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A fully selective and versatile fiber optic heavy metal sensor 
based on the concept of second-order instrumentation has been 
fabricated and evaluated. This sensor uses chemically facili- 
tated Donnan dialysis as the means of temporal species 
discrimination and reagent-assisted spectroscopy for spectral 
species discrimination. The signals in both orders (time and 
wavelength) are combined and analyzed with second-order 
tensorial analysis algorithms-generalized rank annihilation 
method (GRAM) and trilinear decomposition (TLD)-inorder 
to extract the information of analytes form the sensor responses 
that are interfered by unknown interferents. Principal com- 
ponent analysis (PCA) is used to evaluateserrsor characteristics. 
With second-order calibration, the sensor can measure Pb(I1) 
or Cd(I1) in the presence of other interfering transition metal 
ions. The prediction accuracy is affected by the response 
linearity of the sensor and the competition effect of co-existing 
cations with the analyte ions in the ion-exchange process. The 
specificity of the sensor can be easily switched from Pb(I1) 
measurement into Cd(I1) measurement by just changing the 
calibration standard. The sensor was also tested with "real- 
world" samples. With the stopped-flow preconcentration 
measuring mode, the sensor gains in sensitivity so that low 
concentration Pb(I1) in tap water and lake water samples can 
be measured. For tap water samples, the sensor agrees with 
the graphite furnace atomic absorption (GFAA) verification 
very well. Due to complexation of Pb(I1) in the lake water 
samples, some complexed Pb(I1) ions are rejected by the cation- 
exchanging membrane, causing the sensor results to be lower 
than the GFAA data. 

Increasing the measurement dimensionality, that is, the 
order of analytical instrumentation is an attractive approach 
to obtain substantial improvement of analytical capability. A 
conventional zero-order device, for example, an ion-selective 
electrode, must be specific for only one analyte. Quantitation 
is biased if another constituent in the sample matrix possesses 
characteristics similar to the analyte that results in an 
instrument response. Even worse, there is no evidence to let 
the analyst know that the measurement has been biased. This 
problem can be addressed by a first-order device, e.g., a 
spectrometer, which utilizes an analyte's multiplexed char- 
acteristics in one domain (i.e., absorbance at different 
wavelengths). For this device to work, a calibration model 
that includes the spectra of the analyte and all interfering 
species must be established. Multicomponent analysis and 
outlier detection are possible.1J However, prediction will be 
successful onlv if there is no unexDected interferent in the 
(1) Sanchez, E.; Kowalski, B. R. J. Chemom. 1988, 2,247-63. 
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sample matrix. Otherwise, erroneous prediction will occur. 
This problem is eliminated with second-order instrumentation. 
Second-order hyphenated instruments are two analytical 
mechanisms linked in series such that the signal of the later 
instrument is modulated by the first device. This type of 
instrument utilizes an analyte's characteristics in two inde- 
pendent domains, for example, the diffusivities and the spectral 
absorptivities in HPLC-UV measurements. For each mea- 
surement, a second-order instrument generates a data matrix. 
For a bilinear second-order device, that is, where the instrument 
response for the analyte is a rank one matrix, the calibration 
can be carried out using only one standard consisting of just 
the analyte of i n t e re~ t .~  Prediction is robust to the presence 
of uncalibrated interferents. Since, in many cases, knowing 
all potential interferents and including these variations into 
the calibration model is very difficult, the so called "second- 
order advantage" is significant. 

Modern laboratory analytical chemistry has benefited from 
the advance toward higher order instrumentation.&l0 How- 
ever, to some degree, an increasingly important field-in situ 
chemical analysis-has been left behind. Most in situ 
measurements rely on zero-order sensors and some first-order 
spectral probes. It is in this area where the second-order 
advantage is extremely important because of unpredictable 
changes in samplematrix composition. Therefore, theconcept 
of second-order instrumentation in in situ chemical analysis 
has broad applicability. In many respects, this is not just a 
simple conceptual extension of laboratory instrumentation to 
the chemical sensor area. Limited by the requirements of 
cost, reliability, and physical size, researchers must use some 
simple, dedicated mechanisms to make second-order sensors. 
This opens a vast research area for sensor researchers and 
chemometricians, because these mechanisms usually do not 
exhibit comparable performance with their sophisticated 
laboratory counterparts, and more complicated calibration 
algorithms are needed to deconvolute the often collinear or 
nonlinear signal brought by the second-order sensors. 

In this paper, we present a second-order fiber optic heavy 
metal sensor combining a chemically facilitated Donnan 
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dialysis device developed by Lin and Burgess” with a low- 
cost, portable photodiode array spectrometer. The sensor is 
specific for measuring Pb(I1) or Cd(I1) in aqueous samples. 
Since it is important to monitor the heavy metal ions in 
environmental protection, devices capable of in situ, distributed 
measurement are highly desired. Atomic absorption/emission 
spectrophotometric methods are sensitive, selective, and 
accurate to measure metal ions, but they are not practical for 
in situ, distributed measurements because of high instru- 
mentation and operation costs as well as the requirement of 
sample pretreatment in many cases. Ion-selective electrodes 
are inexpensive and easy to use and, hence, are suitable for 
in situ measurement. However, in spite of a great deal of 
research in this area, recently developed lead and cadmium 
ion-selective electrodes still lack selectivity and long-term 
stability.12-15 Second-order instrumentation provides a new 
approach to solve the selectivity vs stability dilemma. 
Semiselective but stable membranes can be used to improve 
the long-term stability of the sensor whereas the selectivity 
is compensated by the multiwavelength detection and second- 
order calibration. 

THEORY 
Temporal Species Discrimination. In this sensor, the 

temporal domain information is provided by the diffusion 
behavior of the metal ions through the Nafion cation-exchange 
membrane. Utilizing the specificity of Na2S203 in complex- 
ation with metal ions, one can selectively increase the 
membrane-phase diffusivities and the concentration gradients 
of the targeted metal ions, Pb(I1) and Cd(I1). As the first 
step of permeation, partition of the transition metal ion into 
the cation-exchange membrane (sodium form) is a spontaneous 
process. Once in the membrane, Pb(I1) and Cd(I1) form 
neutral or negatively charged complexes with the thiosulfate 
ions that “invade”16 into the membrane phase. These 
complexes are not retained by the functional groups of the 
cation-exchange membrane, resulting in the increased dif- 
fusivities of Pb(I1) and Cd(I1). The concentration gradients 
of the targeted ions are increased because the number of “free” 
ions capable of back-diffusion is dramatically reduced by the 
complexation. Thus, with a sample whose concentration 
changes in a A function (Figure l), the elution profiles of 
Pb(I1) and Cd(I1) ions are relatively sharp peaks. Since other 
transition metal ions, considered the interfering ions here, are 
not favorable in complexation with Na2S203: (1) their 
concentration gradients across the membrane are not increased 
and (2) they are retained by the functional groups of the 
cation-exchange membrane as they permeate through it. 
Therefore, the interfering ions can be distinguished from the 
targeted ions by their low peak height and tailing elution 
profiles. Figure 1 compares the elution profiles of the targeted 
ion, Pb(II), and interfering ions, Zn(I1) and Co(I1). As 
expected, the elution profiles of interfering ions have long 
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Figure 1. Elution profiles of different ions: Pb(1I) concentration, 1.5 
X M each; receiving 
solution, 0.1 M Na2S20s in 0.05 M NaACIHAC buffer solution; pH, 5.0. 

M; Co(I I) and Zn(I1) concentration, 3 X 

tailing parts due to the slow ion-releasing processes from the 
membrane phase. Although the dialysis process is not 
completely selective toPb(I1) and Cd(II), it doescreateenough 
difference in the elution profiles for discrimination of Pb(II), 
Cd(II), and interfering ions in the temporal domain. 

Spectral Species Discrimination. The eluted ions are 
detected spectroscopically as they react with a metal indicator, 
4-(2-pyridylazo)resorcinol (PAR), to form orange-red metal 
ion-PAR chelates. PAR has been widely used as an indicator 
in colorimetric analysis of metal ions.’’ Like most metal 
indicators, PAR is not selective. Analysis by zero-order 
methods necessitates a tedious sample pretreatment process 
to remove the interferences.18J9 Benefited by the second- 
order advantage, the sensor employed here requires only partial 
selectivity in spectral detection, which can be easily achieved 
by utilizing the different absorption peak shifts caused by the 
difference in electron structure among the various kinds of 
metal ion-PAR chelates. Figure 2 compares the second- 
derivative spectra of various kinds of chelates. In the visible 
region, as usual, the peaks are broad and heavily overlapped. 
However, the peak shifts are large enough for distinguishing 
different species. Note that spectral differences occur in the 
range of 460-600 nm. 

Bilinearity Considerations. A fundamental requirement 
of GRAM and TLD is that the data must be bilinear. Such 
type of data matrix is generated by a bilinear instrument and 
can be decomposed into 

where N is the bilinear matrix, X and Y are matrices whose 
columns X k  and Y k  are vectors representing the pure constituent 
responses in the column space and row space of N. C is a 

(1 7) Marzenw. Spec!roscopic Detection of Elements; John Wiley & Sons Inc.: 

(18) Yotsuyanagi, T.; Yamashita, R.; Aomura, K. Anal. Chem. 1972,44, 1091-3. 
(19) Nonova, D.; Evtimova, B. Talanta 1973, 20, 1347. 
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Figure 2. Secondderivative spectra of metal ion-PAR chelates. In 
0.025 M Na2B407/NaOH buffer + 0.077 M Na2S203 -t 0.038 M NaAC, 
pH = 10.5. PAR concentration, 3 X l o4  M; blank, PAR solution. 

diagonal matrix whose elements Ck,k represent the concentra- 
tion of the constituent in the sample. The superscript T stands 
for the transpose of a vector or a matrix. In the sense of 
instrumentation, the mathematical expression means that, as 
a bilinear device, the response profiles in both domains of the 
instrument arising from a species should be unique, consistent, 
and independent of the presence of other species. By this 
definition, this second-order sensor can be considered as a 
bilinear device. In the temporal domain, the transport behavior 
of each ion is independent of the others, because the sensor 
works in a low concentration range where the interaction 
among the ions is very small. In the spectral domain, the 
chelated species are stable during the time of mixing and 
detection. There is no further reaction involved with the 
chelated species inside the sensor. The indicator forms a 1:l 
or 2: 1 (PAR:ion) chelated species with a metal ion, depending 
upon the pH of the mixed solution.20 Once the pH is stabilized 
by buffering the indicator solution, speciation of the chelate- 
metal ion system is consistent so the spectral peak for each 
metal ion will not vary with the time. 

Second-Order Data Analysis. Generalized rank annihila- 
tion method (GRAM) and trilinear decomposition (TLD) 
are second-order calibration algorithms which do not require 
any assumption of physical profiles to provide unique resolu- 
tions. The theories of these methods have been discussed by 
Sanchez, Wilson, and K o ~ a l s k i . ~ * ~ l , ~ ~  Provided here is a 
summary of GRAM for quick reference to the key steps of 
the algorithm. Since TLD can be viewed as an extension of 
GRAM, the introduction of this method will be very brief and 
for the purpose of comparing the difference between TLD 
and GRAM. The theoretical discussion of the TLD method 
may be found in ref 22. 

(1) GRAM. In GRAM, a single standard is used for 
calibration, and the analyte concentration in one sample is 

(20) Cheng, K. L., Ueno, K., Imamura, K., Eds. CRC Hundbook of Organic 
Analyricul reagents; CRC Press, Inc.: Boca Raton, FL; pp 195-201. 

(21) Wilson, E. E.; Sanchez, E.; Kowalski, E. R. J. Chemom. 1989, 3, 493-8. 
(22) Sanchez, E.; Kowalski, E. R. J .  Chemom. 1990, 4, 29-45. 

predicted. Information in both standard and sample data 
matrices is combined by concatenating thesampledata matrix, 
M(Z X J), and the standard data matrix, N(Z X J). The two 
concatenated matrices are subject to decomposition by singular 
value decomposition (SVD): 

M = = US,QT 
N 

MJIN = PS,VT (3)  

Once the number of principle components (PC) K is chosen, 
the first K columns of the loading matrix P of MIIN, denoted 
as P(I X K ) ,  defines the common row space. The first K 
columns of the score vector Q of M/N, denoted as Q(J X K ) ,  
defines the common column space. 

The common spaces cover the variations in both standard 
and sample data matrices. Sf and S2 are the matrices of 
singular values. The standard and sample data matrices are 
then projected into the common row and column spaces: 

M, = PTMQ (4) 

N, = PTNQ (5) 

The square matrices Mpq and Npq fit into the generalized 
eigenproblem: 

M,Z = N,ZA (6) 

Using the QZ algorithm to solve the eigenproblem, we obtain 
the eigenvalue matrix A, which contains the concentration 
ratios: 

A = CM(CN)-’ (7) 

where CM and CN are the diagonal concentration matrices of 
the mixture sample and the standard, respectively. 

Determination of the proper number of principal compo- 
nents (PC) is a critical step in building up a calibration model. 
This is usually done by cross-validation of the data matrix. 
In ref 23, a series of predicted residual sum of squares (PRESS) 
are obtained as the result of using different number of factors. 
In theory, the optimal number of factors (hence the PCs) is 
obtained when PRESS hits the minimum. In practice, 
however, the noise carried by the less significant factors might 
cause complex eigensolutions of eq 6. Therefore, sometimes 
using less PCs than the optimal number is preferred in order 
to avoid complex solutions. The lower limit of the number 
of PCs used in the model is that the information of the analytes 
must be well modeled. Fitting the calculated elution profiles 
and spectra of the pure analytes to the measured ones and 
calculating the root mean square errors (RMSE)24 can be 
used as a quatitative means of judgment. For an acceptable 
model, the RMSE of curve fitting should be less than or 

(23) D’Amboise, M.; Lagardc, E. Compur. Chem. 1989, 13 ( I ) ,  39-44. 
(24) Malinowski, E. R. Fucior Anulysis in Chemiszry, 2nd 4.; John Wiley & Sons: 

New York, 1991; pp 117-20. 
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Flgure 3. Sensor configuration: C, computer; IS, indicator syringe; 
RS, receiving solution syringe; LS, light source: OC, optical cell: OF, 
optical fiber; M, mixer and mixing coil; MC, membrane cell; PDAS, 
photodiode array spectrometer: S, sample. 

comparable to the sensor noise. The calculated matrix of 
elution profiles is 

P = Q(z+)T (8) 

and the matrix of calculated spectra is 

9 = P(NW + MW)Z (9) 

Since the calculated and measured profiles and spectra are 
in arbitrary scales, scaling is necessary to make any com- 
parison. 

(2) TLD. A major advantage of TLD over GRAM is that 
TLD uses multiple standards. Therefore, a statistically better 
prediction can be obtained over a given concentration range, 
and the prediction is less affected by the measurement errors. 
In TLD, common row (temporal), column (spectral), and 
“tube” (sample) spaces are found by computing the SVD of 
the concatenated second-order data matrices obtained from 
unfolding the three-dimensional data cube along each order. 
Only the first two columns of the joint tube space are retained 
to construct two pseudo-sample data matrices, which are the 
linear combination of all standard and sample data matrices. 
These pseudo-sample data matrices are projected into the 
common row and column spaces so that two generalized 
eigenvalue-eigenvector equations can be established. By 
solving the eigenproblems, calculated physical profiles (e.g., 
elution profile and spectrum) can be obtained. TLD uses the 
least square fit of the calculated physical profiles to calculate 
the concentrations of pure constituents. 

EXPERIMENTAL SECTION 
Experiment Setup. The sensor is schematically illustrated 

in Figure 3. The dialysis cell is a piece of one-end-plugged 
tubular Nafion cation-exchange membrane into which a piece 
of polymer-coated silica capillary has been inserted. This 
capillary delivers the receiving solution and increases the 
surface-to-internal volume ratio of the dialysis cell. As the 
receiving solution flows through the cell, eluted metal ions are 

Sensor 
cu 

U I 

Waste 
Figure 4. Automatic sampling system: Vl-V3, valves: SH, sensor 
head; SC, sampling cell; PB, pressurized bottle; DIW, deionized water: 
CN, compressed nitrogen; SSP, sample syringe pump: SB, stirring bar. 

brought to a mixing channel where they mix and react with 
the metal indicator, 4-(2-pyridylazo)resorcinol. The metal 
ion-PAR chelates are then brought into the fiber optic flow 
cell for detection. The detailed specifications of dialysis cell, 
mixing channel, reagent delivering pump, fiber optic detection 
cell, and dialysis process are given in ref 1 1. The optical cell 
is illuminated by a tungsten light source coupled with a source 
fiber (200-mm core, glass on glass, NA = 0.21). The 
transmission signal is collected by the same type of fiber and 
delivered into a portable diode array spectrometer (SD 1000, 
Ocean Optics, Inc.) A SMA connector couples the signal 
fiber to the spectrometer. The spectral coverage of the 
spectrometer is from 400 to 650 nm with a resolution of 3 nm 
if a 50-mm core fiber is used. The data acquisition software 
delivered with the spectrometer was modified so that it can 
be used to continuously collect the spectra at a prescribed 
interval. 

An automated sample delivery system is used to insure 
precise sample deposition time. Figure 4 shows the schematics 
of the system. Purging and refilling the sampling cell is 
accomplished using the pressurized bottle. The valves (Slider 
Valve 5301, Rheodyne, Inc.) and the sample injecting syringe 
pump (50 SMB2-HM, Aerotech, Inc.) are controlled by a 
programmable controller (UNIDEX 1 1, Aerotech, Inc.). The 
solenoid valve kits for pneumatic operation of the slider valves 
are from Rheodyne, Inc. (Model 7163). 

Materials and Reagents. Nafion tubular membrane (1 100 
EW, 610 mm I.D., 100 mm wall thickness) was obtained from 
Perma Pure Products, Inc. Metal indicator 4-(2-pyridylazo)- 
resorcinol (PAR) was purchased from Aldrich Chemical Co. 
Sodium borate, sodium thiosulfate, sodium acetate, and acetic 
acid (aldehyde free) are analytical grade and were obtained 
from Baker Inc. Sodium hydroxide solution was purchased 
from VWR. All nitrates of Pb(II), Cd(II), Ni(II), Mn(II), 
Co(II), and Zn(I1) are analytical grade and were obtained 
from Aldrich Chemical Co. 

Procedures. The receiving solution is prepared by dissolving 
12.4 g of sodium thiosulfate into 500 mL of sodium acetate- 
acetic acid buffer. The buffer contains 0.05 M sodium acetate 
and the required amount of aldehyde-free acetic acid to adjust 
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the pH to 5.1. At this pH, the complexation of acetate with 
analyte ions is weak. Therefore, the interference to thiosulfate 
complexation is negligible. The indicator solution is prepared 
by adding 0.059 g of PAR into 250 mL of sodium borate 
buffer. The buffer of pH 10.8 is prepared by mixing 125 mL 
of 0.1 M sodium borate solution and 60.6 mL of 0.4 M NaOH 
and diluting it to 250 mL with distilled deionized (DI) water. 
The sample solutions are prepared by diluting the stock 
solutions, which are prepared from the metal nitrates. The 
pH of sample solutions is in the range of 5.6-5.9, depending 
on the pH of the DI water. The real-world samples are tap 
water and the Lake Union water collected near the campus. 
The pH values are 5.5 and 5.2 for the tap water sample and 
Lake Union sample, respectively. 

Each measurement consists of a 30-min cycle, starting with 
purging the sampling cell with compressed Nz (valve 1 at 
position B, valve 2 at position A, valve 3 open) and then 
injecting the sample (valve 1 at position A, valve 3 closed, 
sample syringe pump on). After a 150-s sample deposition, 
compressed N2 purges the cell again. Then the cell is refilled 
with DI water (valve 1 at position A, valve 2 at position B, 
valve 3 open). This purging-refilling cycle is repeated three 
times for cleaning the residual sample. The data collection 
interval is set to 24 s. The integration time of the spectrometer 
is 0.01 s. For each spectrum taken, 50 scans are averaged. 

RESULTS AND DISCUSSION 
Evaluation of Sensor with SVD. The responses to pure 

analyte [Pb(II)] and a mixture containing Pb(I1) and 
interferents [Co(II), Mn(II), Ni(II), and Zn(II)] are shown 
in Figure 5 as the examples of second-order data. Second- 
derivative spectra are used throughout the following analysis 
in order to amplify the spectral differences and minimize the 
base line drift. It is very clear that there are spectral differences 
between the pure Pb(1I) and the mixture data. The temporal 
difference between two data sets can also be observed. Unlike 
the Pb(I1) signal, the signal of the interferent mixture does 
not go back to the base line because of the slow releasing 
process of the interferents from the membrane. Principal 
component analysis is used to model the responses by several 
significant orthogonal vectors (PCs). Singular value decom- 
position (SVD) is one of the algorithms to calculate the 
orthogonal vectors.24 Briefly speaking, SVD decomposes a 
data matrix into two normalized matrices, loading matrix 
and score matrix, respectively, and a diagonal matrix contain- 
ing singular values, each of them indicating the amount of 
variance in a corresponding vector. For the second-order data 
of the sensor, the loading vectors in the loading matrix describe 
the spectral information whereas the score vectors depict the 
elution profiles of different ions. In Figure 6A, the first loading 
vector from the Pb(II), Co(II), Mn(II), Ni(II), and Zn(I1) 
mixture data mainly describes the combined spectra of the 
interferents. Because of the similarity in their elution profiles, 
the interferences are collinear and cannot be separated into 
several corresponding orthogonal vectors. The variance of 
the Pb(I1) signal can be primarily described by the second 
loading vector due to the substantial difference between its 
elution profile and thoseof the interferents. The third loading 
vector in Figure 6B is mainly associated with the variance of 
the mixed reagent solution. The large variance around 450 
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Figure 5. Response of the second-order sensor to (A) pure Pb(II), 
1.5 X 10aMand(B)Pb(II), 1.5 X 10-6Mwithinterferentions: Co(II), 
Mn(II), Ni(II), and Zn(II), 0.5 X M each. 

nm is due to consumption of the indicator by the eluted ions. 
There is a small signal in the 540-580-nm region of the third 
loading vector. This corresponds to the Pb(I1) signal. The 
fourth loading vector contains some residual spectral signal. 
The scorevectors are shown in Figure 7. The first scorevector 
obviously corresponds to the combined elution profiles of the 
interferents, as it has the characteristic tail. The elution. 
information of these interfering ions is described by a single 
score vector because of the similarity in their diffusion 
behaviors. The elution profile of Pb(I1) is described by the 
second score vector. This vector is also associated with some 
reagent mixing noise and the variance caused by metal 
indicator consumption. The mixing noise shows up primarily 
on the third and fourth score vectors, as shown in Figure 7B. 
The periodic noise is from inconsistent movement of two 
delivery syringes. Since the internal volume of the sensor’s 
mixer is very small, the mixing ratio is very sensitive to this 
type of inconsistency. One method to reduce the fluctuation 
is to put a filter on each of the syringes to increase the flow 
resistance so that the inconsistent movement can be absorbed 
in some degree by the elasticity of the syringes. 

As in the Pb(I1) data, information about the interferents 
is embedded in the first factor of the Cd(I1) data. Information 
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Figure 6. Singular value decomposition (SVD) loadings of mixture 
data: Pb(II)(1.5 X 10" M) wlth Co(II), Mn(II), NI(II), and Zn(II)(0.5 
X lod M each). 

of Cd(I1) is mainly represented by the second factor. Because 
the absorbance peak of the Cd-PAR chelate is close to that 
of PAR, more relevant information is embedded in the third 
factor, making it significant enough to be included in the 
model. Variance due to indicator consumption is distributed 
in the second and the third factors. The fourth factor mainly 
describes mixing noise. Because of the similarity in the pattern 
of the principal components of Pb(I1) and Cd(I1) data sets, 
the loadings and scores of the Cd(I1) data set will not be 
illustrated here. 

Measurement of Artificial Samples. The samples are 
prepared by fixing the concentrations of the interferents [Co- 
(11), Mn(II), Ni(II), and Zn(II), 0.5 X 1od M each] and 
varying the concentration of the analyte, Pb(I1) or Cd(I1). A 
series of standards containing pure Pb(I1) or Cd(I1) are 
measured for the prediction. The number of PCs is determined 
by cross-validation of the concatenated (by columns) data set 
of the samples. The PRESS values in Figure 8 indicate that 
the optimal numbers of PCs for Pb(I1) and Cd(I1) data are 
three and four, respectively, which are less than the number 
of chemical components in the samples due to the similarity 
in the elution profiles of the interfering ions. In order to 
completely avoid complex solutions, two PCs are used in Pb- 
(11) calibration and three are used in Cd(I1) prediction. A 
small percentage of analyte information may be left out of the 
models by reducing the PC numbers by one, but in this study 
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Flgure 7. Singular value decompositlon (SVD) scores of mixture data: 
Pb(I1) (1.5 X 10" M) wlth Co(II), Mn(II), NYII), and Zn(I1) (0.5 X 1od 
M each). 
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Flgure 8. Root mean square errors of cross-validation of Pb(I1) and 
Cd(I1) data [containing interferences of Co(II), Mn(II), NYII), and 
Zn(II)] wing various number of factors. 

the consequent errors are smaller than including the last PC 
with its associated errors. The models are then verified by 
comparing the calculated elution profiles and spectra of Pb- 
(11) and Cd(I1) using GRAM with the measured ones. Figure 
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Figure 10. Comparison of the results of Pb(I1) predlctlon using GRAM, 
TLD, and univarlate method (528 nm): (- - -)theoretical predlctlon line; 
(El) GRAM results; (X) TLD results; (0) single wavelength results; 
Interfering Ions: Co(II), Mn(II), NI(II), and Zn(II), 0.5 X 10" M each; 
standard deviatlon, 0.077 X 10" M. 
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Figure 9. Comparlson of the spectrum and the elution profile of Pb(1I) 
with the calculated ones wlth GRAM: (A) spectra; (8) elutlon profiles; 
(-) measured; (- - -) calculated wlth GRAM. 

0 1 2 3 4 
9 shows the comparison of Pb(I1) elution profiles and spectra 
as an example, in each case a scaling constant is adjusted to 
minimize the RMSE of curve fitting. The RMSEs of spectra 
and elution profile fitting are 3.21 X lo-' and 9.45 X 
absorbance units (second-derivative spectra), respectively, both 
comparable with the sensor noise level of 2.88 X lo-' 
absorbance units (second-derivative spectra). Figures 10 and 
11 compare the prediction results using second-order calibra- 
tion methods (GRAM and TLD) and zero-order method 
(single wavelength, monovariate). It is easy to see that the 
measurements are biased if the single wavelength (zero-order) 
approach is used. Since the concentrations of the interferents 
are fixed, the results of single wavelength detection show a 
constant positive offset from the truevalues. When the second- 
order approaches are used, the positive bias is removed. 
However, there are considerably large errors in GRAM 
prediction results using the full-size data (full elution profile, 
see Table 1). There are two major factors to cause the error. 
The first is the competition of co-existing cations (all other 
cations except the analyte in the solution) with the analyte in 
the ion-exchange process on the membrane surface.ll Since 
the process does not reach equilibrium during the short sensor 
exposure time, the amount of analyte ions partitioned in the 
membrane phase is predominately determined by the prob- 
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Figure 11. Comparison of the results of W I I )  predlctlon using (SAM, 
TLD, and unhrarlate method (528 nm): (- - -)theoretical prediction line; 
(P) GRAM results; (X) TLD results; (0) single wavelength results; 
Interfering Ions: Co(II), Mn(II), NI(II), and Zn(II), 0.5 X 104  M each; 
standard deviatlon, 0.081 X 10" M. 

Table 1. Errors ol Pb(I1) Predlctlon wlth GRAM Udng FuHSlte 
Data. 

stds, Pb(II), samples, Pb(II), 10-6 M, plus interfering ions 
10-6M 0.5 (%) 1.5 (%) 2.5 (%) 3.5 (%) 4.5 (7%) 

0.5 -44.5 -7.9 -59.8 119.6 155.0 
1.5 -52.2 -11.7 5.9 20.8 22.7 
2.5 -61.6 -25.0 -6.4 7.7 9.1 
3.5 -66.2 -32.0 -13.7 2.8 4.7 
4.5 -70.2 -37.7 -19.7 -0.5 3.6 

Interfering ions: Co(II), Mn(II), Ni(II), Zn(II), 0.5 pM each. 

ability of the analyte ions to contact with the functional groups 
at the membrane surface. The competition of co-existing ions 
reduces the probability and, hence, the sensor response to the 
analyte. This effect is not significant when analyte concen- 
trations are high relative to those of co-existing ions, but not 
negligible when the analyte concentrations are relatively low 



Table 2. Erron of Pb( 11) Predlctlon wlth GRAM Udng 
Truncated Data’ 

stds, Pb(II), samples, Pb(II), 10-6 M, plus interfering ions 
10-6 M 0.5 (%) 1.5 (%) 2.5 (%) 3.5 (%) 4.5 (7%) 

1.5 -50.4 -11.9 4.1 5.0 3.8 
0.5 -57.0 -23.3 -7.8 -2.1 -3.0 

2.5 -55.4 -19.7 -1.3 -0.9 -0.3 
3.5 -56.0 -25.4 -2.2 -1.2 -1.3 
4.5 -55.8 -19.3 0.0 1.5 1.7 

Interfering ions: Co(II), Mn(II), Ni(II), Zn(II), 0.5 pM each. 

~~ 

Table 3. Errors of Cd(I1) Prediction wlth GRAM Uslng 
Truncated Data. 

stds, cd(II), samples, Cd(II), 10-6 M, plus interfering ions 
10-6 M 0.5 (%) 1.5 (%) 2.5 (%) 3.5 (%) 

0.5 -18.1 0.5 -13.5 21.5 
1.5 -3.5 -7.2 19.7 -1.3 
2.5 -1 1.2 -7.3 -19.2 -1.7 
3.5 -67.9 -23.5 -14.1 0.0 

a Interfering ions: Co(II), Mn(II), Ni(II), Zn(II), 0.5 pM each. 

or the affinities of co-existing ions to the membrane are high. 
This can be observed from the data on the diagonal line in 
Table 1 (italics). The negative bias at the low analyte 
concentrations clearly indicates that less analyte ions can 
partition in the membrane when there are other cations in the 
sample. The second factor is the nonlinearity of sensor 
response. As a linear method, GRAM relies on the linearity 
of the device to make good prediction over a range of 
concentrations. Deviation from the ideal linearity introduces 
extra error when the standard and sample concentrations are 
different. This is revealed by the off-diagonal line data in 
Table 1, where the prediction error is increased when using 
a low concentration standard to predict high concentration 
samples and vice versa. 

For this particular sensor, it is found that the response 
linearity can be improved by truncating the rising part of the 
elution profile from the data set (removing the first 24 scans 
of the data file). The rising part of the elution profile contains 
little chemical information to distinguish the ions, as shown 
in Figure 1, where the rising parts of the elution profiles of 
different ions are similar. The results in Table 2 and Table 
3 show smaller error than that of using the full-size data, 
especially when the standard and sample concentrations are 
different (see the rows in the tables). The remaining negative 
bias at low analyte concentrations is mainly attributed to the 
competition effect of the co-existing ions in the samples and 
cannot be corrected by the data truncation. However, when 
the analyte concentration is very low so that signal saturation 
will not occur, this competition effect can be reduced by using 
longer sensor exposure time so that the ion-exchange process 
is close to the equilibrium where the amount of analyte ion 
partitioning in the membrane is predominately determined 
by its affinity to the membrane phase. 

It is obvious that the nonlinearity problem can be 
circumvented by using a standard whose concentration is close 
to that of the sample. In real applications, however, choosing 
a “close” standard concentration may not be trivial. In this 
regard, TLD is superior to GRAM because it uses least square 
fit based on the calculated elution profiles and spectra from 

Table 4. Error8 of Pb(I1) and Cd(I1) Predlctlon wlth TLD Udng 
Truncated Data 

stds, Pb(II), samples, Pb(II), 10-6 M, plus interfering ions 
10-6 M 0.5 (%) 1.5 (%) 2.5 (%) 3.5 (%) 4.5 (%) 

0.5, 1.5, 2.5, 3.5,4.5 -14.6 -9.3 -11.1 -3.2 4 . 6  

stds, Cd(II), samples, Cd(II), 10-6 M, plus interfering ions 
10-6 M 0.5 (5%) 1.5 (%) 2.5 (%) 3.5 (5%) 

0.5, 1.5, 2.5, 3.5 -15.7 -1.2 -1 2.8 13.6 

Table 5. Pb Analyrlo of Tap Water and Lake Water Samples’ 
sensor results (pg/L) 

verification with 
GRAM TLD GF“4 (PglL) 

sample av SD av SD av SD 

tap water 6.5 1.6 6.3 0.9 6 0.5 
Lakeunion water 5.7 2.3 5.5 1.2 10 0.4 

Sample pH: 5.5 for tap water and 5.2 for the lake water. 

multiple samples to obtain statistically better prediction within 
a given concentration range. From Table 4, one can see that 
TLD reduces prediction errors in low concentration mixtures, 
especially for Pb(I1). TLD is most effective if the response 
curve is basically linear but imposed by random noise. It 
cannot handle large nonlinearities, such as in the case of using 
full-size data sets of Pb(I1) and Cd(I1). For this reason, an 
extended TLD algorithm with nonlinear curve fitting tech- 
niques is developed to improve the capability of handling the 
nonlinearities. This method will be described in the following 
paper .25 

Measurement of Real-World Samples. Real-world sample 
matrices are more complicated. They may contain species 
that can cause spectral peak distortion by affecting the 
chemical condition of metal ion-PAR chelating process. In 
this case, the Donnan dialysis process not only provides time 
domain information for the sensor but also reduces the matrix 
effect by screening out anionic ions and large neutral species. 
In this experiment, two types of real-world samples, tap water 
and lake water (Lake Union water samples), were analyzed 
for Pb(I1) concentration. Four standards containing 4-7 X 

M Pb(N03)~ (1 X 1P8 M increment) were used in TLD 
prediction. GRAM used the 5 X le8 M Pb(N03)2 solution 
as the standard. To increase the sensor’s sensitivity, stopped- 
flow measurement was used. While the sample was stirred, 
the receiving solution was stopped for 8 min to accumulate 
the ions. The long accumulation time also minimizes the 
competition effect of the co-existing ions. After preconcen- 
tration, the flow was resumed for detection. Five consecutive 
measurements were carried out for each sample. Before 
calibration, the first 24 spectra were truncated from each 
data matrix because, in this part of the data matrix, the 
temporal variances of different ions were collinear due to the 
stopped-flow accumulation. Table 5 lists the Pb(I1) concen- 
trations and standard deviation of sensor measurement with 
GRAM and TLD calibration. For verification, Pb analysis 
using graphite furnace atomic absorption (GFAA) was carried 
out, and the results are also listed. The sensor data shows 

(25 )  Booksh, K. S.; Lin, Z.; Wang Z.; Burgess, L. W.; Kowalski, B. R .  Anal. Chem., 
following paper in this issue. 
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very good agreement with that of GFAA in tap water 
measurement. The lowest limit of detection of the GFAA is 
3 ppb. It has been found by ICP-AES that the tap water 
sample contains 449 ppb of Cu and 45 ppb of Zn ions. These 
are significantly higher than the concentrations of other 
transition metal ions. The predicted Pb(I1) concentration in 
the Lake Union water sample from this sensor, however, is 
much lower than that from GFAA. Since the pH values of 
both the tap water sample and the Lake Union water sample 
were almost the same, this difference must be attributed to 
the complexation of Pb ions with the organic species in the 
lake water. Because the membrane does not favor permeation 
of large neutral or negatively charged species, the sensor only 
measures the free Pb ions, which is a fraction of the total Pb 
concentration measured by the atomic spectroscopic methods. 

CONCLUSION 
Under the chosen parameters of the dialysis process and 

metal ion indicator complexation, elution profiles and spectra 
of analyte and interfering ions are significantly different. This 
enhances the resolution of analyte information from the 
interference. The cation-exchange membrane functions well 
in all measurements, partially because the membrane is 
immersed in the blank solution for most of the time so its 
original condition is preserved. In general, this sensor is 
promising to be developed into low-cost, selective, and versatile 
instruments for in situ, distributed measurement of heavy 
metals. The second-order sensor design can also be used as 
a platform of second-order in situ devices for measuring other 
species. There are several aspects of the sensor that require 
continuous research. First, the error of prediction is large 
when the standard and sample concentrations are very 
different. Research of the dialysis system, especially the 
facilitated ion-exchange process, is necessary in order to 

improve the sensor linearity. Developing second-order cali- 
bration algorithms that have nonlinear curve fitting capability 
is equally important to improve the sensor linearity. Second, 
the analysis time of the sensor is considerably long compared 
to other instruments. The current sensor is not optimized in 
the engineering point of view. The membrane thickness, the 
size of the dialysis cell, and the internal (void) volume of the 
sensor should be reduced so that the elution time and the lag 
time could be minimized. Finally, like all sensors using an 
ion-selective technique, the sensor’s response is affected by 
speciation of the analyte. Acidifying the sample will release 
the complexed ions to obtain “total” concentration of the 
analyte. In this particular case, however, sample acidification 
was limited by the small complexation capability of the 
thiosulfate ion and its instability in acidic environment. The 
sensor response has a significant decrease when the sample 
pH was set to 3.0. A white sulfur layer from decomposition 
of thiosulfate is observed on the surface of the membrane. 
This problem can only be solved by finding another complexing 
reagent whose pKa is close to 3.0. 
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