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Abstract

Ž .We present an introduction to Multivariate Image Regression MIR with a selection of illustrative application studies.
Generalisation from two-way multivariate calibration to the three-way regimen leads to—at least—three alternative image
regression cases depending on the nature of the available Y-data: IPLS-Y ; IPLS-Y ; IPLS-Y . A systematic imagediscrim grid total

regression typology is briefly introduced.
We here present the core of the principles of applied MIR. Two major MIR application studies are worked through, a

Ž . Ž .food mass product industrial inspection study IPLS-Y and a food product fruit storage stability image analyticaldiscrim
Ž .monitoring IPLS-Y . These exemplifications are presented as archetypes, representing a much wider range of potentialgrid

Žindustrialrtechnological application areas. Based on simple three-channel imagery in order to simulate many industrial sys-
.tems , they nevertheless represent all higher-dimensional multivariate image cases as well, since the pertinent MIR principles

and software are invariant w.r.t. any number of channelsrvariables employed.
The present paper represents one major element of our work towards establishing a complete, stand-alone facility for

Ž .Multivariate Image Regression MIR ; the second paper in this series deals with the development, implementation and exten-
sive exemplifications of a complementary cross-validation facility. q 2001 Elsevier Science B.V. All rights reserved.

Keywords: Multivariate image regression; MIR; Multivariate image analysis; MIA; Multivariate image texture analysis; MIX; 2-D images;
3-D image arrays; Image regression cases; Applications

1. Introduction

The introduction of the Multivariate Image Analy-
Ž .sis MIA concept in chemometrics was not longer

w xago than Esbensen and Geladi 1 . In the intervening
10q years, the development of MIA has been rela-
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tively slow, but would appear to begin to take to
speed more recently—the entire field was sum-
marised in the comprehensive textbook by Geladi and

w xGrahn 2 . Much of the theoretical background for
Ž .Multivariate Image Regression MIR necessitates a

thorough understanding of the principles and meth-
ods in MIA, which we shall here assume known. It is
especially important that the concept of the multi-
Õariate image is well understood.

Because regression calculations on the extensive
amount of data in multivariate images can be easily a

Žtechnical challenge growing quadratically with the
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.number of variables, or channels , some important
recent evolutions have made it more feasible in the
last few years. The continuously developing techni-
cal improvement in computer hardware efficiency is
of course a major contributor, but especially the
KERNEL PLS algorithm introduced by Lindgren et

w xal. in 1993 3 has dramatically speeded up the pre-
sent type of calculations, as was outlined in detail in

w xRef. 5 .
Despite of this, few studies have yet shown the

true potential of MIR as a tool for predicting quanti-
tative features in multivariate image data. Hopefully,
this condition will be improved by the current paper.
Below, only simple three-channel imageries are used
Žthe rationale is in order to simulate many industrial

.systems , but these nevertheless represent all higher-
dimensional multivariate image cases as well, since
the pertinent MIR principles and software is invari-
ant w.r.t. any number of channelsrvariables em-
ployed. This should not, however, lead any reader to
conclude that the present exposition is aiming at con-
testing conventional three-channel image analysis,
based on e.g. RrGrB relations, such as threshold-

Ž .ing, etc.—quite the contrary is the case sic . The
examples chosen serve as master examples for any

Ždimensional multivariate imagery nos. channels 3
.™ .

1.1. Concepts

Several concepts are used in this paper, some of
which may be relatively unfamiliar. A brief introduc-
tion of these is given to help the reading of the arti-
cle.

( )1.1.1. MultiÕariate image MI
The MI is a digital image of one scene, consisting

Ž .of many variables channels , e.g. colour bands,
channels. At the outset, the simplest situation is the
one in which each image pixel is treated as an ob-
ject, which requires rigid consistency in scene layout
for all variables. An object in a given scene position
in one variable must be found in the same scene po-
sition in all other channels; for regression cases also
in the Y-image. MIs are usually presented as a 3-D
matrix, but because the two object-ways can be
treated as one way, the MI may also be reorganized
into a 2-D-matrix prior to modelling, and two-way

w xmethods can be applied 2 by way of the so-called
unfolding operator.

1.1.2. MIR
w xMultivariate Image Regression 2,4 builds regres-

sion models between the multivariate X-image and
Ž .the uni-rmulti- variate Y-image. MIR is here per-

w xformed using KERNEL-PLS 3,5 on reorganized
Multivariate Images, i.e. each variable is reorganised

Ž .into a very long object vector. In this basic un-
folded form, MIR uses only the variable-signatures,
i.e. the spectral information in the analysis and only
indirectly makes use of the spatial information analo-

w xgous to MIA 1,2 . But even though MIR technically
uses two-way analytical methods, there is an enor-
mous visualisation potential in image data that is also
used fully in MIR. Displaying results not only in
score space, but also in the so-called backfolded im-
age space, enhances the insight in the data structure
and the models developed. Applying colour coding to
score plots, MIA, or by combining three-score im-

Ž .ages in one composite ARrGrBB colour image, it
is often possible to capture comprehensive model
presentations of great interpretation value, etc.

1.1.3. MIX
Multivariate Image teXture analysis. MIX is an

extended MIA–MIR approach which includes spa-
tial, especially textural, information in the analysis. In
cases where spatial information is important, this can
be included in the MIR model by, e.g. adding de-
rived textural variables calculated from the original

w xvariables 6–8 . Sometimes, enhancing details using,
e.g. edge-detectors is favourable, in other cases the

Ž .opposite smoothing details might be required, etc.
In addition, combining textural filters might often
give very useful results. MIX has the potential for
explosive data growth, thus powerful means for vari-
able selection are required. We do not treat the MIX
aspects in any depth in the present work however.

1.1.4. Regression typology
Perhaps surprisingly, going from the 2-way realm

in which the concepts of multivariate calibration is
well-known—and need no further presentation here
—there is a corresponding three-fold multitude of
analogous but in principle different image regression

Ž .modes Fig. 1 .
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Fig. 1. The three different MIR modes, Y , Y and Y .discrim grid total

1.1.4.1. IPLS-Y . The YesrNo classificatorrdi scr i m

discriminator. In every position in the Y-image, a
Ž .pixel is either 1 one if it is part of a current class,

Ž .otherwise 0 zero . The approach is suitable for clas-
Ž .sifying one class among many others. Used as a

pre-processor, this method can easily be taught how

to pick out desired classes. This case is also easily
extended to cover several classes, by using several

Ž .one-class Y-discrim masks Fig. 1 .

1.1.4.2. IPLS-Y . If every Y-condition is not avail-g r id

able in one image, several images can be juxtaposed

Ž .Fig. 2. ANormalB and AflawedB Scandinavian crispbread AknekkebrødB . Three representative types of flaws are displayed; broken, perfo-
rated and burnt cases.
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in a compound, so-called gridded image. This way
the total experimental design can be represented in
one image, i.e. one model. Extensive illustration of
IPLS-Y is given in this work. In some cases, espe-grid

cially when predicting an overall value for each sub-
image in the grid, the corresponding Y-image will
have a constant value within each sub-image. When
this appears, some kind of smoothing of each sub-
image in X will usually be useful, i.e. reducing non-
classification related variations in X.

1.1.4.3. IPLS-Y . When the entire experimentalt o t al

design is covered in one frame, merging images to-
gether, as in the IPLS-Y is not required. In thesegrid

cases, each pixel in X also has a separate, unique
value in the Y-image. Typical examples come from,
e.g. remote sensing. Because most of the still limited
MIR-literature explicitly discusses this kind of data,
and because it is merely a special, extreme case of the
Y , it will not be treated further in this papergrid

1.2. Software

All calculations in this paper are performed using
w xa self-developed program, described in Lied et al. 5 .

Table 1
Technical imagery details of the crispbread case

Image capture Camera Lens Focal length

JVC 3CCD Micro Nikkor 105 mm
KYF-50 AF

Ž . Ž .Measures With pixels Height pixels aVariables

Total Image 1000 666 4
Sub Images 200 333 4

Spectral Colour Wavelength Bandwidth
Variables

1 Red NrA NrA
2 Green NrA NrA
3 Blue NrA NrA

Textural Filter Window Applied to
variables size and

passes

1 Variance

Table 2
Technical imagery details of banana image analysis set-up

Image capture Camera Lens Focal length

SILVACAM Fujinon 120 mm

Ž . Ž .Measures With pixels Height pixels aVariables

Total Image 800 600 3
Sub Images 200 200 3

Spectral Colour Wavelength Bandwidth
Ž .variables nm

1 NIR 760–900
2 Red 580–680
3 Green 490–580

Textural Filter Window Applied to
variables size and

passes

1 NrA
2 NrA
3 NrA

The software is available for Microsoft Windowsw

Ž .9X NT 4q 5 and is written in National Instru-
ments’ LabVIEW v. 5.1. Both MIA and MIR is im-
plemented; for MIR regression calculations, KER-

w x 2NEL-PLS 3 is used exclusively.

2. Applications

Ž .Below, the terminology IPLS Image PLS is used
throughout, but it is evident that PCR may also be
used alternatively should one so desire, albeit with the
well-known distinctions regarding PCR vs. PLS
w x9,10 , etc. Here, PLS is employed exclusively be-

wcause of its well-known chemometric advantages 9–
x14 . In both major examples below, data are mean

centred and scaled to uniform standard deviation. All

2 When developing this prototype, serious efforts were made to
enhance the flexibility and user interaction facilities. For large
datasets, 10 M pixels or above, calculations start to become slow
however. Development of a professional system is now under way.
Contact the corresponding author for instructions on how to down-
load the freeware prototype.
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Fig. 3. MIA standard score-plot for the crispbread case in Fig. 2. Top row, left: t vs. t , right: t vs. t , bottom row, left: t vs. t , right: t1 2 2 3 1 3 1

vs. t . Clusters in these projected plots may overlap in some dimensions, while not in others. In addition, there is no guarantee that the4

relevant problem-dependent information is best described in a specific plot. It is thus useful to view several dimensions simultaneously,
w xcomp. 1–4 .

Ž .Fig. 4. Y-image mask of 0r1 discrimination areas. Note that by using a relevant background discrimination feature, it is possible to zoom
in only on the true flaws present in the gridded calibration imagery, which have been designated white here.



( )T.T. Lied, K.H. EsbensenrChemometrics and Intelligent Laboratory Systems 58 2001 213–226218

variables thus have equal variance weights, making
the Kernel-PLS decompositions pertain to correla-
tions.

2.1. IPLS-Y : discrimination predictiondi scr i m

Motivation: A pilot study of image analytical in-
dustrial inspection of a mass production food article,

Ž .Swedish crispbread AknackebrødB is presented. This¨
item, by nature of its mass consumption status, is
produced in very large quantities in industrial bak-
eries in many countries. Output from the industrial

ovens is necessarily way outside complete human in-
spection capabilities, for which reason an automated,
industrial image analytical system would be of con-
siderable interest. This in turn could form the basis for
a truly 100% inspection system.

In our restricted pilot study involving some 10
pieces of crispbread, parallel representative oven out-
puts are available, 5 with an AacceptedB status and 5
with three types of representative faults, typically en-
countered in the industrial production situation. Fig.
2 shows these three faults together with examples of

Ž .the directly acceptable product AnormalB . Techni-
cal details regarding this image is found in Table 1.

Ž . ŽFig. 5. IPLS-Y t –t score plots showing all three resolved classes in the crispbread case: brokenrperforated top panel ; burnt mid-discrim 1 4
. Ž .dle and AacceptedB lower . Note complete discrimination. Also comp. with similar t –t score plot from the MIA-solution in Fig. 3. X-1 2

variance: t : 73.43%, t : 1.18%, Corresponding Y-variance: 60.18% and 0.19%.1 4
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Rationale for choosing three-channel imagery for
illustration purposes: All exemplifications used here
employ a simple three-channel camera technology

Ž .Tables 1 and 2 , in order to simulate typical indus-
Žtrial image analytical systems which certainly does

not want to carry more channels than absolutely nec-

Ž . Ž . Ž .Fig. 6. Calibrated X-variance top and Y-variance middle and validated PRESS low for the crispbread case in Fig. 2.
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ˆFig. 7. Predicted Y-image using two components. Note how the
model distinguishes clearly between faultsrnon-faults.

.essary . Whereas three channels constitute the abso-
lute minimum number of variables in order to qual-
ify for multivariate data analysis, it is of paramount
importance to observe that this number is fully able
to emulate all the essential features of, e.g. PCA,
MIA, PLS-R and MIR also when using higher-di-
mensional data and image types, as we have shown

w xextensively in our other studies 1,4,5,17,19 . The
MIR software and principles illustrated and dis-
played here are completely invariant w.r.t. any num-
ber of channels, ibid., and must thus be viewed as
bona fide exemplars of any dimensionality.

Fig. 3 shows standard MIA score plot set-ups for
Ž . w xthe crispbread case Fig. 2 1,2 .

In the interest of the wider application horizon for
this specific IPLS-Y regression example, a morediscrim

general IPLS-Y regression case will be set up.discrim

This is done by using a Y-image mask of the areas of
interest in the image which are recognised as Are-
jectsB, i.e. areas which are underlain by those parts
of the Y-image which depicts flaws of the various
type. Fig. 4 shows this AflawB-mask.

Fig. 5 has been designed to bring forth the full po-
Žtential of the IPLS-Y -case, showing in standarddiscrim

.MIA-style the corresponding t –t score plots vs. the1 4
Ž .original raw image domain layouts of three fault

classes present in the fully background-discriminated
Ž . Ž .crispbread case: shadow top ; burnt middle and

Ž .AacceptedB bottom . It is gratifying to observe com-
plete discrimination between all relevant classes, i.e.
all three types of rejectsraccepted and the back-

ground as well. This successful discrimination points
directly to the desired use of image-based prediction
of all these types of crispbread. This pilot study, while
extremely simple, allows full conceptual delineation
of a complete automated image analysis system, by

Ž .way of the relevant PLS-prediction facility Fig. 7 .
The fact that the problem-dependent information in
the current example is best described in the t –t1 4

score plot, illustrates that there is no knowledge prior
to calibration or analysis of where or how this infor-
mation will show up. In the present case, component
directions t and t model communalities not rele-2 3

vant to the discrimination optimisation.
Incidentally, observe that in this particular case,

there would appear to be very little AtiltingB of the
IPLS-solutions relative to the corresponding simpler

Ž .PCA-solutions MIA , contrary to many other two-
w xway experiences 4,5,15,16 . In the present case, this

reflects a rather direct correspondence of the X-block
Ž .data structure with the Y-structure s , i.e. the in-

formation gathered in the image analytical X-des-
cription AhappensB to be directly correlated to the
guiding Y-discrimination dummy variable; see also

Fig. 8. Loading weights 1 vs. loading weights 2 for the crispbread
Ž . Ž .case. Note X-variables 2 green and 3 blue which seem redun-

dant.
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Žbelow however. Regarding Fig. 6 also relevant for
.Fig. 13 , cross validation was used in order to calcu-

Ž .late prediction statistics PRESS . How and why this
was applied, will not be discussed here, this is a topic

w xfor the second paper in this series 19 . Figs. 6 and
Ž .13 here serve to illustrate the use fullness of MIR

in practise.
While Figs. 4–6 give the statistical facts in this

case, Fig. 7 shows the actual predicted image in scene
space using one component. This figure demon-
strates that the model is excellent for predicting all the
relevant types of faults. This result is, needless to say,
of a much larger generalisation potential than the
specific crispbread example chosen. The illustration
in fact has merit as an archetype for IPLS-Ydiscrim

multivariate image regression.
ŽMIX-aside: In this example, a variance filter Ta-

.ble 1 has in fact also been applied to extract local
textural variations in the X-image. While the back-
ground is flat, the crispbread has a very distinct, reg-
ular texture. The variance filter, which returns the lo-
cal variance in a small window in every position in
the image, will thus greatly help to distinguish crisp-
bread from background as well as textureless burnt
parts, assisting the spectral information in the classi-

Fig. 10. IPLS-Y Y-image, delineating the problem-dependentgrid
ŽY-levels for the banana deteriorating process. This figure Y-

. Ž .image corresponds to Fig. 9 X-block .

fication. The effect of this filter addition is visualized
Ž .in Fig. 8, which shows the loading weights w for

this example. From this figure, it can also be seen that
Ž .X2 and X3 green and blue contains mostly the same

information, indicating that one of them could be left
out in later calibrations, etc.

Ž .Fig. 9. Storage time aging of representative fruit banana in the interval 1–20 days.
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Note how judicious use of a releÕant background
Ž .colour, texture is essential to bring about the suc-
cessful discriminations in this case. As in all image

Žanalysis applications, illumination and colouring not
.treated here is often of equal importance compared

to the data analysis proper, etc.

2.2. IPLS-Y : monitoring and estimating storageg r i d
( )time for fruit bananas

Motivation: The objective of this application ex-
ample is to monitor storage stability by a series of
Ž . Ž .multi-temporal images of the same fruit s , with
great efforts to keep all storage and imaging parame-
ters constant, the only variable being time elapsed
since storage start. Successful monitoring will allow
for quantitative storage deterioration prediction di-

w xrectly from the captured multivariate X-images 5 . In
the current example, the task is to get a quantitative
measurement of the age of a banana, based on the
colour given specific storing conditions. These quan-

titative measurements are based on subtle spectral
variations in colour over the entire grid image fields,
while the initially green banana is turning yellow and
later brown. In this process, as can be seen in Fig. 9,
the intensity of a colour is central for the calibration.
The number of brown pixels increase, but individu-
ally they also turn darker in the process. Counting the
number of, say Abrown pixelsB, would therefore not
give the quantitative measurement requested, be-
cause the degree of brownness is not accounted for.
Fruit deterioration is both a spectrally, as well as a

Ž .spatially contextually related development process.
A more subtle technique is thus required.

In this context, the calibration-parameter Astorage
timeB shall be represented by juxtaposed part-images,
making up a complete, so-called gridded, multivari-
ate image, hence, the suggested name for this second
image regression mode: IPLS-Y . This examplegrid

also serves as an archetype not only of multi-tem-
poral studies but also of analogous objectives, conf.
below.

Fig. 11. IPLS of the fruit aging process, in the IPLS-Y regression case. Upper left: t –t score plot, with two sets of correspondinggrid 1 2
Ž .scene-space upper right and lower left panels . Lower right: corresponding t –u score plot. Note discretisation along the u1-axis, corre-1 1

sponding to the Y-levels presented in Fig. 9.
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Fig. 9 shows the compound, gridded multivariate
X-image of a deteriorating banana, for which the

Žstorage times involved are from upper left to lower
.right : 1r2r3r6; 7r8r9r10; 13r14r15r20 days,

respectively. This gridded layout is necessary in or-
der that all storage times can be analysed together by
MIA or MIR. It is emphasized that it is the objectiÕe

Žof the image analysis in this case: storage stability
.monitoring which dictates that the individual grids

represent a succession of different storage times. For
other image regression cases, these individual grid
cells will often represent different, typical Aobject-
likeB categorical entities to be similarly compared,
e.g. a series of different meats to be characterised, as

w x Žwas the case with Geladi and Esbensen 15 in fact
also predicting a storage-related parameter, Aharsh-

. w xnessB and Geladi and Grahn 2 a.o.

In Fig. 10, which shows the particular Y-image,
the array of grid cells forms the basis for an IPLS1.
Observe how the deterioration process interval of
1–20 days has been mapped into an image analytical
appropriate grey-level interval, spanning 0–255.
Again, it is the Y-image mask that makes the regres-
sion problem immediately appreciable. In one sense,
as soon as the multivariate X-image has been de-
fined, it is the Y-image which sets up the entire MIR.
In this example, the objective is to try to estimate the
age of the banana, by way of a common Y-value for
each sub-image. In the final prediction, the goal is to
get an estimate of the oÕerall age of the banana, and
not the local variation at pixel-level. The Y-grid
model will undoubtedly become more overall than
one where local variations at pixel level is reflected
in the Y-image, but this is not of significance for the

Ž .Fig. 12. Complete predicted vs. measured PrM layout of the banana aging process IPLS-Y -analysis. The standard PrM assessment plotgrid
Ž .is shown for one, two and three IPLS-components, while only the t –u score plot is shown lower right . Significant improvement of pre-1 1

diction precision using three components.
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ability to predict the age of an entire banana, how-
ever. The objective of an individual fruit inspection
system of course has the indiÕidual fruit as its small-
est Aobject-of-interestB.

Fig. 11 performs an identical role as Fig. 5, en-
compassing the essentials of the IPLS-analysis. In the

Ž .t –t score plot upper left panel , one may appreci-1 2

ate, in full detail, the trace of the fruit deterioration

Ž . Ž . Ž .Fig. 13. Calibrated X-variance top and Y-variance middle and validated PRESS bottom for banana aging case.



( )T.T. Lied, K.H. EsbensenrChemometrics and Intelligent Laboratory Systems 58 2001 213–226 225

process.3 We have illustrated two representative
process stages along this trace, an intermediate stage
and the penultimate sad, almost totally rotten end of

Žthe banana development upper right and lower left
. w xpanel, respectively . With reference to MIA 1,2,17 ,

the scene-space back-projections of these two classes
are self-explanatory in Fig. 11, especially when com-
pared with Fig. 9. Fig. 11 shows how it is possible to
delineate the entire deteriorating process in the X-
space because the entire storage time calibration

Ž .span has been compounded in the one X,Y -image.
For IPLS solutions, the t–u score plot allows

valuable, indeed critical insight into the effectiÕe re-
gression relationships between the X- and the Y-space
w x Ž18 . For example if the t –u relationships is close1 1
.to already linear, this is a certain reflection that a

strong prediction model will be achieved; likewise,
smaller non-linearities in the t –u score plots are1 1

usually Aironed outB by inclusion of one or a few,
additional PLS-components t –u , t –u , etc.2 2 3 3

For the present first presentation of the most used
features in multivariate image regression, these few
aspects of the general use of the t–u-plot will be
enough to allow appreciation of the way the IPLS-
Y -modelling works. Figs. 11–13 represent salientgrid

central aspects of our work leading up to a complete
w xMIR strategy 5,19 .

For an assessment of the modelling strength of the
IPLS-analysis, Figs. 11–13 will also suffice. From
these X–Y relationships, it is evident that a satisfac-
tory model can be achieved using three IPLS-compo-

Žnents. Observe, e.g. how the PrM predicted vs.
.measured relationship improves quite considerably

when adding the second- and third IPLS-compo-

3 We have elsewhere worked out a complete image analysis
strategy, which—while originally presented as related to MIA—
also applies to the analogous t–t score plots derived by an IPLS-

w xsolution 17 . As but an example we there followed another bio-
logical process, albeit of considerable greater complexity, i.e. a
forest clearing regrowth process, using geomorphological analo-

w xgies in order to characterise MIA score plots. From this review 17 ,
a range of interpretation guidelines for t–t score plots were devel-
oped, all of which may also be applied to the present PLS-solu-
tions. Observe that a slightly different modus operandi applies to

w xthe t–u plots 18 . These subtle differences will be addressed in
several sequel papers on a comprehensive MIR strategy, which are
in the works.

nents. From the t –u relationships alone, it was1 1

however already clear that this would per force re-
sult. We are also able to follow how one would go
about identifying outliers, etc., by using the appro-

w xpriate t–u score plots, following Ref. 18 . In the
specific present plots in Fig. 11, we did not actually
have reason to perform any outlier deletion, since
none were found.

3. Discussion and conclusions

The examples above represents our first presenta-
tion of a simulation of an automated image-analysis

Žmonitoring system in the guise of IPLS: MIR and
.MIX , in which we focused on the general aspects of

the IPLS-Y and the IPLS cases.discrim grid

The specific choices of illustrative food article
systems are not in any way an absolute indication of
the general applicability of this approach. What have
been shown feasible for perishable fruit articles, and
for on-line food product characterisation, is of course
equally applicable to, say, cereals, bread, meat, fish
—indeed the food and feed areas at large are poten-
tially opened up for a similar approach, e.g. the
berries—, beverages,—dairy sectors, etc.

Continuing outside the human, and animal, food
and feed areas, an analogous automated image mon-
itoring approach can of course equally well be envis-
aged for quite different application areas, at first
primarily within the general technological and indus-
trial sectors—but perhaps even further removed. One
common denominator could be any multi-temporal
aspect, which would lend itself to an appropriately
modified image recording and—analysis approach,
similar to the one illustrated here, e.g. degradation
studies: paints, coatings, corrosion inhabitation—in-
dustrial inspection in general i.a. Within the field of
remote sensing, there is also a plethora of similar
multi-temporal objectives.

The on-line image monitoring example, while rel-
atively simple in the crispbread case, also has many,
much broader application potentials within much of
the industrial inspection realm, in which there is of-
ten a distinct need for automated image analytical
monitoring.

For the present feasibility studies, we are satisfied
with the above results for both the IPLS-Y anddi scr i m
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the IPLS-Y approaches. We have shown that theg r i d
Ž .multivariate image regression approach MIR is now

fully established. It bears in mind though, that there
is always a series of critically important specific
associated image-analytical problems, e.g. problem-
specific illumination, shadows, reflections, non-con-
stant object sizes a.o.—much interesting work re-
mains.

The present first foray into the possibilities of
multivariate image regression has focussed on the

Ž .ways-and-means of modelling using bilinear IPLS
and prediction. What remains is the equally impor-

Žtant aspect of multivariate calibration, Õalidation in
.the form of image-regression validation , which

forms the subject-matter of the second paper in this
series, in which we also will make use of the third

w xIPLS-regression case only identified here: Y 19 .total
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