= X = URW= X = URW= 
X+= PG-‘U= X+= WR-‘U= X+= WR-‘UT 
p=cx+ p=cx+ pi = c,x+ 
G: diagonal matrix R: triangular matrix R: bidiagonal matrix 

l X, S and C denote the measurement matrix, the sensitivity coefficient matrix and concentration matrix, respectively. 

in the mixture. The spectra of the pure compo- 
nents are then used to estimate directly the con- 
centrations of the species from the measured 
response vector. Multiple linear regression (MLR) 
represents the standard method of solving white 
systems under this condition [14]: 

CT =y=S(S=S)-l (4) 

MLR can also be used as a weighted least squares 
(WLS) procedure [15]. A third alternative is the 
use of Kalman filtering (KF) [16]. The major 
advantage of these methods is their simplicity. If 
the given analytical system is linear and obeys the 
Beer-Lambert law, one obtains quantitative re- 
sults for most white systems. If some species 
interact, indirect calibration methods present a 
better alternative than direct methods, since we 
can make a training set of mixture samples and 
thus accomodate moderate degrees of nonadditiv- 
ity, which is normally not accounted for by the 
direct methods. 

3.2. Indirect (inverse) calibration methods 

The indirect (or inverse) calibration methods 
assume that we can design and measure the re- 
sponses of a training set of mixtures with known 
concentrations (standards). The transformation 
matrix connecting the spectral response matrix X 
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and the concentration matrix C can then be esti- 
mated by means of a least-squares procedure. 
The concentrations of the analytes in prediction 
samples can then be obtained by use of the 
transformation matrix. For ease of comparison 
important relations for some common indirect 
calibration methods are collected in Table 1. 

The first indirect calibration methods to be 
developed were the so-called K-matrix and P-ma- 
trix methods [17-191. The K-matrix method re- 
quires two matrix inversions (see Table 1). This 
may lead to propagation and accumulation of 
errors, and for this reason the P-matrix method 
seems to be a better choice. A well-known prob- 
lem with the P-matrix method, however, is the 
presence of collinearities in the matrix of spectral 
responses X. Collinearity leads to problems with 
the inversion of XX= and thus, possibly, to erro- 
neous regression coefficients. 

As a remedy against this pitfall, biased regres- 
sion methods such as principal component regres- 
sion (PCR) [20], partial least-squares (PLS) re- 
gression [1,21,22] and, recently, principal covari- 
ates regression [23] have been developed. Several 
of the biased regression methods decompose the 
spectral responses into orthogonal latent vari- 
ables, which are subsequently used in the regres- 
sion step. The estimation procedure for the indi- 
rect calibration methods PCR and PLS is illus- 
trated in Table 1. Thomas and Haaland [241 re- 
cently compared the PCR and PLS methods. It 
appears that PLS usually provides better concen- 
tration estimates than PCR, and that the opti- 
mum number of latent components for prediction 
is smaller for PLS than for PCR. 

3.3. Generalized standard addition and internal 
reference method 

The standard addition method and internal 
reference methods are well-known in analytical 
chemistry. Their extensions to multivariate cali- 
bration are called the generalized standard addi- 
tion method (GSAM) [25] and generalized inter- 
nal reference method (GIRM) [26], respectively. 
They aim at quantification of selected analytes in 
the presence of known interferents. The basis of 
the methods is the comparison of the responses 

of a mixture sample of unknown concentrations 
with the responses obtained after adding stan- 
dards of known concentrations. The methods can 
be used to account for matrix effects or drift of 
the sensors. 

3.4. Nonlinearity and calibration 

All methods discussed so far are based on the 
linear model; nonlinearity presents a problem in 
multivariate calibration. Mark [3] investigated the 
effects of nonlinearity in multivariate calibrations 
by means of artificially induced nonlinearity. Re- 
cently Long et al. attempted to handle nonlinear- 
ity by means of neural networks [27]. 

A third way to accommodate a moderate de- 
gree .of nonlinearity is to expand the spectral 
description of the systems with squared terms. 
This can be done on the original spectral vari- 
ables after a variable reduction [28,29] or by 
decomposing the spectral information in terms of 
latent variables and including squared terms in 
the score vectors [30]. To our knowledge, no one 
has investigated this approach so far. 

It is well known that nonlinear models can be 
approximated by linear models in small regions. 
Nas [31], and later Danielson and Malmquist 
[32], have utilized this fact to handle moderate 
degrees of nonlinearity within the constraints of a 
linear model. Their solution is to estimate local 
calibration models. The only drawback of the 
methods is the need for rather large training sets 
and the fact that a new calibration model must be 
estimated for every prediction sample. 

A special kind of nonlinearity is introduced by 
closure. When there is no absolute scale of spec- 
tral intensity, spectra are often normalized to 
constant intensity or constant height of a certain 
peak, for example. Such normalizations may de- 
stroy the linearity normally assumed between 
spectral intensity and component concentration. 
Karstang and Manne [33] have recently devel- 
oped two methods of optimized scaling by which 
this linearity is recovered. 

For really serious nonlinearity, there seems to 
be no other solution than to turn to nonlinear 
regression methods. Collinearity represents a ma- 
jor problem in these methods. In order to circum- 



vent this problem, Wold [34] and Taavitsainen 
and Korhonen [35] have developed nonlinear 
methods that solve the collinearity problems by 
introducing latent variables. 

3.5. Evaluation of performance 

The calibration methods discussed above are 
all quantitative methods. However, their applica- 
bility depends upon the problem under study. 
Thus, their reliab~i~, adaptabili~ and limitations 
are major issues for practical applications. Lorber 
1361 discussed the problems in terms of selected 
figures of merit, e.g. sensitivity, selectivity, detec- 
tion limit and error propagation. Such figures of 
merit are crucial for evaluating the reliability of 
analytical results and research in this direction is 
continuing [12,37]. The topic of how to obtain 
reliable quantitative results for white analytical 
systems has been well reviewed by Gemperline 
1381. 

4. CALIBRATION METHODS FOR GREY SYSTEMS 

Grey multicomponent systems are character- 
ized by incomplete or partial a priori knowledge 
of the spectra of the chemical species. The aim of 
the analysis is to estimate concentrations of some 
chemical species in the presence of unknown or, 
more precisely, unmodelled interferents. There 
are two distinct categories of methods for treating 
grey systems. One is based on vector calibration 
techniques L&39-41], while the other uses matrix 
calibration techniques and thus presupp~es 
characterization techniques which provide data in 
the form of a matrix [6-11,42-441. Both cate- 
gories require a training set with known concen- 
trations and spectra. Because of lack of informa- 
tion, however, vector calibration methods do not 
give unique solutions for grey systems, while the 
matrix calibration methods do so in a strict physi- 
cal and mathematical sense. The two types of 
methods will now be examined in some detail. 

4.1. Cal~rat~~ betide for vectorial data 

The vector calibration model in the presence 
of unknown background interferents can be ex- 

pressed as 

N 
yT = C cisT +fT + eT 

i=l 

The only difference between Eqn. 5 and Eqn. 1 is 
the inclusion of the row vector fT of length M 
containing all the contributions from the back- 
ground interferents. The contributions from the 
background can be broken down into contribu- 
tions from each inte~erent: 

NCP 

fT= z- ciq 
i-N+ 1 

where P is the number of the unknown back- 
ground interferents. 

With knowledge only about yT and $ (i = 
12 , ,***, N), the concentrations ci of the desired 
analytes cannot be determined uniquely even for 
the simplest case (N = 1) because of the un- 
known interference vector fT. The situation with 
only one analyte in the presence of one or more 
interferents is illustrated in Fig. 3. Apart from the 
experimental spectrum yT, we know only the 
spectrum of the analyte, ST, i.e. the direction of 
the vector a: but not its magnitude ci, and, thus, 
not its contribution to yT. Fig. 3 shows that c1 
can be varied over an interval constrained by the 
condition of positivity of the elements of the 
background vector. This is a valid constraint in 
most spectroscopic techniques. 

Fig. 3 implies that the concentration estimate 
obtained by any standard fitting technique will be 
meaningless unless one has definite spectral 
knowledge of the background spectrum. Rutan 
and Brown 1391 showed that if the response of 
analyte is selective for some wavelength region 
one can find solution for the problem by adaptive 
Kalman filtering technique. Unfortunately this 
precondition is often too strong for the spectral 
analysis of real samples. Osten and Kowalski [40] 
proposed two possible methods - a perpendicu- 
lar projection technique and an extreme-vertex 
projection technique - in order to obtain quan- 
titative results from samples with a bac~round 
~nstituent. ~mbining the GSA&I 1251 and itera- 
tive target testing factor analysis technique (IT- 
TFA) [45], Liang et al. developed an algorithm to 
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pb) l 1 Cl,max 

Fig. 3. (a) Geometric illustration for the case of quantification 
of one chemical analyte (standard) in the presence of an 
unknown interferent. The figure shows the vectorial presenta- 
tion y of a mixture spectrum; the vectorial pre~ntation sr of 
the spectrum of the standard and a region of vectorial presen- 
tations of different background spectra f. As the spectrum of 
the interferent is unknown, the concentration estimates of the 
standard can take all values between 0 and c, ,,,Bx. The upper 
estimate is obtained by the positivity constraint on the spec- 
trum of the interferent. Thus, only a region of possible solu- 
tions is obtained. (b) Illustration showing that the mixture 
spectrum y can be reconstructed from different concentra- 
tions of the standard by varying the background spectrum f 
(dotted). 

attack the problem 1411. Unfortunately, all the 
methods above can only give a possible solution 
because of lack of information needed for unique 
resolution. 

Karstang and Kvalheim [5] developed a method 
for local curve fitting (LCF) which makes only 
two assumptions: (i) the spectra of the interfer- 
ents are positive at all wavelengths; and (ii) there 
are local spectral maxima for the interferents. 
The method will be illustrated here, for a one- 
component calibration model with one interfer- 
ent. 

We write the model for our example as: 

y==CiST+fr (7) 

The first derivative of Eqn. 7 is: 

dy=/dw = cr ds;/dw + d f T/dw (8) 

For every wavelength k where the interferent has 
a maximum df,/dw =0 and ci =(dy,/dw)/ 
(ds,/dw), i.e. we have created a model where 
the influence of the interferent is eliminated. In 
order to be able to find these wavelengths, we 
need to model the interferent. In LCF this is 
done by projecting the response vector yT for the 
mixture sample on ST to obtain a first estimate of 
fT. This estimate is improved by using the positiv- 
ity constraint for the spectrum of the interferent 
IS]. Although the LCF method may be the best 
one available at present for background correc- 
tion for vectorial data, the method is sensitive to 
large overlap between the spectra of theinterfer- 
ents and the predicted analytes. 

4.2. Calibration methods for two-way bilinear data 

If bilinear data are available, the situation 
changes dramati~lly. Such data are produced, 
for instance, by ‘h~henated’ chromatographic 
methods. 

Bilinear data are collected in two dimensions, 
e.g. time and wavelength. Assuming both vari- 
ables to be continuous we may write the intensity 
for a pure component at time t and wavelength w 
as 

X(t, w) =c(t)s(w) (9) 

where s(w) represents the spectral intensity of a 
standardized sample and c(t) the concentration 
of the substance eluted at time t. With discrete 
variables we write Eqn. (9) as 

X, = cjsk or X = csT (IO) 

i.e. the data matrix of a pure substance is of rank 
one. For a mixture one may sum over the compo- 
nents i 

N N 

Xj, = C cjisik or X = C ci$ (11) 
i=l i=l 

Provided that spectral and concentration profiles 
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are all different, the rank is equal to the number 
of components. The one-to-one correspondence 
between rank and number of chemical species 
expressed by Eqn. 11, makes a crucial distinction 
between matrix calibration techniques and vector 
calibration techniques. 

4.2.1. Rank annihilation methods 
The rank-one property (Eqn. (10) of a matrix 

acquired for a pure chemical species, was first 
utilized for quantitative analysis of grey multi- 
component systems by Ho et al. in their rank 
annihilation factor analysis (RAFA) method [6,7]. 
They estimated the concentrations of standards 
using the relation 

rank(Y - ciXi) = rank(Y) - 1 (12) 

where Y is the matrix obtained for the mixture 
and {Xi, i = 1,2,. .., N) are matrices of rank one 
obtained for the pure chemical species. Eqn. 12 
provides the conditions for accurate estimates of 
the concentrations. 

Ho et al. used an iterative approach to esti- 
mate the concentrations at which Eqn. 12 is ful- 
filled. Lorber presented a noniterative RAFA 
based on a singular-value decomposition of the 
measurement matrix Y and reformulating the es- 
timation of the concentrations into a generalized 
eigenvalue problem [S]. Sanchez and Kowalski 
have extended RAFA into multi-analyte estima- 
tion calling their extension generalized rank anni- 
hilation factor analysis (GRAFA) [43-451. One 
might add that Kubista’s method for the analysis 
of correlated spectra [46] is closely related to 
GRAFA. 

Methods for rank annihilation are simple and 
powerful methods. A great advantage of the iter- 
ative rank annihilation method is that quantifica- 
tion is possible without prior estimation of rank 
of the two-way data. For techniques where drift is 
a problem, however, rank annihilation methods 
break down without proper data pretreatment. 
Under such circumstances it may be better to use 
methods for black systems first, in order to re- 
solve the system completely. After identification 
of the desired analytes, absolute quantification is 

achieved by comparing the integrated concentra- 
tion profiles from the mixtures with those calcu- 
lated from standards with known concentrations. 

4.2.2. Bilinearization methods 
In analogy with Eqn. 5, a calibration model for 

two-way data can be written as 

Y= EctXt+F+E (13) 
i=l 

In Eqn. 11, Y is the data matrix of the mixture 
sample with unknown background interferents, 
{Xi, i = 1,2,. . . , N) are the data matrices of the 
standards of known analytes, F represents the 
background and E is the residual matrix repre- 
senting measurement noise. For bilinear data, the 
rank P of the background matrix is obtained 
simply as 

P = rank(F) = rank(Y) - N (14) 

The rank information can be used to model the 
background matrix in terms of principal compo- 
nents. Thus, Eqn. 13 can be written as: 

N N+P 

Y= cciXi+ c tipT+E (15) 
i=l i=Nfl 

Only when the concentrations {ci, i = 1,2,. . . , N) 
are estimated accurately, will the background ma- 
trix have rank P and the residual matrix E be at 
the level of measurement noise so that the rank 
relation expressed by Eqn. 14 is fulfilled. Note 
that Eqn. 14 is basically of the same type as Eqns. 
12 used in RAFA. The bilinear@ constraint for F 
makes the estimation of (ci, i = 1,2,. . . , N} possi- 
ble by means of optimization techniques. The 
so-called residual bilinearization (RBL) [9,10] and 
constrained background bilinearization (CBBL) 
methods [ill are based on this approach. The 
assumptions used in these methods are: (i) bilin- 
earity for all measured two-way data; (ii) that the 
correct rank can be determined for the mixture 
data; and (iii) that all the N known analytes are 
present in amounts sufficient for detection from 
the analyzed mixture data. For hyphenated chro- 
matographic data, the so-called zero-component 
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regions can be used to estimate a realistic lower 
limit for detection [47,48]. 

Because of the use of matrices acquired in 
separate runs for the mixtures and standards, the 
bilinearization methods, just as RAFA, will be 
vulnerable to instrumental drift. However, the 
study of Ghman et al. [lo] suggests that the 
bilinearization methods are more robust towards 
drift than RAFA. As discussed above, the perfor- 
mance of both noniterative rank annihilation fac- 
tor analysis and bilinearization methods depends 
strongly on correct estimation of rank. 

5. METHODS FOR RESOLVING BLACK SYSTEMS 

As defined above, there is no a priori informa- 
tion concerning the chemical composition of the 
samples available for ‘black’ systems. The aim of 
the analysis is nevertheless to estimate spectra 
and concentrations of all the coexisting chemical 
species. 

There are three distinct categories of black 
mixture systems, corresponding to partitions into 
one-way, two-way and three-way instrumental 
data. Resolution of one-way data demands that a 
set of mixture samples is available with the same 
chemical species differing only in concentrations. 
With two-way or three-way data resolution may 
be possible even from a single mixture sample. 
Characterization techniques providing one-way or 
two-way data both demand a matrix of chemical 
measurement data, with row vectors correspond- 
ing to spectral profiles of mixtures with varying 
concentrations of the pure species. The differ- 
ence is that one-way characterization demands 
many mixture samples, while two-way characteri- 
zation techniques extract the evolving concentra- 
tion profile from one mixture sample. Most meth- 
ods that can be used for one-way data measured 
on several mixtures can also be used for two-way 
data obtained for a single mixture. For this rea- 
son we treat the two categories of systems to- 
gether under the name of matrix resolution meth- 
ods. 

The third category of methods uses three-way 
data obtained as matrices of spectral measure- 
ments for one sample at different concentrations, 

i.e. chromatography in combination with a hy- 
phenated spectroscopic technique. The corre- 
sponding methods will be called three-way resolu- 
tion methods. 

5.1. Matrix resolution methods 

For matrix data, the aim of the analysis can be 
summarized in mathematical form as: 

X= f cisT+E ( 16a) 
i=l 

The measurement matrix is decomposed into 
concentration vectors {ci, i = 1,2,. . . , N} and sen- 
sitivity vectors {ST, i = 1,2,. . . , N) (T implies row 
vectors) for the pure chemical species. The matrix 
E accounts for instrumental and experimental 
noise. 

By collecting the concentration vectors and the 
spectral profiles of the pure chemical species into 
a concentration matrix C (dimension K X IV) and 
a spectral matrix S (dimension N x M), respec- 
tively, Eqn. 16a can be rewritten as: 

X=CS=+E ( 16b) 

The objective of matrix resolution methods for 
black analytical systems can be formulated as: (i) 
partitioning the data matrix into structure and 
noise; and (ii) finding the concentration and spec- 
tral vectors corresponding to the pure chemical 
species. Most methods use a principal component 
decomposition in order to accomplish (i) and 
then use some criterion for rotating the orthonor- 
ma1 principal components into concentration vec- 
tors and spectra corresponding to pure chemical 
species. 

5.1.1. Self-modeling curve resolution methods 
Almost all available methods for resolving data 

of matrix form are based upon the self-modeling 
curve resolution (SMCR) approach developed by 
Lawton and Sylvestre 141. Their method for re- 
solving two-component mixtures makes two basic 
assumptions: (i) non-negative concentrations and 
spectra of the resolved components; and (ii) addi- 
tivity of the component spectra. Thus, SMCR can 
be used for most spectral data without the need 
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for any ass~ptions regarding peak shape, loca- 
tion, or identity. Principal component analysis is 
used to determine the number of components 
present in the mixture(s) f2]. The loading and 
score vectors are subsequently rotated to give 
vectors fulfilling the non-negativity constraints. In 
favorable cases, possible solutions are restricted 
to narrow bands by the non-negative constraints 
mentioned above. Unique resolution requires at 
least one selective spectral variable for each com- 
ponent. Thus, the ‘art’ of SMCR is to find the 
best rotation of the principal components. Physi- 
cally correct solutions, however, are never guar- 
anteed. 

SMCR was first extended to three-~mponent 
systems by Ohta [49]. Meister then developed an 
SMCR algorithm that produced unique solutions 
for ~-component mixtures using a criterion of 
maximum spectral dissimilari~ between mixture 
samples [SO]. This assumption tended to exagger- 
ate differences between the pure spectra of the 
chemical components. Although the spectra of 
the pure chemical components are not necessarily 
dete~ined by Meister’s criterion, the method 
provided useful insight. Kawata et al. devised an 
entropy optimization technique to produce unique 
estimates of pure-component spectra for three- 
component systems [51]. The spectra of the pure 
components obtained in this way were considered 
to be of the simplest form in agreement with the 
mixture spectra. Independently, Vandeginste et 
al. developed a similar constraint; the spectra of 
the pure component should have the ‘simplest’ 
profile, defined mathematically as the curve hav- 
ing the smallest area-to-non ratio [52]. 

Borgen and Kowalski investigated the poten- 
tial of the non-negativity constraints for spectra 
and con~ntrations for locating solution bands for 
a three-component system in a more detailed way 
1531. They were able to reduce a three-dimen- 
sional vector space to a ho-dimensional by using 
special normalization conditions. Later, Borgen 
et al. extended the technique to systems with 
more than three ~mponents [54]. 

Kajalainen 155-571 developed a method of 
alternating regression (AR), which does not re- 
quire an initial decomposition into principal com- 
ponents. Eqn. 14b solved with respect to concen- 

tration vectors and spectra of pure ~m~nents 
gives: 

c = XS(STS) -i (17a) 

ST = (CTC) -+?x (17b) 

By randomly choosing starting vectors for the 
pure species, iteration between Eqns. 17a and b 
continues until convergence. So far, alternating 
regression has not been compared with other 
methods. Problems are anticipated if the initial 
rank estimate is erroneous and for the case with 
strong spectral or chromatographic overlap. 

The iterative key-set factor analysis (IKSFA) 
method of Schostack and ~alinows~ [58] shares 
some features with the AR method, but instead 
of starting from randomly chosen pure spectra, 
IKSFA starts with a principal component decom- 
position and subsequently uses a criterion of max- 
imum spectral dissimilarity to obtain pure spec- 
tra. A direct alternative to IKSFA is proposed 
below. 

During the last decade, Windig and coworkers 
have developed several SMCR methods making 
extensive use of graphic procedures to provide a 
more detailed evaluation than possible by nu- 
meric methods. In early work, Windig et al. [59] 
developed a graphic rotation method whereby 
principal components axes were rotated in incre- 
ments of lo” to visually determine the orientation 
of the pure component axis by looking for dense 
clusters of large loadings. The graphic rn~rn~ 
variance criterion used was related to numeric 
criteria used in VARIMAX and similar methods 
1601. The graphic rotation procedure was then 
developed into a spectral isolation method em- 
ploying so-called variance diagrams to detect the 
direction in multivariate space with m~mum 
information [61]. Using variance diagrams and 
key-set spectra to reveal the loadings with maxi- 
mum dete~inant, an interactive self-modeling 
multivariate analysis (ISMA) method was pre- 
sented by Windig et al. [62] which has been 
further developed into the SIMPLISM method 
[631. The basic assumption in this last method is 
that pure spectral variables can be detected using 
a m~um-variance criterion. The pure variables 
are detected one by one, and a variable projec- 
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tion is performed for each dimension until the 
residual matrix corresponds to noise level. The 
method is related to the successive orthogonal 
projection procedure developed by one of the 
present authors [63] with pure variables as marker 
variables. Thus, one might extend Windig’s ap- 
proach to accommodate the possibility of one- 
component regions and using the corresponding 
marker object (pure mixture) projection [4], in 
which whole spectra or selective parts of spectra 
are selected by maximizing spectral dissimilarity 
[50,631. 

5.12. Res~lut~n methuak for hy~~~ated tech- 
n~ues 

Although, in principle, the methods mentioned 
in the previous section can be used for the resolu- 
tion of data from hyphenated chromatography, 
several new methods have been developed taking 
advantage of the special shape of the concentra- 
tion profiles of the pure components in chro- 
matography. We thus know a priori that the chro- 
matographic concentration profile for each pure 
component has one and only one maximum. Fur- 
thermore, the continuous nature of chromato- 
graphic peaks implies sequential appearance and 
disappearance of the concentration profile of a 
pure component as an additional constraint, that 
can be utilized in the resolution process. A third 
important point is the increased possibility of 
finding selective chromatographic and/or spec- 
tral regions, which are crucial for unique resolu- 
tion of black mixture samples [47]. Some or all of 
these constraints have been used in several novel 
methods, such as iterative target testing factor 
analysis (ITTFA) [45,65-671, evolving factor anal- 
ysis (EFA) [68,69] and, recently, heuristic evolving 
latent projections (HELP) 147,481. 

5.1.2.1. Iteratiue target transformation factor anal- 
ysis. Iterative target testing factor analysis (IT- 
TFA) was developed independently by Gemper- 
line [64] and by Vandeginste et al. [45,66,67]. 
Gemperline constructed test vectors for the con- 
centration profiles using a form of the uniqueness 
test described by Malinowski and Howery 121. All 
values in a test vector were set to zero except one 
element which was given a value of 1.0. The 

resulting vector was used in a target testing pro- 
cedure 121 to locate the concentration profile in a 
h~henated chromato~aphic data matrix giving 
the minimum sum of squares for the difference 
between the test vector and the predicted vector. 
The test vectors matching the concentration pro- 
files were then iteratively refined to produce 
non-negative concentration profiles of the pure 
chemical components. The ITTFA method has 
been shown to resolve mixtures of two, three and 
four overlapping peaks. 

Vandeginste et al. obtained test vectors for the 
concentration profiles using principal compo- 
nents de~mposition followed by VARIMAX ro- 
tation 1421. They have further shown that ITI’FA 
with concentration profiles as test vectors gives 
better results than if spectra are used for that 
purpose [66]. In a particular application, this will, 
of course, depend upon the relative selectivity in 
the spectral and chromatographic dimensions. 

Although I’ITFA has proved to be a good 
method for resolving data from hyphenated chro- 
matography, it should be pointed out that the 
method cannot guarantee unique resolution in a 
strict mathematical and chemical sense, since the 
iteratively refined con~ntration profiles result 
from successive projections onto a possible non- 
unique solution space. 

5.1.2.2. Evolving methods. The methods labelled 
evolving methods take advantage of the continu- 
ous character of the elution profiles, by revealing 
and using the sequential appearance and disap- 
pearance of the concentration profile of each 
chemical species. The first method of this kind 
was evolving factor analysis (EFA), developed by 
Maeder and coworkers [68,69]. It was originally 
developed for the dete~ination of equilib~um 
constants from spectrophotometric titration 
curves, but was then extended to chromatography 
using the evolving information in the forward and 
backward directions in order to obtain concentra- 
tion windows for the eluting chemical species. 
This information was subsequently used to obtain 
estimates of the concentration profiles of the 
pure chemical species by using the ‘zero-con- 
centration window’ for each eluting species to 
estimate a rotation vector for transforming the 
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principal components decomposition of the whole 
matrix into concentration profiles and spectra of 
the pure species. Unfortunately, the zero-con- 
centration window for a species defines a rank- 
deficient estimation problem, with the result that 
the resolution is indeterminate [69]. 

A second major problem with the EFA method 
is the problem of minor chemical species coelut- 
ing with major ones. Keller and Massart [70] 
developed a fixed size moving window EFA with 
improved resolution for minor components com- 
pared to the original method. 

A combined visual/numeric method based 
upon latent-projective graphs and local rank anal- 
ysis has been developed by two of the present 
authors [47]. In recent work fixed size moving 
window EFA is extended to an ‘eigenstructure 
tracking analysis’ procedure in order to obtain a 
rank map showing the number of chemical species 
eluting at every retention time [71]. These devel- 
opments constitute a new method, called heuris- 
tic evolving latent projections (HELP). The name 
implies an inductive, stepwise and graphic char- 
acter, i.e. it acts as a datascope penetrating into 
local structures of the data [47,48,71]. 

Also using the information of the sequential 
appearance and disappearance of the concentra- 
tion profiles of the pure chemical components, 
Schostack and Malinowski [72,73] developed a 
method called evolutionary factor analysis 
(EVOLU). This method provides upper and lower 
bounds for spectra and concentration profiles of 
the pure chemical species. 

5.2. Three-way resolution methods 

As discussed above, most methods utilizing 
two-way data cannot provide unique resolution 
for black systems. Thus, more efficient methods 
are still needed. Two resolution methods using 
three-way data have been developed recently 
[74,75]. Burdick et al. [74] essentially extended 
the target transformation technique to three-way 
factor analysis. A multiscaling technique is used 
to find the common row and column space for all 
the ‘slabs’ in three-way data. Rotation matrices 
that transfer the common vector spaces into spec- 
tra of pure components are subsequently ob- 

tained by analysis of the projection matrix. Unique 
resolution into spectra of pure components can 
be obtained by rotation of the common principal 
components basis. The method may be called 
projective rotation factor analysis (PRFA). 

The generalized rank annihilation factor anal- 
ysis (GRAFA) can also be extended to trilinear 
decomposition [75]. The only difference between 
two-way and three-way GRAFA is that the latter 
uses linear combinations of all the slabs instead 
of single ones. 

Both PRFA and three-way GRAFA have been 
successfully applied to emission-excitation fluo- 
rescence data [74,75]. 

6. CONCLUSIONS 

Quantification of multicomponent systems by 
means of multivariate calibration and resolution 
methods has released the chemist from con- 
straints imposed by classic analytical methods. On 
the other hand, the application of these methods 
has placed new burdens upon the shoulders of 
the cautious analytical chemist. He must not only 
be a knowledgeable chemist, but also needs com- 
petence in applied mathematics, computer sci- 
ence and statistics in order to be at the forefront 
of his profession. These requirements reflect the 
development of chemical instrumentation during 
the last decade and the penetration of chemical 
measurement techniques, to an ever-increasing 
extent, into new areas. 

Despite the prophesy of August Comte, cited 
at the beginning of this tutorial, analytical chem- 
istry has not deteriorated or lost its spirit because 
of thi,3. On the contrary, analytical chemistry has 
revived and expanded to become the science of 
measurements [76] and will surely continue to do 
so in the future. 
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APPENDIX 

Common abbreviations for available multivariate calibration and resolution methods and correspond- 

Additional iterative target testing factor analysis 
Adaptive Kalman filtering 
Alternating regression 
Background correction method 
Constrained background bilinearization 
Evolving factor analysis 
Evolutional factor analysis 
Generalized internal reference method 
Generafized rank annihilation factor analysis 
Generalized standard additional method 
Heuristic evolving latent projections 
Iterative key-set factor analysis 
Interactive self-modeling multivariate analysis 
Iterative target testing factor analysis 
Kalman filtering method 
K-matrix method 
Local curve fitting 
Multiple linear regression 
Principle component regression 
Partial least squares 
P-matrix method 
Projective rotation factor analysis 
Residual bilinearization 
Interactive self-modeling multivariate analysis 
Self-modeling curve resolution 
Weighted least squares regression 
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[391 
[55-571 
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1261 
[6-8,43,75] 
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[47,481 
1581 
[621 
[42,65-671 
[I51 
Cl71 
I51 
n41 
km 
[1,21,221 
u91 
[741 
Dl 
C631 
[41 
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